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X-Ray diffraction crystallography has become a major tool for chemistry and
biochemistry.  It can easily provide detailed structures of molecules of a few atoms, or, with more
difficulty, molecular systems of a hundred thousand atoms.  It is a tool used in physics and
materials science to examine structural features of simple materials in exquisite detail.

X-Ray diffraction is an optical technique in the sense that electromagnetic radiation is used
to create an image of an object.  We will try in this section to emphasize the similarities and
differences between the techniques.  In the x-ray case the objects are submicroscopic, and the x-
ray light has a wavelength very much shorter than visible light.  The interactions between the light
and the object to be imaged are similar in both visible and x-ray cases – light is scattered from the
electrons in the object.  The similarities end when the scattered light is to be combined to form the
image; the x-ray worker does not have the lenses or sharply curved mirrors possessed by the
optician working with visible light to reconstruct the image.  Instead the phase of the scattered
rays must be deduced, and
then the image must be
calculated by Fourier
synthesis.  

The relation
between x-ray
crystallography and
simple optics can be
visualized in Figure 1.  In
the case of lens optics,
one can think of rays of
light scattering from
points on an object and
being collected and
directed by the lens to
form a magnified image of
that point.  Alternately,
one can realize that all
rays scattering in each
direction are steered by the lens to meet at a point on a plane (the diffraction plane) where they
will interfere.  These diffracted rays then diverge and continue to the image plane, where they
interfere again with all rays coming from a single point on the object but from different directions,
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Figure 2

to give the final image.  In x-ray diffraction there is no lens, so the scattered rays must be
measured directly.  This measurement destroys the phase information, and this lost information
must be recovered by some other method.

The thrust of this article will be firstly to describe mathematically the physics of scattering
in crystals.  Secondly we’ll show how the phase of the scattered rays can be determined in order
that one can reconstruct the final image of the electron density in the crystal.  Finally, we’ll
describe some of the ways that x-ray diffraction can provide useful information for chemistry,
biology, physics, or materials science.

Diffraction of x-rays from crystals

A nice summary of the history of the early days can be found in Ewald’s “Fifty Years of
X-Ray Diffraction” (1962).  This volume should be bedside reading for every crystallographer.
Munich was a hotbed of research on x-rays in the first decade of the 20th century.  W.C. Röntgen
himself, who had discovered x-rays in 1895-6, headed one institute.  A. Sommerfeld headed
another, to which he was able to attract M. von Laue as a junior professor.  P.P. Ewald was a
doctoral student with Sommerfeld toward the end of the decade.  Although no crystal structures
were known at this time, Ewald’s thesis (winter of 1911-1912) dealt with calculation of the
effects of a crystal on refraction of light.  His result stimulated von Laue to try illuminating a
crystal with x-rays in the spring of 1912.  This was, of course, the first ever x-ray diffraction
experiment, so numerous trials were required to see how best to collimate and enclose the
radiation from their primitive x-ray tube to assure that only the copper sulfate crystal was
illuminated, and a minimum of x-ray background reached the photographic plate.  In the end, they
clearly observed diffraction spots and Laue produced an explanation of this phenomenon
(Friedrich, Knipping, and Laue; and Laue (1912)).  Upon hearing of the Laue, Friedrich, and
Knipping result, Ewald was driven to return to his thesis.  He realized that his result could be cast
in a way that it described the interaction with “short waves by means of a lattice having
translations proportional to 1/a, 1/b, an 1/c, which he called the ‘reciprocal lattice’ ” (Ewald,
1962).  
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Figure 3

In a classical treatise that still provides a primary text for diffraction physics after 50 years,
James (1948) explains diffraction by simple crystals by a method that is similar in principle to one
used originally by von Laue.  Consider a space lattice of identical point scatterers.  When a plane
wave sweeps through this lattice, the parallel rays might interact with two of the point scatterers
as in Figure 2.  The unit vectors so are perpendicular to the plane wave and are parallel to its
direction of incidence.   One might observe the radiation scattered from points A1 and A2 at a
location much farther away than the distance between the two points, in the direction of the unit
vector s.  Now one can evaluate the phase difference between  these two scattered rays observed
at this distant point.  The first step is to calculate the path-length difference.  Referring to Figure
2, one can see clearly that this difference will be A1N - A2M.  One can use vector notation to

represent these two distances: A2M equals the scalar product between so and r: r A so.  A1N is that
between s and r:  r A s.  Therefore the overall path-length difference is

