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Forming nanoscale organic films
and integrating them into semicon-
ductor electronics and all-organic
microphotonic circuits has stimu-
lated intense academic and indus-
trial research, but progress is ham-
pered by the lack of device-quality
functional molecule-based thin
films, driving the need for new re-
liable film-growth methods.

A general applicable method has
been developed generating ther-
mally robust multilayered materi-
als. This new synthetic approach in-
volves two alternating deposition
steps, as shown in Figure 1. First,
monolayers (one-molecule-sized
layers) of chromophores are co-
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Nanoscale Self-Assembly of Thin-Film Molecular
Materials for Electro-optic Switching
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Scientists from Northwestern University in Evanston, Illinois and the
Weizmann Institute of Science, Rehovot, Israel, have devised a two-
step assembly technique to make highly ordered, intrinsically acentric
organic materials which can be integrated into electro-optic (EO) and
related devices, such as light modulators and switches. The scientists
have shown that the self-assembled photonically/electronically func-
tional materials are competitive in terms of EO responses with the
highest efficient polar films reported to date, and are more efficient
than inorganic systems, such as LiNbO,.
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valently bound on hydrophilic sub-
strates (step (i)). The siloxy re-
moval step (ii) renders the surface
hydrophilic, thus allowing the rapid
build-up of a covalently-bound si-
loxane-based capping layer. The
resulting films are intrinsically
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Figure 1. Two-step layer-by-layer self-assembly process generating intrinsically

acentric superlattices.

acentric, so no post-deposition
steps such as high-voltage poling
to align the molecular building
blocks are necessary, as in other
film growth techniques.

We have developed a film growth
process based on chemically reli-

« able steps, amenable to automa-

tion-by using a single reaction ves-

: sel or dip-coating - and allowing

an excellent control of material

¢ properties - which is of great in-

terest for optical telecommunica-

i tions and electronic applications.
The high degree of control over film
* dimensions, texture, and proper-
ties has been unambiguously dem-
‘% onstrated using various physico-

chemical analytical tools, including
second harmonic generation mea-
surements and synchrotron x-ray
reflectivity measurements (XRR)
performed at NSLS beamline X23B
(Figure 2).

NATIONAL LABORATORY

National Synchrotron Light Source ¢ P.O.Box 5000, Upton, NY

11973 + http://nslsweb.nsls.bnl.gov/nsls/



The XRR experiments afforded
crystal-clear structural information
on the chromophore density (~50
R2/chromophore), film thickness
(~2.8 nm for each chromophore +
siloxane-based capping layer), and
surface morphology. The robust
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capping layer is ~8 A thick. The
streamlined two-step assembly
process shown in Figure 1 could be
extended to a wide range of mo-
lecular building blocks, and become
a major synthetic route for the for-
mation of various functional sub-
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micrometer-sized solids with su-
perb control of material character-
istics at the nanoscale level. This
assembly process is also part of an
ongoing investigation aimed at cre-
ating "all-organic" electro-optical
modulators (Figure 3).
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Figure 2. (A) Second harmonic generation response at A, = 1.06 m as a function of fundamental beam incident angle
from a float glass slide having a polar monolayer on either side. (B) Optical transmission and second harmonic generation
as a function of the number of bilayers. Left y-axis: absorption at A, = 505nm (+). Right y-axis: square root of the SH
intensity (e). (C) Specular X-ray reflectivity measurements. Left y-axis: film thickness (A) as a function of the number of
bilayers (+). The solid line is the fit by linear regression for 1-4 bilayers, indicating T = 28.6 £ 0.6 A x n. Right y-axis:
relative film roughness, ¢ /T film, as a function of the number of bilayers (x). The dotted line is drawn as a guide to
the eye.
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Figure 3. Schematic view of a prototype "all-organic" electro-optical modulator based on intrinsically acentric self-assembled
superlattices (SAS). Commercially available polymers such as Cyclotene™ and/or Cytop™ can be used as cladding layers.



