
���������

User’s Guide

1997 Digital Signal Processing Solutions

Printed in U.S.A., July 1997
2558539-9761 revision L

SPRU031E

1997

G
uide

U
ser’s

�
�
�
�
�
�
�
�
�

TMS320C3x
User’s Guide

Literature Number: SPRU031E
2558539-9761 revision L

July 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

This user’s guide serves as an applications reference book for the TMS320C3x
generation of digital signal processors (DSPs). These include the TMS320C30,
TMS320C31, TMS320LC31, and TMS320C32. Throughout the book, all refer-
ences to ’C3x refer collectively to the ’C30, ’C31, ’LC31 and ’C32.

This book provides information to assist managers and hardware/software
engineers in application development. It includes example code and hard-
ware connections for various applications.

The guide shows how to use the instructions set, the architecture, and the ’C3x
interface. It presents examples for frequently used applications and discusses
more involved examples and applications. It also defines the principles involved
in many applications and gives the corresponding assembly language code for
instructional purposes and for immediate use. Whenever the detailed explanation
of the underlying theory is too extensive to be included in this manual, appropriate
references are given for further information.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown in
a special typeface . Examples use a bold version of the special
typeface for emphasis; interactive displays use a bold version of the
special typeface to distinguish commands that you enter from items that the
system displays (such as prompts, command output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

Notational Conventions

iv

� In syntax descriptions, the instruction, command, or directive is in bold
typeface and parameters are in an italic typeface. Portions of a syntax that
are in bold must be entered as shown; portions of a syntax that are in italics
describe the type of information that must be entered. Here is an example
of a directive syntax:

.asect ” section name”, address

The directive .asect has two parameters, indicated by section name and
address. When you use .asect, the first parameter is an actual section
name, enclosed in double quotes; the second parameter is an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
do not enter the brackets themselves. Here is an example of an instruction
that has an optional parameter:

LALK 16-bit constant [, shift]

The LALK instruction has two parameters. The first parameter, 16-bit
constant, is required. The second parameter, shift, is optional. As this syntax
shows, if you use the optional second parameter, you must precede it with a
comma.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the path-
name (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here is an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this direc-
tive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte has at least one value parameter, but you
may supply additional value parameters, separated by commas.

 Information About Cautions / Related Documentation from Texas Instruments

v Read This First

Information About Cautions

This book contains cautions.

This is an example of a caution statement.

A caution statement describes a situation that could potentially
damage your software or equipment.

The information in a caution is provided for your protection. Please read each
caution carefully.

Related Documentation From Texas Instruments

The following books describe the TMS320 floating-point devices and related
support tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center as indicated in the section If You
Need Assistance… on page vi. When ordering, please identify the book by its
title and literature number.

TMS320C3x General Purpose Applications User’s Guide (literature number
SPRU194) provides information to assist you in application development
for the TMS320C3x generation of digital signal processors (DSPs). It
includes example code and hardware connections for various appliances.
It also defines the principles involved in many applications and gives the
corresponding assembly language code for instructional purposes and for
immediate use.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRU035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C3x and ’C4x generations of devices.

TMS320C3x/C4x Optimizing C Compiler User’s Guide (literature number
SPRU034) describes the TMS320 floating-point C compiler. This C compiler
accepts ANSI standard C source code and produces TMS320 assembly
language source code for the ’C3x and ’C4x generations of devices.

Related Documentation from Texas Instruments / References

vi

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of TMS320 digital signal processors. A
myriad of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise can-
cellation, modems, etc.

References

The publications in the following reference list contain useful information
regarding functions, operations, and applications of digital signal processing
(DSP). These books also provide other references to many useful technical
papers. The reference list is organized into categories of general DSP, speech,
image processing, and digital control theory and is alphabetized by author.

� General Digital Signal Processing

Antoniou, Andreas, Digital Filters: Analysis and Design. New York, NY:
McGraw-Hill Company, Inc., 1979.

Bateman, A., and Yates, W., Digital Signal Processing Design. Salt Lake
City, Utah: W. H. Freeman and Company, 1990.

Brigham, E. Oran, The Fast Fourier Transform. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1974.

Burrus, C.S., and Parks, T.W., DFT/FFT and Convolution Algorithms. New
York, NY: John Wiley and Sons, Inc., 1984.

Chassaing, R., and Horning, D., Digital Signal Processing with the
TMS320C25. New York, NY: John Wiley and Sons, Inc., 1990.

Digital Signal Processing Applications with the TMS320 Family, Vol. I. Tex-
as Instruments, 1986; Prentice-Hall, Inc., 1987.

 References

vii Read This First

Digital Signal Processing Applications with the TMS320 Family, Vol. III.
Texas Instruments, 1990; Prentice-Hall, Inc., 1990.

Gold, Bernard, and Rader, C.M., Digital Processing of Signals. New York,
NY: McGraw-Hill Company, Inc., 1969.

Hamming, R.W., Digital Filters. Englewood Cliffs, NJ: Prentice-Hall, Inc.,
1977.

Hutchins, B., and Parks, T., A Digital Signal Processing Laboratory Using
the TMS320C25. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

IEEE ASSP DSP Committee (Editor), Programs for Digital Signal Processing.
New York, NY: IEEE Press, 1979.

Jackson, Leland B., Digital Filters and Signal Processing. Hingham, MA:
Kluwer Academic Publishers, 1986.

Jones, D.L., and Parks, T.W., A Digital Signal Processing Laboratory Using
the TMS32010. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1987.