*  =  r A s - r A so  =  r A (s - so). (1)

This vector (s - so) has a simple geometric interpretation (see Figure 3).  One can see that
the vector S = (s - so) is perpendicular to a plane that would reflect the incident vector so into the
scattered vector s.  Also, by setting the incidence and reflection angles to 2, and since s and so are
unit vectors, we get that

*s - so* = 2sin2. (2)

We can return to our expression for the path-length difference to calculate the phase
difference between the two waves scattered from A1 and A2.  This phase is that difference * (eq.
1) scaled around the circle by the wavelength.  That is, the phase difference N is:

N = 2B* / 8  =  2Br A (s - so) / 8 = 2Br A S / 8 = 2Br A R (3)

where R is now a dimensionless vector parallel to s - so and scaled by the wavelength.  

We use the convention that represents a wave with a complex number: the amplitude of
the wave, Ao, is the modulus of the complex number, and the phase is the arctangent of the ratio
of the imaginary to real parts.  

A = Ao (cosN +isinN) = Ao e
iN (4)
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In general, the strength of scattering of x-rays from matter is proportional to the number of
electrons in the volume doing the scattering.  The phased, scattered amplitude that results when a
wave approaching in direction so is scattered in direction s from a volume in space at location r is
D(r) e2Bi r A R, where D(r) is the density of electrons at that point.  When there is a finite volume of 
matter causing the scattering, we can integrate this expression over all of that volume to give the
total amplitude of scattering, including phase interference among all the scattering volumes:

(5)

We recognize this as being the Fourier transform of electron density, and know therefore that the
inverse transform:

(6)

converts scattering amplitude back into electron density.  The essence of crystallography lies in
the problem that the phased scattering amplitude itself cannot be measured in general.  Instead
when radiation is measured, what one can observe is the intensity of the radiation, which is the
square of the amplitude.  In this measurement, the phase of scattering is lost, and it is therefore
impossible directly to evaluate the inverse transform in (6) to reconstruct the original object.  

It will pay to explore further the properties of the scattering amplitude given in (5) to see
what it shows about the scattering, not from an undefined volume, but from a crystal.   Let us
build up a crystal of parallelepipeds of matter, repeating N1 times in the vector a direction to form
a row, this row of units repeated N2 times in the b direction to form a plane, and N3 times in the c
direction to form a solid.  Now let 

(7)

be the amplitude (transform) of the original unit.  When the unit is translated by a, this transform
becomes F(R) A e2Bi a A R.  Therefore the transform of the entire row of N1 repeated units is

(8)

Ga(R) is the transform of a row of N1 points, each of unit scattering power and spaced a along a
line (James (1948) pg 4 and 616):
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Figure 4

Figure 5

(9)

If N1 is large, this function Ga(R) has a magnitude of N1 at values of aAR that are integers, and
insignificant values anywhere else.  One can carry this out for the other two directions to give a
final transform for the crystal of 

T(R) = F(R)Ga(R)Gb(R)Gc(R) = F(R)G(R). (10)

Again, F is the transform of the smallest repeating unit; G is the transform of the lattice alone.  

It’s worth pausing a moment to examine the relationship between R and the lattice
translations a, b, and c.  Recall that R = S/8 is perpendicular to a plane that would reflect so into
s.  In the case of the translation c, the reflecting plane is made up by the lattice translations a and
b (see Figure 4).  Let us say that in this case R = c*, a vector that goes in the same general
direction as c, but is perpendicular to the ab plane.  We also require that, for (9) to be obeyed,
cAc* must equal an integer; a suitable integer is 1.  One can see that a way to construct a c, c* pair
with this property is to write

. (11)

And of course one can generate a* and b* in a symmetrical way.  These vectors  a*, b*, and c*

represent a basis set of vectors in a
space with dimensions of reciprocal
length: a reciprocal space.  The
properties of this space are especially
useful.  If we write that 

(12)

we see that we’ve defined a reciprocal
space, with integer indices (h, k, l), that
include all of the values of R for which
(9) and (10) are obeyed.  In particular,
for the planes generated by the c translation of Figure 4, the R vector that describes it is
represented by the set of indices (h,k,l) = (0,0,1).  

