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Microwave instability as a coherent light source

Jiunn-Ming Wang
Brookhaven National Laboratory, Building 725C, Upton, New York 11973
(Received 5 December 1997

We suggest that the coherent radiation observed recently at SURF Il and the National Snychrotron Light
Source vacuum ultraviolet ring is due to coherent microwave instability or, equivalently, to “microbunching”
of the electron beams in the storage rings. We formulate in this paper the problem of microwave instability in
the time domain. A linear homogeneous integro-differential equation for the perturbed current distribution is
derived to describe the microwave coherent motion inside the electron bunch. For a specific band-limited
high-frequency impedance, the equation can be diagonalized analytically and the eigensolution manifests
explicitly the characteristics of microbunching. Coherent radiation power is also calculated for this solvable
model, assuming the instability to be initiated by the shot noise inherent in the electron beam.
[S1063-651%98)10105-9

PACS numbds): 29.27.Bd

[. INTRODUCTION down the well-known coasting beam instability condit[@}
corresponding tm, and(ii) replacing the average beam cur-
We study in this paper the problem of coherent light emis+ent |, that appears in the coasting beam condition by the
sion from a storage ring due to a coherent instability of thepeak current of the bunched beam. This conjecture was
circulating electron beam. We are particularly interested irproved[4] in 1979 and the coherent mode of the microwave
the coherent instability associated with a local modulation ofnstability was later showf5] to correspond to local modu-
the beam charge density, namely, the “microwave” instabil-lation of the beam charge density inside the bunched beam,
ity. A coherent instability is always associated with a loss ofor to “microbunching.”
beam kinetic energy. If the cause of the instability is an Boussard’s condition can be understood as follows. A co-
evanescent impedance, for example, the rf cavity modes béierent wave corresponding to the microwave instability is
low the beam pipe cutoff frequency, then the energy lost bylocalized in a small region within the bunch as depicted in
the beam is deposited into the impedance source, the rf cawig. 1. Therefore, only the current density at the location of
ity in this example. On the other hand, if the instability is the coherent wave, not the average current, contributes to the
caused by radiation impedance or, in other words, by thénstability condition.
high-frequency component of the impedance such as the syn- With regard to the size of the coherent wave packet inside
chrotron radiation impedandel] or the rf cavity parasitic the electron bunch in Fig. 1, note that since the wake length
modes above the beam pipe cutoff frequency, then the eny is the measure of the distance within which the wake field
ergy lost by the beam can be extracted from the ring asnduced by an electron can affect another electron, the two
radiation. electrons can maintain coherence with each other only if they
It is the purpose of this paper to construct a solvableare less than a wake length apart. As a consequence, the
model for the microwave instability. We solve the initial length of the coherent wave packet in Fig. 1 should be the
value problem by assuming that the instability is started bysame as the wake length. In other wor@sherence lengjh
the shot noise of the beam and then obtain the beam power(wake length.
loss. Above the beam pipe cutoff frequency, the beam power Wang suggestefi6] that the microwave instability is a

loss equals radiation power. source of coherent light above the beam-pipe cutoff fre-
By the “microwave instability” we mean the instability quency. Recently, coherent light emission from electron

in the region beams has been reported by two grol§8] working on two
different storage rings; the wavelength of the coherent light
A<ly<o, (1) was found to be much less than the bunch length in both

where\ is the perturbation wavelengtbarrier wavelength

I is the wake length, ana is the electron bunch length. All
lengths are in units of radians. In terms of the carrier wave
numbernyg=2s/\ and the impedance bandwidth= (4
—lw)/2lw=2=/l\y, the above condition is equivalent to coherent wave

ne>b>2mx/o. 2 bunched beam

We shall refer to zr/o as the electron bunch bandwidth. FIG. 1. lllustration of a coherent wave localized inside the elec-

The microwave instability was discovered in 1975 by tron bunch. The horizontal axis i and the vertical width of the
Boussard[2]. Boussard conjectured that the microwave-oval at a given horizontal positiof represents the equilibrium-line
instability condition can be obtained simply k) writing densityp(¢).
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experiments. We suggest that the coherent light observed brgvolution frequency of the beam. It has been demonstrated

these groups was due to the microwave instability. [4] that the effect of synchrotron motion on the microwave
This paper is organized as follows. In Sec. Il we introduceinstability is negligible since the growth rate of the micro-

the Vlasov equation appropriate to the microwave instabilitywave instability is much larger than the synchrotron fre-