Lim, Jae, and Oppenheim, Alan V. (Editors), Advanced Topics in Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1988.

Morris, L. Robert, Digital Signal Processing Software. Ottawa, Canada:
Carleton University, 1983.

Oppenheim, Alan V. (Editor), Applications of Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Oppenheim, Alan V., and Schafer, R.W., Digital Signal Processing. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Oppenheim, Alan V., and Schafer, R.W., Discrete-Time Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1989.

Oppenheim, Alan V., and Willsky, A.N., with Young, I.T., Signals and
Systems. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Parks, T.W., and Burrus, C.S., Digital Filter Design. New York, NY: John Wiley
and Sons, Inc., 1987.

Rabiner, Lawrence R., and Gold, Bernard, Theory and Application of Digital
Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.

Treichler, J.R., Johnson, Jr., C.R., and Larimore, M.G., Theory and Design
of Adaptive Filters. New York, NY: John Wiley and Sons, Inc., 1987.

� Speech

Gray, A.H., and Markel, J.D., Linear Prediction of Speech. New York, NY:
Springer-Verlag, 1976.

Jayant, N.S., and Noll, Peter, Digital Coding of Waveforms. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1984.

Papamichalis, Panos, Practical Approaches to Speech Coding. Engle-
wood Cliffs, NJ: Prentice-Hall, Inc., 1987.

References

viii

Parsons, Thomas., Voice and Speech Processing. New York, NY:
McGraw Hill Company, Inc., 1987.

Rabiner, Lawrence R., and Schafer, R.W., Digital Processing of Speech
Signals. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1978.

Shaughnessy, Douglas., Speech Communication. Reading, MA: Addison-
Wesley, 1987.

� Image Processing

Andrews, H.C., and Hunt, B.R., Digital Image Restoration. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1977.

Gonzales, Rafael C., and Wintz, Paul, Digital Image Processing. Reading,
MA: Addison-Wesley Publishing Company, Inc., 1977.

Pratt, William K., Digital Image Processing. New York, NY: John Wiley and
Sons, 1978.

� Multirate DSP

Crochiere, R.E., and Rabiner, L.R., Multirate Digital Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1983.

Vaidyanathan, P.P., Multirate Systems and Filter Banks. Englewood Cliffs,
NJ: Prentice-Hall, Inc.

� Digital Control Theory

Dote, Y., Servo Motor and Motion Control Using Digital Signal Processors.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1990.

Jacquot, R., Modern Digital Control Systems. New York, NY: Marcel Dekker,
Inc., 1981.

Katz, P., Digital Control Using Microprocessors. Englewood Cliffs, NJ:
Prentice-Hall, Inc., 1981.

Kuo, B.C., Digital Control Systems. New York, NY: Holt, Reinholt and
Winston, Inc., 1980.

Moroney, P., Issues in the Implementation of Digital Feedback Compensa-
tors. Cambridge, MA: The MIT Press, 1983.

Phillips, C., and Nagle, H., Digital Control System Analysis and Design.
Englewood Cliffs, NJ: Prentice-Hall, Inc., 1984.

� Adaptive Signal Processing

Haykin, S., Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1991.

Widrow, B., and Stearns, S.D. Adaptive Signal Processing. Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1985.

 References

ix Read This First

� Array Signal Processing

Haykin, S., Justice, J.H., Owsley, N.L., Yen, J.L., and Kak, A.C. Array Signal
Processing. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1985.

Hudson, J.E. Adaptive Array Principles. New York, NY: John Wiley and
Sons, 1981.

Monzingo, R.A., and Miller, J.W. Introduction to Adaptive Arrays. New York,
NY: John Wiley and Sons, 1980.

If You Need Assistance

x

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm
Microcontroller Home Page http://www.ti.com/sc/micro
Networking Home Page http://www.ti.com/sc/docs/network/nbuhomex.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
Microcontroller Hotline (281) 274-2370 Fax: (281) 274-4203 Email: micro@ti.com
Microcontroller Modem BBS (281) 274-3700 8-N-1
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs
Networking Hotline Fax: (281) 274-4027

Email: TLANHOT@micro.ti.com

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

 If You Need Assistance / Trademarks

xi Read This First

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

Trademarks

ABEL is a trademark of DATA I/O.

CodeView, MS, MS-DOS, MS-Windows, and Presentation Manager are registered trademarks of
Microsoft Corporation.

DEC, Digital DX, Ultrix, VAX, and VMS are trademarks of Digital Equipment Corporation.

HPGL is registered trademark of Hewlett Packard Company.

Macintosh and MPW are trademarks of Apple Computer Corp.

Micro Channel, OS/2, PC-DOS, and PGA are trademarks of International Business Machines Corporation.

SPARC, Sun 3, Sun 4, Sun Workstation, SunView, and SunWindows are trademark of SPARC International,
Inc., but licensed exclusively to Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through
X/Open Company Limited.

xii

 Contents

xiii

Contents

1 Introduction 1-1.
A general description of the TMS320C30, TMS320C31, and TMS320C32, their key features,
and typical applications.

1.1 TMS320C3x Devices 1-2.
1.1.1 TMS320C3x Key Specifications 1-3.
1.1.2 TMS320C30 1-3.
1.1.3 TMS320C31 and TMS320LC31 1-3.
1.1.4 TMS320C32 1-4.

1.2 Typical Applications 1-7.

2 Architectural Overview 2-1.
Functional block diagram, ’C3x design description, hardware components, device operation,
and instruction set summary.