Remember that in Figure 3 we had that the
diffraction vector S lies perpendicular to a reflecting plane
(the relationship between S and R is shown in (3)).  The
relationship between these reflecting planes and the indices
h, k, l is shown in Figure 5, for a two-dimensional case
where only h, k are shown.  Note that the h or k index is
essentially the number of times that the set of planes cuts the
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a or b axes, respectively.  We call these planes “reflecting planes” or “Bragg planes”
interchangably.

A final benefit of this treatment is that the magnitude of the vector R equals 1/d, where d
is the perpendicular spacing between the planes to which it is perpendicular.  If we substitute this
and R = S/8 into (2), we get the classical form of Braggs’ Law:

8 = 2dsin2. (13)

There are other subtle issues here.  One is that the lattice function G has a value of
N1N2N3, where these are the numbers of lattice translations in each direction.  This represents the
amplification of the transform of the original repeating unit that results from there being a crystal. 
A second is that when the numbers of lattice repeats are not so large (a few tens rather than many
thousands or more), the G function has some breadth at each value of R and (12) isn’t true only
with integer indices.

Reconstruction of the image and phase determination.  

The expression for electron density in (6) can be restructured to represent not an
integration over space, but a summing over all of the vectors R in the reciprocal space implied in
(12).  This expression

(14)

is known as a Fourier synthesis, and it depends on complete knowledge of all the terms, the most
difficult of which is the phase of the complex term F, the structure factor.  Since this phase is lost
in measurement of the amplitude of diffraction, it must be determined in some way.  To perform
this synthesis is the primary scientifically useful result of the diffraction experiment since the
density of electrons tells the experimenter where to find the atoms.  Typically the work is done by
modern Fast Fourier Transform (FFT) methods.

There are several ways of determining the phase of each reflection in crystallography.  
The classic method, employed by Bragg and his compatriots, was the educated guess.  A large
number of structures were solved simply by intelligent interpretation of the diffraction patterns
that were obtained from crystals; symmetry, overall dimensions of the repeating unit, and chemical
composition contributed to the solution.  

More recently (1955) Patterson realized that the Fourier transform of the intensity of
diffraction (the square of the scattering amplitude) was an autocorrelation function of the actual
structure.  That is, the three dimensional map that resulted from such a calculation (in equation 6,
letting T(r) be +F2) represented all of the vectors among atoms in the crystal structure.  The next
generation of crystallographers solved a series of structures by the use of the Patterson Method. 
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It was an exquisite exercise in three-dimensional problem solving.  A feature of crystals that is
entertaining and useful to consider is their symmetry.  The combined symmetry elements of a
three dimensional crystal form a “group,” in the sense that there is closure, identity, inverse, etc.
among these elements.   

A contemporary of Patterson, David Harker, noticed that the symmetry of a crystal might
provide particular vectors that would lead to a direct measure of coordinates of individual atoms. 
For example, if the crystal’s symmetry included an inversion center, there would be equivalent
atoms at positions (x, y, z) and (-x, -y, -z).  The vector between these atoms would be found at
(2x, 2y, 2z) in the Patterson-function map, indicating the original atomic position.  In another
example, if there were a two-fold rotation axis parallel to the c axis in a crystal, atoms at (x, y, z)
would find equivalents at (-x, -y, z).  The vector between these two would give (2x, 2y, 0).  Thus
vectors found at (u, v, 0) could indicate (2x, 2y) positions for individual atoms.  

Throughout the 1950s and 1960s, a slight variation of this method was used to solve many
structures in the size range of 5-40 independent atoms, where there was at least one atom that
was much heavier than all the others.  Examples might be organic molecules with one or more
metal ions, or sulfur, chlorine, or bromine atoms bound.  This was to use the Patterson function to
locate the heavy atom(s), use the structure-factor expression to calculate the structure factors for
just these atoms, then to use the phases from these structure factors in calculation of a complete
Fourier synthesis.  Since often the heavy atoms contribute most the phases, the remaining atoms
would appear in an electron density map that was calculated with the complete amplitudes.  In the
macromolecular community, there is a range of algorithms, embedded in computer software, that
can solve quite complicated Patterson functions quite accurately.