We show that the Vlasov equation, together with an initialquency. Hence the equations of motion can be written as

condition, is equivalent to a nonlinear integral equation. In

Sec. Il we linearize the integral equation to first order in the b=—ae, e=cef(P,),

initial perturbation and show that the linearized integral

equation is equivalent to a homogeneous linear intégrognere ¢ is the longitudinal electric field induced by the co-
differential equation for the perturbed current dlstrlbutlon.h rent sianal of the beam andis related to the momentum
We refer to this equation as the basic equation. The differ- erent signai of the beam andis related fo the momentu

ential operator of the basic equation is second order in time0mpactiona by a=awq/E,. The corresponding Vlasov
In Sec. IV we introduce an orthonormal badls of a  €quation is

finite-dimensional linear function spage in preparation for

the discussion of a solvable model to be introduced in Sec.

V. The spaceM is referred to as the modulation space and

the shape of each member of the baSislooks like the

envelope of the coherent wave packet of Fig. 1. DifferentwhereW (¢, e,t) is the distribution function in ¢,€) space.

members of3, have identical shapes, but are located in dif-We are interested in the transient solution of this equation.

ferent positions on the bunch. In Sec. V we introduce aSo we next discuss the initial condition we impose on the

model impedance and the corresponding basic equation farlasov equation.

the current. We show that the basic equation can be diago-

nalized in terms of the orthonormal set of functions dis-

cussed in Sec IV, namely, in terms of the members of the

basis. We also solve the initial value problem of the equa- We assume that the coherent instability starts=a and

tion; the results are expressions of the perturbed current arfhat the beam has no energy spread initially:

he in radiation field in terms of the initial perturbation

::uerrer?tl.med adiation field in terms of the initial perturbatio V(het=0)=F(d)d(e).

In Sec. VI we calculate the radiation power. We assume_ . o . .
that the initial starting perturbation of the instability is due to SUPJect to this initial condition, the Viasov equatié®) is
the grainy characteristics of the shot noise in the beam. Thgduivalent to
graininess of the shot noise is averaged over in the expres- t
sion for the radiation power. , - o4

The treatment of trﬁ)is paper is complimentary to that of V(. e)=F(¢) 5(6)_Cejodt &+ ae(t=1),1")
Ref. [4]. While the earlier calculation was done primarily in
the frequency domain, the calculation here is performed
mainly in the time domain. Through solving a concrete
model in the time domain, we attempt to make the charac-
teristics of microbunching associated with microwave insta-Thjs equation obviously satisfies the above-stated initial con-
bility more transparent. dition; it is straightforward to verify that Ed4) implies Eq.

It is interesting to compare the microwave-instability- (3).
induced coherent light in a storage ring with the self- Note that Eq(4) is not linear in¥ since the induced field
amplified spontaneous emissiofSASE [7] in a free- ¢ depends on¥ through the Maxwell equations. In this pa-
electron laser. In both cases, the radiation is a result of thger, the solution of the Maxwell equations will be repre-
longitudinal self-microbunching of the electron beam. Thegented by a generalized Ohm law in terms of the longitudinal
main difference is that in SASE, self-bunching is related toheam impedancg, (). In what follows we shall deal with
the electron transverse motion caused by the undulator, whilgyjs integral equation form of the Viasov equation.
in microwave instability, the microbunching is due to the
longitudinal impedance alone and the transverse motion of
the electron beam is not involved.

d ~ d J
GV eh—aes Vicet(d D7 V=0, (3

B. Initial condition and an integral representation

X%W(d)—k&e(t—t’),e,t’). (4)

C. Shot noise

The beam is composed df particles. Denote the initial
position of thejth particle by ¢; and represent the initial
distribution byF(¢; ¢1, ¢, . . . ,y). The granularity of the
A. Equation of motion and the Vlasov equation distribution due to the fact that the electrons are pointlike can
be treated as shot noise. We assume that the partial coher-
ence of the shot noise is entirely responsible for initiating the
coherent instability.