2.1 Overview 2-2.
2.2 Central Processing Unit (CPU) 2-6.

2.2.1 Floating-Point/Integer Multiplier 2-8.
2.2.2 Arithmetic Logic Unit (ALU) and Internal Buses 2-8.
2.2.3 Auxiliary Register Arithmetic Units (ARAUs) 2-8.

2.3 CPU Primary Register File 2-9.
2.4 Other Registers 2-12.
2.5 Memory Organization 2-13.

2.5.1 RAM, ROM, and Cache 2-13.
2.5.2 Memory Addressing Modes 2-17.

2.6 Internal Bus Operation 2-18.
2.7 External Memory Interface 2-19.

2.7.1 TMS320C32 16- and 32-Bit Program Memory 2-19.
2.7.2 TMS320C32 8-, 16-, and 32-Bit Data Memory 2-20.

2.8 Interrupts 2-21.
2.9 Peripherals 2-22.

2.9.1 Timers 2-23.
2.9.2 Serial Ports 2-23.

2.10 Direct Memory Access (DMA) 2-24.
2.11 TMS320C30, TMS320C31, and TMS320C32 Differences 2-26.

Contents

xiv

3 CPU Registers 3-1.
Description of the registers in the CPU register file.

3.1 CPU Multiport Register File 3-2.
3.1.1 Extended-Precision Registers (R7–R0) 3-3.
3.1.2 Auxiliary Registers (AR7–AR0) 3-4.
3.1.3 Data-Page Pointer (DP) 3-4.
3.1.4 Index Registers (IR0, IR1) 3-4.
3.1.5 Block Size (BK) Register 3-4.
3.1.6 System-Stack Pointer (SP) 3-4.
3.1.7 Status (ST) Register 3-5.
3.1.8 CPU/DMA Interrupt-Enable (IE) Register 3-9.
3.1.9 CPU Interrupt Flag (IF) Register 3-11.
3.1.10 I/O Flag (IOF) Register 3-16.
3.1.11 Repeat-Counter (RC) and Block-Repeat (RS, RE) Registers 3-17.

3.2 Other Registers 3-18.
3.2.1 Program-Counter (PC) Register 3-18.
3.2.2 Instruction Register (IR) 3-18.

3.3 Reserved Bits and Compatibility 3-19.

4 Memory and the Instruction Cache 4-1.
Description of memory maps with explanation of instruction cache architecture, algorithm,
and control bits.

4.1 Memory 4-2.
4.1.1 Memory Maps 4-2.
4.1.2 Peripheral Bus Memory Map 4-9.

4.2 Reset/Interrupt/Trap Vector Map 4-14.
4.3 Instruction Cache 4-19.

4.3.1 Instruction-Cache Architecture 4-19.
4.3.2 Instruction-Cache Algorithm 4-21.
4.3.3 Cache Control Bits 4-22.

5 Data Formats and Floating-Point Operation 5-1.
Description of signed and unsigned integer and floating-point formats. Discussion of floating-
point multiplication, addition, subtraction, normalization, rounding, and conversions.

5.1 Integer Formats 5-2.
5.1.1 Short-Integer Format 5-2.
5.1.2 Single-Precision Integer Format 5-2.

5.2 Unsigned-Integer Formats 5-3.
5.2.1 Short Unsigned-Integer Format 5-3.
5.2.2 Single-Precision Unsigned-Integer Format 5-3.

5.3 Floating-Point Formats 5-4.
5.3.1 Short Floating-Point Format 5-5.
5.3.2 TMS320C32 Short Floating-Point Format for External 16-Bit Data 5-6.

 Contents

xv Contents

5.3.3 Single-Precision Floating-Point Format 5-7.
5.3.4 Extended-Precision Floating-Point Format 5-8.
5.3.5 Determining the Decimal Equivalent of a TMS320C3x

Floating-Point Format 5-9.
5.3.6 Conversion Between Floating-Point Formats 5-12.

5.4 Floating-Point Conversion (IEEE Std. 754) 5-14.
5.4.1 Converting IEEE Format to 2s-Complement TMS320C3x

Floating-Point Format 5-15.
5.4.2 Converting 2s-Complement TMS320C3x Floating-Point Format

to IEEE Format 5-21.
5.5 Floating-Point Multiplication 5-26.
5.6 Floating-Point Addition and Subtraction 5-32.
5.7 Normalization Using the NORM Instruction 5-37.
5.8 Rounding (RND Instruction) 5-39.
5.9 Floating-Point to Integer Conversion (FIX Instruction) 5-41.
5.10 Integer to Floating-Point Conversion (FLOAT Instruction) 5-43.
5.11 Fast Logarithms on a Floating-Point Device 5-44.

5.11.1 Example of Fast Logarithm on a Floating-Point Device 5-45.
5.11.2 Points to Consider 5-47.

6 Addressing Modes 6-1.
Operation, encoding, and implementation of addressing modes; format descriptions;
system stack management.

6.1 Addressing Types 6-2.
6.2 Register Addressing 6-3.
6.3 Direct Addressing 6-4.
6.4 Indirect Addressing 6-5.
6.5 Immediate Addressing 6-18.
6.6 PC-Relative Addressing 6-19.
6.7 Circular Addressing 6-21.
6.8 Bit-Reversed Addressing 6-26.
6.9 Aligning Buffers With the TMS320 Floating-Point DSP Assembly Language Tools 6-28. . . .
6.10 System and User Stack Management 6-29.

6.10.1 System-Stack Pointer 6-29.
6.10.2 Stacks 6-30.
6.10.3 Queues 6-31.

7 Program Flow Control 7-1.
Software control of program flow with repeat modes and branching; interlocked operations;
reset and interrupts.