During the 1950s and ‘60s a range of workers, especially Sayre, Hauptmann, and the
Karles, were working to find ways to use the diffraction intensities directly to determine crystal
structures, without resorting to use of heavy atoms.  They made use of two basic principles.  The
first was that certain sets of Bragg planes could be combined to form what was known as a
“structure invariant.”  In particular, it was straightforward to show that the sum of phases of three
Bragg planes that form a closed triangle is invariant to the choice of the origin of the
crystallographic unit cell.  Secondly, in the case where, firstly the crystal is comprised of discreet
atoms and, secondly, all three of the diffraction intensities (structure factors) from these Bragg
planes are large, this sum of three phases is near to zero.  It’s not necessarily so easy to see what
this means.  Firstly, notice that the three different Bragg planes we’ve chosen to illustrate the
plane indices in Figure 5 form a closed, colored triangle at the upper left of the parallelogram. 
Then notice that the indices of the three sets of planes in Figure 5 sum to zero.  This particular set
of reflections is called a “triplet,” for obvious reasons.  This condition,

h + k + l = 0 (15)

defines the structural invariant wherein the sum of phases Nh + Nk + Nl = const.  It’s not so hard
to show that this is true: multiply three Fs and the three phases end up in a sum.  Finally, it’s not
so hard to see that if the three Fs are large, the sum of phases should be near zero, as follows.  If
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Figure 7

Figure 6

the only three atoms in the unit cell were at the corners of the colored triangle in Figure 5, firstly,
all three structure factors would be large since all atoms lie only on the planes, and secondly, since
the atoms are on the planes, the phases would be zero.  One can see that it makes sense that this
sum of phases might be constant.  If one moves an atom from one vertex of the colored triangle in
Figure 5 to the next along the green line (the -2,1 plane), one can see that the other two phases,
for the red and blue sets of planes, would shift smoothly by +2B and -2B respectively, keeping the
total constant.

The basic scheme for “direct” phase determination is to find the largest structure factors
(in practice a modified structure factor is used), to find all the triplet relations (15) among these
reflections, to assign a few phases arbitrarily to define the origin of the unit cell, and then to
propagate these phases through all the relations (15).  The refinements of this simple scheme that
make the method practical involve methods to deal with phase sums not being precisely zero, and
ways to determine phases when all strong reflections are not related by (15).  

Crystallographic methods also can be applied to quite large structures: proteins, viruses,
protein/nucleic-acid complexes.  The methods described above won’t work.  In the case of the
“heavy atom” method, there simply isn’t enough residual scattering power in a few heavy atoms
to provide phases that are close to being correct.  In the case of the direct methods, a necessity is
that the diffraction represent atomic resolution of atoms, and this is not usually realized with large
molecules like these.  The principal method used instead is some variant of a technique known as
“isomorphous replacement.”  In this method, crystals of the macromolecule are prepared in the
normal way, and then with a small
number of heavy atoms bound to the
macromolecule in chemically specific and
reproducible places, and in a way that
does not disrupt the crystallinity of the
specimen.  The two crystal forms must
be “isomorphous,” having the same form
except for the binding of a few heavy
atoms.  The way phase information is
extracted is that diffraction

measurements are made on both kinds of crystal: without
(called the “parent” structure) and with the heavy atoms
bound (termed the “derivative” structure).   

This situation is represented in Figure 6. If the two
structures on the left are truly isomorphous, the structure
factors of the derivative (in the middle in Figure 6) are simply
the sum of the structure factors of the parent plus the
structure factor of the heavy atoms alone.  The thrust of the
phasing method is somehow to determine the positions of the



-9-

Figure 9: X-Ray diffraction image taken at the
National Synchrotron Light Source from a single
crystal of hen egg-white lysozyme.  The crystal was
rotated about 1 deg to get the pattern; the exposure
was about ½ minute.

Figure 8

small number of heavy atoms, and then to use the phase
information that comes from this to infer phases of the parent
structure.  We find that, for the purposes of this method we
can approximate |FH| with |FPH - FP|.  This often suffices for
us to solve for the positions of the heavy atoms as if this
were a small-molecule structure.

The true situation (in the complex plane) is
represented in Figure 7.  Each structure factor has a phase,
and they sum as vectors in the complex plane.  Once the
heavy atom positions are known, the value of fH is known
also.  Since only the amplitudes for the other two structure
factors can be known, they must be estimated by ones making an attempt to close the triangle
shown in this figure.  The construction devised by Max Perutz for this purpose is shown in Figure
8.  Here one uses the exact equation FP = FPH + (-)fH and constructs the equation graphically.  The
circle with diameter FH is centered at the origin.  The one with diameter FPH is centered at the end
of  -fH.  Therefore, the vector sum is at the two intersections shown at H and G.   One of these
two has to be the correct phase.  Typically, the way this ambiguity is resolved is by ones doing the
experiment again – double or multiple isomorphous replacement will give a reasonably accurate
estimate of the true phase, and will lead to an accurate Fourier synthesis and a model that
represents the true structure of the macromolecule.  