Il. VLASOV EQUATION

We use the dynamical variables and € to describe the
beam particle motion

¢=0—wot, €e=E—E,, The shot noise can be represented by
N
. . . 1
where ¢ describes the position around the ring a@gland F(didr,ba, ... ) ==, S(b—¢y). (5)
wg are, respectively, the nominal energy and thagulaj Ni=1
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Assuming that the probability density of eadh is p(¢;)
and averagind- over ¢;, we have

N
<F(¢)>E]1:I1 f doip(P)F (P b1, b2, ..., dn)=p(P).
(6)

p(@) is normally referred to as the equilibrium-line density;
here it is normalized to unity. We assunpé) to be a
smooth function ofé, e.g., a Gaussian function with vari-
anceo?.

It is convenient to define the “centered” distribution
function

f(¢;¢11¢21 T 1¢N):F(¢;¢l7¢21 s 1¢N)_p(¢)1(7)
so that

f d¢f(¢v¢lv¢21 e =¢N):0

and
N
<f(¢)>=]l:[1 f doip(dj)f(P; 1,02, ....0n)=0.

Ill. AN INTEGRO-DIFFERENTIAL EQUATION
FOR THE PERTURBED CURRENT

Let us denote by(¢,t) the perturbed part of the electron
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(Suppose that the bunch bandwidth is smaller than the beam
pipe cutoff and that there is evanescent beam impedance;
then ignoring thep contribution to€ is equivalent to ignor-

ing the effect of the potential well distortion on the micro-
wave instability) For a similar reason, the terf(¢) 5(e€)

can be replaced bi( ¢) 6(e) and thus the linearized integral
equation can be written as

\If(qﬁ,e,t):f(¢)5(e)—cef(:dt’€(¢+ ae(t—t"),t")

J ~
X< lp(@+ ae(t=t')ae)}. ®

Each term of this equation B(f).

B. Basic equation

The perturbed current is related ¥ of Eq. (8) by

I((;S,t):erof deWV (¢, e,t).

Substituting Eq«(8) into this equation and then performing
an integration by parts with respect ¢épwe obtain

|(¢1t):277|avf(¢;¢11¢21 e 1¢N)
J
e

wherel 5, = eNwy/27. Differentiating Eq.(9) with respect to
t, we have

+2w|av&p(¢)cef;dt’(t—t’) & ,t), (9

beam current that is carrying on the coherent oscillation. We

derive in this section a homogeneous linear integro-

differential equation forl (¢,t) from Eq. (4). The induced
coherent fieldc(¢,t) can be expressed in termsldip,t) by
Ohm'’s law. We assume botli¢,t) and&(¢,t) to satisfy the
conditions(1) and (2). We first derive an approximate form
of Eq. (4).

A. Linearization

To linearize the integral equatidd), we iterate the equa-

tion once by substituting the first term on the right-hand side

of the equation into the last term. In Sec. Il C we spliinto
two parts: the equilibrium electron beam distributiprand
the “centered” shot noisé. We regarc as the zeroth-order
term andf the first-order term. We treat E®) up to O(f).
Sincef is a beam-induced field, it is linear ¥, namely,
it is linear in bothp andf. As mentioned in the Introduction,

£ consists, in our region of interest, of components with

wavelength\ satisfying\ <o, whereo is the bunch length

of the smooth functiorp. However, the amount of such a
small wavelength component éfinduced by a smooth long
bunch represented by is negligible. In other words, the

beam impedance responsible for microwave instability is

nonvanishing only at very high frequency corresponding to
much greater than the bunch bandwidth/2; therefore, the
contribution ofp to £ is very small. We therefore ignore the
p contribution to€ and conclude that

E=0(f).

9 - . S
214 =2mcel,an(0) fodt SZEBL) a0

and

(92

Fw.thzwcelay&p(@ (12)

Jd
£€(¢,t).