7.1 Repeat Modes 7-2.
7.1.1 Repeat-Mode Control Bits 7-3.
7.1.2 Repeat-Mode Operation 7-3.
7.1.3 RPTB Instruction 7-4.

Contents

xvi

7.1.4 RPTS Instruction 7-5.
7.1.5 Repeat-Mode Restrictions 7-6.
7.1.6 RC Register Value After Repeat Mode Completes 7-7.
7.1.7 Nested Block Repeats 7-8.

7.2 Delayed Branches 7-9.
7.3 Calls, Traps, and Returns 7-11.
7.4 Interlocked Operations 7-13.

7.4.1 Interrupting Interlocked Operations 7-15.
7.4.2 Using Interlocked Operations 7-15.
7.4.3 Pipeline Effects of Interlocked Instructions 7-19.

7.5 Reset Operation 7-21.
7.6 Interrupts 7-26.

7.6.1 TMS320C30 and TMS320C31 Interrupt Vector Table 7-26.
7.6.2 TMS320C32 Interrupt Vector Table 7-29.
7.6.3 Interrupt Prioritization 7-31.
7.6.4 CPU Interrupt Control Bits 7-32.
7.6.5 Interrupt Flag Register Behavior 7-32.
7.6.6 Interrupt Processing 7-33.
7.6.7 CPU Interrupt Latency 7-35.
7.6.8 External Interrupts 7-36.

7.7 DMA Interrupts 7-38.
7.7.1 DMA Interrupt Control Bits 7-38.
7.7.2 DMA Interrupt Processing 7-39.
7.7.3 CPU/DMA Interaction 7-40.
7.7.4 TMS320C3x Interrupt Considerations 7-41.
7.7.5 TMS320C30 Interrupt Considerations 7-44.

7.8 Traps 7-47.
7.8.1 Initialization of Traps and Interrupts 7-47.
7.8.2 Operation of Traps 7-47.

7.9 Power Management Modes 7-49.
7.9.1 IDLE2 Power-Down Mode 7-49.
7.9.2 LOPOWER 7-51.

8 Pipeline Operation 8-1.
Discussion of the pipeline of operations on the TMS320C3x

8.1 Pipeline Structure 8-2.
8.2 Pipeline Conflicts 8-4.

8.2.1 Branch Conflicts 8-4.
8.2.2 Register Conflicts 8-6.
8.2.3 Memory Conflicts 8-8.

8.3 Resolving Register Conflicts 8-19.
8.4 Memory Access for Maximum Performance 8-22.
8.5 Clocking Memory Accesses 8-24.

8.5.1 Program Fetches 8-24.
8.5.2 Data Loads and Stores 8-24.

 Contents

xvii Contents

9 TMS320C30 and TMS320C31 External-Memory Interface 9-1.
Description of primary and expansion interfaces for the ’C30 and ’C31; external interface timing
diagrams; programmable wait-states and bank switching.

9.1 Overview 9-2.
9.2 Memory Interface Signals 9-3.

9.2.1 TMS320C30 Memory Interface Signals 9-3.
9.2.2 TMS320C31 Memory Interface Signals 9-3.

9.3 Memory Interface Control Registers 9-7.
9.3.1 Primary-Bus Control Register 9-7.
9.3.2 Expansion-Bus Control Register 9-9.

9.4 Programmable Wait States 9-10.
9.5 Programmable Bank Switching 9-12.
9.6 External Memory Interface Timing 9-15.

9.6.1 Primary-Bus Cycles 9-15.
9.6.2 Expansion-Bus I/O Cycles 9-21.
9.6.3 Hold Cycles 9-37.

10 TMS320C32 Enhanced External Memory Interface 10-1.
Description of primary and expansion interfaces for the ’C32; external interface timing
diagrams; programmable wait-states and bank switching.

10.1 TMS320C32 Memory Features 10-2.
10.2 TMS320C32 Memory Overview 10-3.

10.2.1 External Memory Interface Overview 10-3.
10.2.2 Program Memory Access 10-4.
10.2.3 Data Memory Access 10-5.

10.3 Configuration 10-7.
10.3.1 External Interface Control Registers 10-7.
10.3.2 Using Physical Memory Width and Data-Type Size Fields 10-13.

10.4 Programmable Wait States 10-15.
10.5 Programmable Bank Switching 10-17.
10.6 32-Bit-Wide Memory Interface 10-20.
10.7 16-Bit-Wide Memory Interface 10-26.
10.8 8-Bit-Wide Memory Interface 10-32.
10.9 External Ready Timing Improvement 10-38.
10.10 Bus Timing 10-39.

10.10.1 STRB0 and STRB1 Bus Cycles 10-39.
10.10.2 IOSTRB Bus Cycles 10-42.
10.10.3 Inactive Bus States 10-51.

11 Using the TMS320C31 and TMS320C32 Boot Loaders 11-1.
Description of the boot loader operations for the ’C31 and ’C32.

11.1 TMS320C31 Boot Loader 11-2.
11.1.1 TMS320C31 Boot-Loader Description 11-2.
11.1.2 TMS320C31 Boot-Loader Mode Selection 11-2.

Contents

xviii

11.1.3 TMS320C31 Boot-Loading Sequence 11-4.
11.1.4 TMS320C31 Boot Data Stream Structure 11-7.
11.1.5 Interrupt and Trap-Vector Mapping 11-11.
11.1.6 TMS320C31 Boot-Loader Precautions 11-13.