Since 1980 there has been a
marriage of high-energy physics and x-ray
studies that has provided extraordinary x-
ray sources for diffraction studies.  These
are the electron synchrotron sources,
wherein the radiation that is produced when
electrons are induced to turn the corners in
these particle accelerators is used for x-ray
diffraction experiments.  These x-rays have
numerous properties that make them
especially useful for this work: they are well
collimated, they often are intense, and that
they are polychromatic.  The individual
energy or wavelength bands can be selected
by use of a perfect single crystal used in
Bragg diffraction.  See a representative
diffraction image from a synchrotron source
in Figure 9.  

The tunability or wavelength
selection of the x-rays can be especially
useful for macromolecular crystallography. 
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If the x-ray source can be tuned to an atomic absorption edge of the heavy atom used for phase
determination, the atom can be made to resonate with the radiation, and there are accompanying
shifts in the amplitude and phase of the scattering from that atom.  These shifts can be used in the
same way as multiple isomorphous replacement to resolve phase ambiguity and produce an
accurate phase.  At the time of this writing, a reasonably large fraction of the new macromolecular
structures solved depend on not only  synchrotron radiation, but also the use of this resonant (also
called anomalous) effect.  

The usefulness of crystallographic results:

In  recent years, the sort of structural details that result from crystallographic studies are
taken as “givens” in many fields of research.  Because modern x-ray sources, detectors, and
mathematical methods allow it, one an expect to know the structure of a ~50 atom compound
within a few hours of having grown a crystal of it.  Materials scientists and the semiconductor
industry use x-ray diffraction as a tool to probe microscopic details of structure.   Pharmaeutical
companies have developed sizable research groups, firstly to explore new macromolecular drug
targets, like enzymes, and then to test the binding of putative drugs in substantial screening
efforts.  The effectiveness of several treatments for human disease depend on the use of these
methods.  Much more fundamental questions are answered with some effort by employment of
the method.  The structure of the ribosome and its subunits has been determined by fairly
conventional application of the sort of crystallographic methods, but with the subject being a
particle of 150,000 atoms.  The position is known of virtually every atom in that structure.  

It is truly a golden age for x-ray diffraction methods.  The modern synchrotron sources
provide x-rays with unparalleled brightness.  Area-sensitive x-ray detectors, virtually TV cameras
for x-rays, allow rapid and accurate collection of the diffraction data.  The brightness of the
synchrotrons can provide beams in the 1:m size range to probe individual components of
computer chips.  The tunability and brightness allows the solving of macromolecular structures in
ways that could become as routine as those employed in solving of small molecules.

International recognition of the value of diffraction methods

Numerous Nobel Prizes have been given that relate directly to crystallography or to diffraction
from ordered but non-crystalline materials:  

1914 Max von Laue Physics Original observation and explanation of x-ray
diffraction from crystals

1915 William Bragg,
Lawrence Bragg

Physics First solving of atomic structure of crystals

1954 Linus Carl Pauling Chemistry Understanding of the chemical bond, derived in
part from crystal structures
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1962 Francis Harry Compton
Crick, James Dewey
Watson, Maurice Hugh
Frederick Wilkins

Medicine Elucidation of structure of DNA from
diffraction from fibres of the molecule

1962 Max Ferdinand Perutz,
John Cowdery
Kendrew

Chemistry First determination of the structure of proteins

1964 Dorothy Crowfoot
Hodgkin

Chemistry The structure of vitamin B12 by x-ray
crystallography

1976 William N. Lipscomb Chemistry Studies on the structure of boranes illuminating
problems of chemical bonding

1982 Aaron Klug Chemistry Development of crystallographic electron
microscopy

1985 Herbert A. Hauptman,
Jerome Karle

Chemistry Development of direct methods for crystal-
structure determination

1988 Johann Deisenhofer,
Robert Huber, Hartmut
Michel

Chemistry Determination of the structure of a membrane-
bound protein

1994 Bertram N.
Brockhouse, Clifford
G. Shull

Physics Development of methods for diffraction of
neutrons

1997 Paul D. Boyer, John E.
Walker, Jens C. Skou

Chemistry Elucidation of the enzymatic mechanism
underlying the synthesis of adenosine
triphosphate (ATP)
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