From Egs.(9) and(10) we have the initial conditions

I(O)(¢)EI(¢vt:0):277|avf(¢;¢li¢2! e 1¢N)
(12

and

. J
I<°)(¢>)EEI(¢,t=O)=O. (13

We note that Eq(11) relates the current to the beam-
induced longitudinal electric field. In the remainder of this
section we transform this equation into an equation that re-
lates| to the impedance or, equivalently, to the wake field.
Let us Fourier transform the curreht

|(¢,t)=§ fdQ I(Q)exping—iOt)

=2 I (hexging),



PRE 58 MICROWAVE INSTABILITY AS A COHERENT LIGHT SOURCE 987

causes differenn’s within the bunch bandwidth &/ to be
In(t):f dQ 1,(Q)exp(—iQt), coupled[4]. On the other hand, this coupling is also the
reason why the eigenmode of the microwave instability is
where the sum ovan is from —« to «. By definition of the  localized in the¢ space even though the eigenmode of a
longitudinal beam impedancg,(w), the induced electric coasting beam is well known to be of the form &)
field is whose magnitude is a constant around the ring.
We have reduced in this section the problem of the mi-

_ 1 crowave instability into the basic Eq20) with the kernel
€)=~ ZwR; J’ A 17(@)Zn(nwo+0) given by (21). In preparation for diagonalization of the op-
_ _ erator(21) in a model to be introduced in Sec. V, we intro-
Xexping—iQt), (14 duce in the next section a set of localized orthonormal func-

. . . ._tions
whereR is the average ring radius. Recall that we are dealing
with an impedance with a large bandwidth{see condition
(2)]; let us further assume that the bandwidthZofs much IV. MODULATION SPACE AND MODULATION BASIS

larger than the bandwidth € of I,(€2). Then, in the region The beam current distribution functidiie,t) belongs to
of O whereln(() is appreciableZ,(Nwo+Q)=Z,(Nwo)  the infinite-dimensional spac® of the functions of the vari-
and in terms of the shorthand notatig=Z,(nwy) we have  gpje b, —m<$<m. This space is spanned by the basis
1 {exping)n=0,+1,+2,...,+}. Define a (d+1)-dimen-
g(¢,t);——2 (1) Z,expling). (15) sional subspaceM CS that is spanned by the basis;
2mR%y ={exp(re)|v=0+1,%2,... +b}.
We now introduce another orthonormal baBjs={I" ,} of
M., which will be used in Sec. V to describe the modulation
1 envelope of the coherent wave on the bunch. The intbger
F(o)= 2—2 Z.exp(—ing) (16 here will be identified with the impedance bandwidthn
T the condition(2). In accordance with the condition, we as-
sumeb to be large.
Divide the storage ring circumference w<¢=<m into
2b+1 equal parts with the lattice points

We now define the functions andG by

and

1 .
G($)=F'($)=5_2 Usexp—ing),  (17)
" p=o¢,=lywal2, (a=0,+1,+2,...+b), (22
with U,=—inZ,. The beam-induced electric field can now
be written as where

1 (= lw=4m/(2b+1).
dot)=—5-1 _Wd¢’F(¢’—¢)l(¢’,t). (18
Definition For a=0,+1,+2,...,*b,
J
¢

and Eq.(11) becomes

1 T
Ept)==—=| d¢p'G(¢d'—P)I(P' t 19 b
(6= 35 480 =910 9 P =[2n@b+ D] 2 S exing—d,)] (23

sif(b+1/2)(¢— ¢,
92 LI ) , =[ 2mw(2b+1)]" 2 r[(. Al )].
()=« | d¢'K(e,¢")I(",1), (20) siN(¢—,)/2 ]
at -7 (24
with I' ,(¢) is a function peaked ap= ¢, and the first zeros of
_ A 9 the function are aip= ¢,*1\/2. The functionsl’, corre-
K=ewoal 4, =eawyla, /Eo sponding to different’s are of identical shape, but they are

shifted from each other iy by integer multiples ofl\,/2.
Neighboringl™’s have non-negligible overlaps; the peak of a
"= r_ I" and one of the first zeros of the ndxtcoincide. A fewl™’s
K(¢:¢)=p($)G(4'~4). @) are depicted in Fig. 2. Note that if we take one of the
We shall refer to Eq(20) with Eqg.(21) as the basic equation. I',(¢)’s and multiply it by the carrier wave with wavelength
We have to solve the basic equation subject to the initiah satisfying Eq.(1), we obtain the coherent wave depicted in
conditions(12) and (13). For a coasting beanp(¢)=1/27  Fig. 1.
=const, the right-hand side of E(RO) is a convolution in- We refer to the spaca1 as the modulation space, to the
tegral; hence the equation can be diagonalized by a simplkeet B,={I",} as the modulation basis, and to the function
Fourier transform and the solution to the initial value prob-I" ,(¢) as the modulation function. The following theorems
lem is immediate. The mathematical complication for aabout the modulation basis can be proven easily.
bunched beam arises from thk dependence op, which Theorem 1 (orthonormality).