11.2 TMS320C32 Boot Loader 11-14.
11.2.1 TMS320C32 Boot-Loader Description 11-14.
11.2.2 TMS320C32 Boot-Loader Mode Selection 11-14.
11.2.3 TMS320C32 Boot-Loading Sequence 11-15.
11.2.4 TMS320C32 Boot Data Stream Structure 11-20.
11.2.5 Boot-Loader Hardware Interface 11-23.
11.2.6 TMS320C32 Boot-Loader Precautions 11-23.

12 Peripherals 12-1.
Description of the DMA controller, timers, and serial ports.

12.1 Timers 12-2.
12.1.1 Timer Pins 12-3.
12.1.2 Timer Control Registers 12-3.
12.1.3 Timer Global-Control Register 12-4.
12.1.4 Timer-Period and Counter Registers 12-7.
12.1.5 Timer Pulse Generation 12-7.
12.1.6 Timer Operation Modes 12-10.
12.1.7 Using TCLKx as General-Purpose I/O Pins 12-12.
12.1.8 Timer Interrupts 12-13.
12.1.9 Timer Initialization/Reconfiguration 12-13.

12.2 Serial Ports 12-15.
12.2.1 Serial-Port Global-Control Register 12-17.
12.2.2 FSX/DX/CLKX Port-Control Register 12-22.
12.2.3 FSR/DR/CLKR Port-Control Register 12-23.
12.2.4 Receive/Transmit Timer-Control Register 12-25.
12.2.5 Receive/Transmit Timer-Counter Register 12-27.
12.2.6 Receive/Transmit Timer-Period Register 12-28.
12.2.7 Data-Transmit Register 12-28.
12.2.8 Data-Receive Register 12-28.
12.2.9 Serial-Port Operation Configurations 12-29.
12.2.10 Serial-Port Timing 12-31.
12.2.11 Serial-Port Interrupt Sources 12-34.
12.2.12 Serial-Port Functional Operation 12-35.
12.2.13 Serial-Port Initialization/Reconfiguration 12-41.
12.2.14 TMS320C3x Serial-Port Interface Examples 12-41.

12.3 DMA Controller 12-48.
12.3.1 DMA Functional Description 12-48.
12.3.2 DMA Basic Operation 12-50.
12.3.3 DMA Registers 12-51.
12.3.4 CPU/DMA Interrupt-Enable Register 12-59.

 Contents

xix Contents

12.3.5 TMS320C32 DMA Internal Priority Schemes 12-62.
12.3.6 CPU and DMA Controller Arbitration 12-63.
12.3.7 DMA and Interrupts 12-64.
12.3.8 DMA Memory Transfer Timing 12-67.
12.3.9 DMA Initialization/Reconfiguration 12-73.
12.3.10 Hints for DMA Programming 12-73.
12.3.11 DMA Programming Examples 12-74.

13 Assembly Language Instructions 13-1.
Functional listing of instructions. Condition codes defined. Alphabetized individual instruction
set with examples.

13.1 Instruction Set 13-2.
13.1.1 Load and Store Instructions 13-2.
13.1.2 2-Operand Instructions 13-3.
13.1.3 3-Operand Instructions 13-4.
13.1.4 Program-Control Instructions 13-4.
13.1.5 Low-Power Control Instructions 13-5.
13.1.6 Interlocked-Operations Instructions 13-5.
13.1.7 Parallel-Operations Instructions 13-6.
13.1.8 Illegal Instructions 13-9.

13.2 Instruction Set Summary 13-10.
13.3 Parallel Instruction Set Summary 13-17.
13.4 Group Addressing Mode Instruction Encoding 13-20.

13.4.1 General Addressing Modes 13-20.
13.4.2 3-Operand Addressing Modes 13-24.
13.4.3 Parallel Addressing Modes 13-25.
13.4.4 Conditional-Branch Addressing Modes 13-27.

13.5 Condition Codes and Flags 13-28.
13.6 Individual Instructions 13-32.

13.6.1 Symbols and Abbreviations 13-32.
13.6.2 Optional Assembler Syntax 13-34.
13.6.3 Individual Instruction Descriptions 13-37.

A Instruction Opcodes A-1.
List of the opcode fields for the TMS320C3x instructions.

B TMS320C31 Boot Loader Source Code B-1.

C TMS320C32 Boot Loader Source Code C-1.
C.1 Boot-Loader Source Code Description C-2.
C.2 Boot-Loader Source Code Listing C-4.

D Glossary D-1.

Figures

xx

Figures

1–1 TMS320C3x Devices Block Diagram 1-3.
2–1 TMS320C30 Block Diagram 2-3.
2–2 TMS320C31 Block Diagram 2-4.
2–3 TMS320C32 Block Diagram 2-5.
2–4 Central Processing Unit (CPU) 2-7.
2–5 Memory Organization of the TMS320C30 2-14.
2–6 Memory Organization of the TMS320C31 2-15.
2–7 Memory Organization of the TMS320C32 2-16.
2–8 TMS320C32-Supported Data Types and Sizes and External Memory Widths 2-20.
2–9 Peripheral Modules 2-22.
2–10 DMA Controller 2-25.
3–1 Extended-Precision Register Floating-Point Format 3-3.
3–2 Extended-Precision Register Integer Format 3-3.
3–3 Status Register (TMS320C30 andTMS320C31) 3-5.
3–4 Status Register (TMS320C32 Only) 3-5.
3–5 CPU/DMA Interrupt-Enable (IE) Register (TMS320C30 and TMS320C31) 3-9.
3–6 CPU/DMA Interrupt-Enable (IE) Register (TMS320C32) 3-9.
3–7 TMS320C30 CPU Interrupt Flag (IF) Register 3-12.
3–8 TMS320C31 CPU Interrupt Flag (IF) Register 3-12.
3–9 TMS320C32 CPU Interrupt Flag (IF) Register 3-12.
3–10 Effective Base Address of the Interrupt-Trap Vector Table 3-14.
3–11 Interrupt and Trap Vector Locations 3-15.
3–12 I/O Flag (IOF) Register 3-16.
4–1 TMS320C30 Memory Maps 4-4.
4–2 TMS320C31 Memory Maps 4-6.
4–3 TMS320C32 Memory Maps 4-8.
4–4 TMS320C30 Peripheral Bus Memory-Mapped Registers 4-10.
4–5 TMS320C31 Peripheral Bus Memory-Mapped Registers 4-11.
4–6 TMS320C32 Peripheral Bus Memory-Mapped Registers 4-13.
4–7 Reset, Interrupt, and Trap Vector Locations for the TMS320C30

