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The geochemical speciation of ura-
nium (U) influences its movement
and biological availability in the
environment.  This information is
often used to predict nuclear waste
repository performance.  In oxi-
dized environments, U exists as the
highly soluble uranyl [U(VI)O2

2+]
species with two axial U=O double
bonds at ~1.8 Å.  In contaminated
materials, solid phase U(VI) typi-
cally exists as the uranyl mineral,
schoepite [UO3

·2H2O].
Uranium(VI) can also exist as the
less common uranate solid phase,
which has at least three single U-
O bonds and no axial double bonds.
However, uranates have not been
found in nature.  The environmen-
tal mobility of U is influenced by
many processes (Figure 1D-E).
Another process that may influence
U mobility is co-precipitation with
other host minerals (Figure 1F).
Uptake of U and other metals oc-
curs during the formation of crys-
talline and amorphous Fe oxides
but the local structure of U in these
oxide materials has not been char-
acterized.

Leaching of the synthetic U-Fe ox-
ides typically removed most sorbed
and solid phase U(VI) species leav-
ing on average ~0.6 mol % U.  X-
ray diffraction and infrared spec-
troscopic studies (Figure 2A-B)
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The transport and biological availability of the toxic, radioactive ele-
ment uranium (U) towards reduction to the less soluble U(IV) species
may be limited by co-precipitation with Fe-oxide minerals.  We exam-
ined the interaction dynamics between U(VI) and iron (Fe) oxides dur-
ing crystallization by synthesizing Fe-oxide phases [0.5-5.4 mole %U/
(U + Fe)] using U(VI) and Fe(III) solutions.  Our studies show that U6+

is incorporated in Fe oxides as the uncommon uranate species (without
axial O atoms) until saturation is reached whereby U(VI) forms crystal-
line U(IV)O2

2+ phases.
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indicate that hematite (Fe2O3) for-
mation is preferred over that of
goethite (FeOOH) when the U level
in the Fe-oxides exceeds 1 mol %
U.  Our studies with unleached U/
Fe solids indicate a relationship
between the mol % U in the Fe
oxide, and the existence of the
spectral features that can be as-
signed to uranyl species.  These
spectral features were undetect-
able in leached solids, suggesting
solid phase and sorbed U(VI)O2

2+

species are extracted by leaching.
Using uranium X-ray Absorption
Fine Structure (XAFS) at NSLS
Beamlines X23A2 and X26A, analy-
ses of unleached solids containing
<1 mol % U revealed that U(VI)
exists with four O atoms at radial
distances of 2.21 and 2.36 Å and
Fe atoms at 3.19 Å (Figure 2C).

Due to the large size of UO2
2+ (~1.8

Å) relative to Fe3+ (0.65 Å), the
UO2

2+ ion is unlikely to substitute
for the Fe.  Our results indicate that
U6+ (~0.72-0.8 Å) is incorporated
in the Fe oxides as uranate until a
point of saturation is reached.  Be-
yond this concentration, excess U
precipitates as crystalline U(VI)
phases resembling schoepite.

In summary, our findings indicate
that the long-term association of
U in the contaminated environment
could result in structural incorpo-
ration of U in Fe oxide host phases.
In nature, precipitation of pure U
phases should occur at a kinetically
faster rate than the structural in-
corporation of U into Fe oxides.
Precipitation of U as pure mineral
phases should be favored at high



dissolved U concentrations,
whereas sorption and co-precipita-
tion of U are most likely favored at
lower U concentrations.  In aged,

U-contaminated Fe-rich soils, up-
take of U by Fe oxides may be sig-
nificant since ~1 mol % U can be
incorporated.  The importance of

these mechanisms in U-contami-
nated materials has not been esti-
mated.

E) Formation of U(IV) oxide surface
coatings and rinds on U(VI) solids

F) Co-precipitation of U with Fe and Mn
oxides and substitution in silicate clays
and carbonates

D) Occlusion by clay and metal oxide
coatings

A) Precipitation of U(VI) and U(VI)

solid dissolved solid

B) U accumulation by microbes

C) Sorption of U on surfaces
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Figure 2.  (A) Uranium XAFS
spectra (L3 edge) Fourier
transform and fit data for the U-
Fe oxide co-precipitate sample,
FeU22. Inset: The U XANES
spectra (L3 edge) for U(IV)O2, the
U(VI) mineral meta-schoepite,
the FeU2 and FeU22 U-Fe oxide
co-precipitate samples.  The
XANES spectra for uranyl nitrate
contained post-edge multiple
scattering resonance (MSR)
features typically observed for
uranyl-containing solids (data
not shown).  (B) FTIR spectra
for hematite, the synthetic U-Fe
oxide co-precipitates (FeU21 and
FeU22) and the synthetic mineral
meta-schoepite.  Three of the
spectra for the samples are
adjusted linearly so that their
absorbance peaks are
proportional to that of meta-
schoepite and (C) Powder X-ray
diffraction spectra for hematite,
the synthetic U-Fe oxide co-
precipitates and the synthetic
(adapted from Duff, Coughlin and
Hunter, 2002).

Figure 1.  Mechanisms by which U mobility can be retarded in the surface and subsurface geologic environment. A)
Precipitation of U(VI) and U(IV) phases. B) Microbial uptake (internal or external) of U. C) The sorption of U by organic or
inorganic material such as humic acids and Fe oxides (respectively). D) Occlusion of U by clay and metal oxide coatings. E)
Under reducing conditions, the formation of surface rinds of U(IV) on U(VI) minerals can also limit U mobility because
U(IV) solids are less soluble. F) Co-precipitation of U with amorphous and crystalline host minerals may limit U mobility
(adapted from Duff, Coughlin and Hunter, Uranium Co-precipitation with Fe Oxide Minerals. Geochim. Cosmochim. Acta
2002, 66, 3533-3547.).
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