and
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12 ' ' ' ' ' Z ifng—b<n=<ny+b

— A 1 Z,= _ (28)
2 o8t \ i 0 otherwise,
R \
= \ ] _ —
g 04k \ | with U= —inyZ. The impedances fan<0 can be obtained
s | \ | by using
2ok /e V\,z\ A .
S I V/\/\\/;\/\ /\ /v e | U_,=Uy, an:Z:y

—04 7 - 1 0 " 5 3 where an+ indicates the complex conjugate.

We now calculate the corresponding model kernel

¢ [ in units of wake length Iy ] e X .
K(¢,¢"). Substituting Eq(27) into Eg. (17), we obtain

FIG. 2. Three neighboring modulation functions.

. G(¢)=[Uexp(—ing¢)+ c.c] 1Fo(<z5),

| dororys)=o, @9

o where Eq.(23), with =0 and the relatioly _,=U* , has
been used and c.c. stands for the complex conjugate. Com-

Theorem 2 (completeness.m).
( P ) bining the above equation with Eg®6) and (21), we have

b

E ¢>Fa(¢)—— 2 exdiv(¢— )] K(¢,¢')={Uexding(¢—#")]+ c.cip(¢)

- b
2b+1 x S T (AT (d).
-5 Toé=6). (29 2y Tl Tl

o By assumption(2) and Eq.(24), p(¢)=p(d,) within the
Theorem 2 implies thafl",} spans the spacs1 and that range of¢ wherel' ,(¢) is appreciable, namely, within the
b range| ¢— ¢,| <Aw/2. Hence, introducing the notation

Jj d¢’L=2b Fa(¢)Ta(¢’)}f(¢')=f(¢), VieM. Pa=p(Pa),

we can approximate

P(A)L o(P)=pal o(P) (29

In other words, the operat@26) is the unity operator oM.
If f is orthogonal taM, then the last integral vanishes.
We introduced in this section the modulation spaket
through the basi#;. We then introduced another ba#is of
the same space. The membey of B, is localized in a small
region of ¢ space, while the magnitude of the member N T awd i Y
explve) of B is distributed uniformly in thep space. We K¢, @D ={Uexding(¢—¢")]+ c.cf
will see thatB, is the set of the independent eigensolutions
of the model to be introduced in the next section for the X 2 pal (T (@)
microwave instability. a=-b

and

Note that the kernel is now diagonalized in the modulation
V. SOLVABLE MODEL space. This is the form of the kernel we use below.

In this section we introduce a model impedance that ) o ) )

makes the operatd21) diagonalizable in terms of the modu- B. Diagonalization of the basic equation

lation basisB,={I',} introduced in the preceding section.  We are now ready to solve the basic equati@®). First,

This makes the basic equati¢0) solvable. let us collect here some of the relevant formulas obtained
In what follows, the symbols,,b,\,o, andl, carry the  apove:

same meaning as in the Introduction. They are assumed to

satisfy the conditionl) and (2). 92 w

—2|(¢,t)=KJ do'K(g,¢")I(¢",1), (30)

A. Model impedance and kernel
Forn>0 the model impedance is defined by K(¢,¢’)={Uex;{ino(¢— ¢')]+c.c}

U ifng—b=<n=ny+b

b
Up= 27 X 2 palo(ATa(8"), (31)

0 otherwise.