Microprocessor Mode 4-15.
4–8 Reset, Interrupt, and Trap Vector Locations for theTMS320C31

Microprocessor Mode 4-16.
4–9 Interrupt and Trap Branch Instructions for the TMS320C31 Microcomputer Mode 4-17.
4–10 Interrupt and Trap Vector Locations for TMS320C32 4-18.
4–11 Address Partitioning for Cache Control Algorithm 4-19.
4–12 Instruction-Cache Architecture 4-20.

 Figures

xxi Contents

5–1 Short-Integer Format and Sign-Extension of Short Integers 5-2.
5–2 Single-Precision Integer Format 5-2.
5–3 Short Unsigned-Integer Format and Zero Fill 5-3.
5–4 Single-Precision Unsigned-Integer Format 5-3.
5–5 General Floating-Point Format 5-4.
5–6 Short Floating-Point Format 5-5.
5–7 TMS320C32 Short Floating-Point Format for External 16-Bit Data 5-6.
5–8 Single-Precision Floating-Point Format 5-7.
5–9 Extended-Precision Floating-Point Format 5-8.
5–10 Converting from Short Floating-Point Format to Single-Precision

Floating-Point Format 5-12.
5–11 Converting from Short Floating-Point Format to Extended-Precision

Floating-Point Format 5-12.
5–12 Converting from Single-Precision Floating-Point Format to Extended-Precision

Floating-Point Format 5-13.
5–13 Converting from Extended-Precision Floating-Point Format to Single-Precision

Floating-Point Format 5-13.
5–14 IEEE Single-Precision Std. 754 Floating-Point Format 5-14.
5–15 TMS320C3x Single-Precision 2s-Complement Floating-Point Format 5-15.
5–16 Flowchart for Floating-Point Multiplication 5-28.
5–17 Flowchart for Floating-Point Addition 5-33.
5–18 Flowchart for NORM Instruction Operation 5-38.
5–19 Flowchart for Floating-Point Rounding by the RND Instruction 5-40.
5–20 Flowchart for Floating-Point to Integer Conversion by FIX Instruction 5-42.
5–21 Flowchart for Integer to Floating-Point Conversion by FLOAT Instruction 5-43.
5–22 Tabulated Values for Mantissa 5-46.
5–23 Fast Logarithm for FFT Displays 5-48.
6–1 Direct Addressing 6-4.
6–2 Indirect Addressing Operand Encoding 6-6.
6–3 Encoding for 24-Bit PC-Relative Addressing Mode 6-20.
6–4 Logical and Physical Representation of Circular Buffer 6-21.
6–5 Logical and Physical Representation of Circular Buffer after Writing Three Values 6-21. . . .
6–6 Logical and Physical Representation of Circular Buffer after Writing Eight Values 6-22.
6–7 Circular Buffer Implementation 6-23.
6–8 Data Structure for FIR Filters 6-24.
6–9 System Stack Configuration 6-29.
6–10 Implementations of High-to-Low Memory Stacks 6-30.
6–11 Implementations of Low-to-High Memory Stacks 6-31.
7–1 CALL Response Timing 7-12.
7–2 Multiple TMS320C3xs Sharing Global Memory 7-17.
7–3 Zero-Logic Interconnect of TMS320C3x Devices 7-18.
7–4 Effective Base Address of the Interrupt-Trap-Vector Table 7-29.
7–5 IF Register Modification 7-33.
7–6 CPU Interrupt Processing 7-34.
7–7 Interrupt Logic Functional Diagram 7-37.

Figures

xxii

7–8 DMA Interrupt Processing 7-39.
7–9 Parallel CPU and DMA Interrupt Processing 7-40.
7–10 Flow of Traps 7-47.
7–11 IDLE2 Timing 7-50.
7–12 Interrupt Response Timing After IDLE2 Operation 7-51.
7–13 LOPOWER Timing 7-52.
7–14 MAXSPEED Timing 7-52.
8–1 TMS320C3x Pipeline Structure 8-2.
8–2 Minor Clock Periods 8-24.
8–3 2-Operand Instruction Word 8-25.
8–4 3-Operand Instruction Word 8-25.
8–5 Multiply or CPU Operation With a Parallel Store 8-29.
8–6 Two Parallel Stores 8-29.
8–7 Parallel Multiplies and Adds 8-30.
9–1 Memory-Mapped External Interface Control Registers 9-6.
9–2 Primary-Bus Control Register 9-7.
9–3 Expansion-Bus Control Register 9-9.
9–4 BNKCMP Example 9-12.
9–5 Bank-Switching Example 9-14.
9–6 Read-Read-Write for (M)STRB = 0 9-17.
9–7 Write-Write-Read for (M)STRB = 0 9-18.
9–8 Use of Wait States for Read for (M)STRB = 0 9-19.
9–9 Use of Wait States for Write for (M)STRB = 0 9-20.
9–10 Read and Write for IOSTRB = 0 9-21.
9–11 Read With One Wait State for IOSTRB = 0 9-22.
9–12 Write With One Wait State for IOSTRB = 0 9-23.
9–13 Memory Read and I/O Write for Expansion Bus 9-24.
9–14 Memory Read and I/O Read for Expansion Bus 9-25.
9–15 Memory Write and I/O Write for Expansion Bus 9-26.
9–16 Memory Write and I/O Read for Expansion Bus 9-27.
9–17 I/O Write and Memory Write for Expansion Bus 9-28.
9–18 I/O Write and Memory Read for Expansion Bus 9-29.
9–19 I/O Read and Memory Write for Expansion Bus 9-30.
9–20 I/O Read and Memory Read for Expansion Bus 9-31.
9–21 I/O Write and I/O Read for Expansion Bus 9-32.
9–22 I/O Write and I/O Write for Expansion Bus 9-33.
9–23 I/O Read and I/O Read for Expansion Bus 9-34.
9–24 Inactive Bus States for IOSTRB 9-35.
9–25 Inactive Bus States for STRB and MSTRB 9-36.
9–26 HOLD and HOLDA Timing 9-37.
10–1 Memory Address Spaces 10-4.
10–2 Status Register 10-5.
10–3 Memory-Mapped External Interface Control Registers 10-7.
10–4 STRB0 Control Register 10-8.

 Figures

xxiii Contents

10–5 STRB1 Control Register 10-8.
10–6 IOSTRB Control Register 10-9.
10–7 STRB Configuration 10-13.
10–8 BNKCMP Example 10-17.
10–9 Bank-Switching Example 10-18.
10–10 TMS320C32 External Memory Interface for 32-Bit SRAMs 10-20.
10–11 Functional Diagram for 8-Bit Data-Type Size and 32-Bit External-Memory

Width 10-21.
10–12 Functional Diagram for 16-Bit Data-Type Size and 32-Bit External-Memory

Width 10-23.
10–13 Functional Diagram for 32-Bit Data Size and 32-Bit External-Memory Width 10-24.
10–14 External-Memory Interface for 16-Bit SRAMs 10-26.
10–15 Functional Diagram for 8-Bit Data-Type Size and 16-Bit External-Memory Width 10-27. . . .
10–16 Functional Diagram for 16-Bit Data-Type Size and 16-Bit External-Memory Width 10-29.
10–17 Functional Diagram for 32-Bit Data-Type Size and 16-Bit External-Memory Width 10-30.
10–18 External Memory Interface for 8-Bit SRAMs 10-32.
10–19 Functional Diagram for 8-Bit Data-Type Size and 8-Bit External-Memory Width 10-33.
10–20 Functional Diagram for 16-Bit Data-Type Size and 8-Bit External-Memory Width 10-34. . . .
10–21 Functional Diagram for 32-Bit Data-Type Size and 8-Bit External-Memory Width 10-36. . . .
10–22 RDY Timing for Memory Read 10-38.
10–23 Read-Read-Write Sequence for STRBx Active 10-40.
10–24 Write-Write-Read Sequence for STRBx Active 10-40.
10–25 One Wait-State Read Sequence for STRBx Active 10-41.
10–26 One Wait-State Write Sequence for STRBx Active 10-42.
10–27 Zero Wait-State Read and Write Sequence for IOSTRB Active 10-43.
10–28 One Wait-State Read Sequence for IOSTRB Active 10-44.
10–29 One Wait-State Write Sequence for IOSTRB Active 10-44.
10–30 STRBx Read and IOSTRB Write 10-45.
10–31 STRBx Read and IOSTRB Read 10-45.
10–32 STRBx Write and IOSTRB Write 10-46.
10–33 STRBx Write and IOSTRB Read 10-46.
10–34 IOSTRB Write and STRBx Write 10-47.
10–35 IOSTRB Write and STRBx Read 10-48.
10–36 IOSTRB Read and STRBx Write 10-48.
10–37 IOSTRB Read and STRBx Read 10-49.
10–38 IOSTRB Write and Read 10-50.
10–39 IOSTRB Write and Write 10-50.
10–40 IOSTRB Read and Read 10-51.
10–41 Inactive Bus States Following IOSTRB Bus Cycle 10-51.
10–42 Inactive Bus States Following STRBx Bus Cycle 10-52.
11–1 TMS320C31 Boot-Loader Mode-Selection Flowchart 11-3.
11–2 Boot-Loader Memory-Load Flowchart 11-5.
11–3 Boot-Loader Serial-Port Load-Mode Flowchart 11-6.
11–4 TMS320C32 Boot-Loader Mode-Selection Flowchart 11-17.