If we ignore terms ofO(b/ny) relative toO(1), Eq.(27) is 1O(p)=1(p,t=0)=271 4, F(P; b1, P2, . ... N,
equivalent to (32
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. J then
|(°)(¢>)EEI(¢I=0)=0, (33 -
Q2=—xp,U. (39
_ - : Note that for each eigenvectdr,(¢) of Eq. (36) there are
(&1 n;_m n(Dexping). 349 actually two solutions fod(¢,t),
Decomposel (¢,t) into three mutually orthogonal compo- I (d)exp(—iQ,t), T (d)expiQ,t). (40)

nents
This is a reflection of the fact that the basic equati®dd) is

I(h,t)= i J(bt)+ i (b )+ (1), second order in time.
(#.5)=exp(ingd)($,1)+ exp(=inod) " (4:) +1(4.1) Let us pause now and compare E89) with the corre-

whereJ e M (M was defined in Sec. Y Note that the first Sponding result for a coasting beam. The coherent frequency
component is the contribution of (t) with ne[n,—b, n,  {n corresponding to the modeof a coasting beam is given
+b], the second component is the contribution from by [3]

ne[—ng—b, —nyg+b], andi is defined to be the contribu- Q2=inkZ. /27

tion from n outside both these bands. These three compo- . :

nents are orthogonal to each other since they belong to noRm the corresponding eigenfunction is éxg. If we sub-

overlapping bands afi. For example, stitute 1/2r in this equation byp, and replacenz, with
- —U, we obtain Eq.(39). This amounts to a proof of the
f dp exp(ing ) I(,1)1* (,1)=0. Boussard conjecture. It is worth repeating here, for emphasis,
- what was stated in the Introduction: The realization of the

. Boussard conjecture is a consequence of the coherent wave
We observe right away from Eqé30) and (31) and the ot the microwave instability being localized in the bunch,
definition of | above that even though the coasting beam coherent wave,ie(is
) spread throughout the whole ring.

[

—l(¢,t)=0.

at? (.0 C. Matching the initial condition
) . o . o We have just found that corresponding to each mode
This, together with Eq(33), |mplle§ thatl (¢,t) is indepen-  nympera there are two solution&0) for J(¢,t). In order
dent oft. We shall therefore ignorkin the remainder of this for these two solutions to satisfy the initial conditi¢d3),
paper and write they must combine to give

[(¢,1) =exp(ingp)I(¢,t) +exp(—ingp)I* (¢,t). J(,1)~T',(p)codd t.
35
(39 Now adding up the contributions from all, and including
Note that in this equation the carrier wave dérpd) is  the contribution from the* term in Eq.(35), we obtain
modulated by an elemedf ¢,t) of M. Now using Eqs(31)
and (35), the basic equatiofB0) becomes a linear equation b ©) _
in the modulation spaca, |(¢:t):a2 Lol @)l explingg)cos t+ c.cl,

(41)

(92 T

SEB0=UL pLo(@) [T T LNF D nere
(36) .

|;°):J, de T ()1 O(pexp—ingg).  (42)

Since{I',,} is an orthonormal basis o1, this equation is
already diagonalized, the eigenfunction belhg ¢). Let

We now calculate the longitudinal electric fiefdnduced by

b I(¢,t). Combining the Eqs(15), (28), and (41) and then
J(¢=t):a=§;b Jo(OT o(); (37 using the relatiorz_,=Z* , we obtain
b
then 5<¢,t>=—{?2b F ()
2 o
d—zJam: kpaUd, (). (38
dt X exp(ingp)cogQ t)+ c.c.ll2mR. (43

The coherent frequend® , of the modea can readily be
obtained from Eq(38). Let We have thus succeeded in solving the transient problem of

our model by expressin ¢,t) and &(¢,t) in terms of the
J () ~exp(—iQ,t); initial current!(©)(¢).
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VI. RADIATION POWER - N
Having found the solutior(41) and (43) to the initial {(H()f(¢")= f _W,Hl [p(bdé]
value problem, we are ready to calculate the radiation power.
The power lost by the bearper radian of the beam distri- Xf(p 1.2, ... bN)
bution) i ,
utiory Is X b1 ).
P(¢,t)=—RE(,1)I(,1). (44)  Using Egs.(5) and(7) on the above equation, we have

1
From conservation of energy, this is also the radiation power. ~ (f(¢)f(¢")=J[p($)8(" = ¢)—p(H)p($")].
The total radiation power is then (49)

- The last term of this equation reflects the effects of the cor-
Ptot(t):J dpP(,t). (45)  relation induced by nonuniformity of the bunch. Let us ig-

- nore this term for now and show later that the contribution of
this term is indeed negligible in our region of interest given
by Egs.(1) and(2).

Substituting Eqs(41) and(43) into Eq.(44) and ignoring the If we ignore the last term of Eq49), then Eq.(48) yields

fast oscillating terms involving exp(i2ng¢), we obtain

L A1) =[(2m10) N1 |7 dé p(@IT ST ().
P(¢,1)= 52, [ZP15 cos,t cosjt
“P With use of the approximatio(29), the above equation be-
+c.c]l () p( o), (46)  comes

1O% Oy =[(eN 2INp 18, 4, 50
where bothe and 8 are summed from-b to b. Recall that (1715 7)=[(eNwopo) NPl O s 50

1) is a messy collection of the grainy shot noise. We nex{yhere Theorem 1 has been used. Substituting(&8). into
statistically average Eq46) over the shot noise. Eq. (47), we obtain

b
Averaging over shot noise (P(d,1))= 2 (P(d,1), (51)
We use angular brackets, as we did in Sec. Il C, to indi- a==b
cate averaging over the shot noise: with

1 —
(P())=5 2 [ZI15*)cost cost+ c.c] (Po(6,1)) = 2] (eNwop,) 127Np, ] oSOt 2T%( ),
- (52)

XTI o ()T p( ). (47) . o _
where R is the resistive part oZ. Had we assumed the
initial beam to consist of uniform shot noise with dengity
From Eq.(42) we would have obtained the same result.

The calculation of averaged total radiation power from
(P(¢,t)) above is straightforward. The result is

0159~ " dg [ agrexting(e - o1

b
Xra(¢)rﬁ(¢/)<|(0)(¢)|(0)(¢r)> (48) <Ptot(t)>:a;b <Pt0t,a(t)>v (53)

] with

We must now evaluaté 9(4)19(4")) or, equivalently,
(f()f(d")) [cf. Egs.(32), (5), and(7)]. The shot noise in a =
bunched beam is correlated because the bunch distribution <Pt0t,a(t)>:J do(Pa(¢,1))
function p(¢) is not uniform. In anticipation of the final o
results, we make the following remarks. Siflcg(¢) is ap- =Zﬂ(eropa)Z/ZTera]|COSQat|2. (54)
preciable only within a width,=2=/b around¢=¢,, we
see from Eq.(48) that we have to take the average only in |f we write
this region. From the assumptidp<< o, the bunch distribu-

tion p(¢) is nearly constant within the widthy of I ,(¢); Q,=Q,rtig,, (55
we can therefore safely take the uniform shot noise average,
assuming the noise density to b, . where() , i is the real coherent frequency shift agglis the

We start from the definition growth rate of the mode, then, for larget,
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, 1 1 ,
|cosQ ] %= 2 &XA29,0). (56) N| 99 p(Pl(P)exp(—inge)

It is interesting to approximate the summation in Esg) by X j_wdfﬁ p(¢")L p(d")expingg’).
an integral. If we set
If we apply the approximatiof29) to the integrands above,
then both integrals vanish since exply¢) is orthogonal to
2b+1 b b b [ T',(¢) andT g(¢).
5 9= _Eb H;f de, We constructed a model for microwave instability and
“T o calculated the radiation power under the assumption that the
impedance is present only at frequencies above the beam
. pipe cutoff and that the initial condition for the coherent
Q= QP)=Qr(d)+ig(d), pa—p(P), instability is the partially coherent signal from the ever-
present shot noise in the beam. For our model impedance
) ) ) ) (27) and(28), the radiation power is given by E(7). In the
then Egs(53) and(54) give an interesting expression integrand of this equation, the denominaly( )l is the
number of particles in a coherence length or the number of
electrons participating in a coherent mode. If the instability
[eNwop($)]? ) is not initiated by the shot noise but by some other mecha-
Np(é)lw exi2g(4)tl, nism, then the factor Np(¢)ly, would be replaced by
(57)  something else.

a—

1 (=
(Pu(t)=5-R | " do
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