Figures

xxiv

11–5 Boot-Loader Serial-Port Load Flowchart 11-18.
11–6 Boot-Loader Memory-Load Flowchart 11-19.
11–7 Handshake Data-Transfer Operation 11-20.
11–8 External Memory Interface for Source Data Stream Memory Boot Load 11-23.
12–1 Timer Block Diagram 12-2.
12–2 Memory-Mapped Timer Locations 12-4.
12–3 Timer Global-Control Register 12-4.
12–4 Timer Timing 12-8.
12–5 Timer Configuration with CLKSRC = 1 and FUNC = 0 12-10.
12–6 Timer Configuration with CLKSRC = 1 and FUNC = 1 12-11.
12–7 Timer Configuration with CLKSRC = 0 and FUNC = 0 12-11.
12–8 Timer Configuration with CLKSRC = 0 and FUNC = 1 12-12.
12–9 TCLK as an Input (I/O = 0) 12-12.
12–10 TCLK as an Output (I/O = 1) 12-12.
12–11 Serial Port Block Diagram 12-16.
12–12 Memory-Mapped Locations for the Serial Ports 12-17.
12–13 Serial-Port Global-Control Register 12-18.
12–14 FSX/DX/CLKX Port-Control Register 12-22.
12–15 FSR/DR/CLKR Port-Control Register 12-23.
12–16 Receive/Transmit Timer-Control Register 12-25.
12–17 Receive/Transmit Timer-Counter Register 12-27.
12–18 Receive/Transmit Timer-Period Register 12-28.
12–19 Transmit Buffer Shift Operation 12-28.
12–20 Receive Buffer Shift Operation 12-29.
12–21 Serial-Port Clocking in I/O Mode 12-30.
12–22 Serial-Port Clocking in Serial-Port Mode 12-31.
12–23 Data Word Format in Handshake Mode 12-33.
12–24 Single 0 Sent as an Acknowledge Bit 12-33.
12–25 Direct Connection Using Handshake Mode 12-34.
12–26 Fixed Burst Mode 12-36.
12–27 Fixed Standard Mode With Back-to-Back Frame Sync 12-37.
12–28 Fixed Continuous Mode Without Frame Sync 12-38.
12–29 Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal 12-39.
12–30 Variable Burst Mode 12-39.
12–31 Variable Standard Mode With Back-to-Back Frame Syncs 12-40.
12–32 Variable Continuous Mode Without Frame Sync 12-41.
12–33 TMS320C3x Zero-Glue-Logic Interface to TLC320C4x Example 12-45.
12–34 DMA Basic Operation 12-51.
12–35 Memory-Mapped Locations for DMA Channels 12-52.
12–36 TMS320C30 and TMS320C31 DMA Global-Control Register 12-53.
12–37 TMS320C32 DMA0 Global-Control Register 12-53.
12–38 TMS320C32 DMA1 Global-Control Register 12-53.
12–39 DMA Controller Address Generation 12-57.
12–40 Transfer-Counter Operation 12-59.

 Figures

xxv Contents

12–41 TMS320C30 and TMS320C31 CPU/DMA Interrupt-Enable Register 12-60.
12–42 TMS320C32 CPU/DMA Interrupt-Enable Register 12-60.
12–43 Mechanism for No DMA Synchronization 12-65.
12–44 Mechanism for DMA Source Synchronization 12-66.
12–45 Mechanism for DMA Destination Synchronization 12-66.
12–46 Mechanism for DMA Source and Destination Synchronization 12-67.
12–47 DMA Timing When Destination is On Chip 12-69.
12–48 DMA Timing When Destination is an STRB, STRB0, STRB1, MSTRB Bus 12-70.
12–49 DMA Timing When Destination is an IOSTRB Bus 12-72.
13–1 Encoding for General Addressing Modes 13-21.
13–2 Encoding for 3-Operand Addressing Modes 13-25.
13–3 Encoding for Parallel Addressing Modes 13-25.
13–4 Encoding for Extended Parallel Addressing Instructions 13-26.
13–5 Encoding for Conditional-Branch Addressing Modes 13-27.
13–6 Status Register 13-29.
C–1 Boot-Loader Flow Chart C-3.

Tables

xxvi

Tables

1–1 TMS320C30, TMS320C31, TMS320LC31, and TMS320C32 Comparison 1-5.
1–2 Typical Applications of the TMS320 Family 1-7.
2–1 Primary CPU Registers 2-9.
2–2 Feature Set Comparison 2-27.
3–1 CPU Registers 3-2.
3–2 Status Register Bits 3-6.
3–3 IE Bits and Functions 3-10.
3–4 IF Bits and Functions 3-13.
3–5 IOF Bits and Functions 3-16.
4–1 Combined Effect of the CE and CF Bits 4-23.
5–1 Converting IEEE Format to 2s-Complement Floating-Point Format 5-15.
5–2 Converting 2s-Complement Floating-Point Format to IEEE Format 5-21.
5–3 Squaring Operation of F0 = 1.5 5-45.
6–1 CPU Register Address/Assembler Syntax and Function 6-3.
6–2 Indirect Addressing 6-7.
6–3 Index Steps and Bit-Reversed Addressing 6-27.
7–1 Repeat-Mode Registers 7-2.
7–2 Interlocked Operations 7-13.
7–3 TMS320C3x Pin Operation at Reset 7-21.
7–4 Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/TMS320C31

Microprocessor Mode 7-27.
7–5 Reset, Interrupt, and Trap-Branch Locations for the TMS320C31

Microcomputer Boot Mode 7-28.
7–6 Interrupt and Trap-Vector Locations for the TMS320C32 7-30.
7–7 Reset and Interrupt Vector Priorities 7-31.
7–8 Interrupt Latency 7-36.
7–9 Pipeline Operation with PUSH ST 7-42.
7–10 Pipeline Operation with Load Followed by Interrupt 7-42.
8–1 One Program Fetch and One Data Access for Maximum Performance 8-22.
8–2 One Program Fetch and Two Data Accesses for Maximum Performance 8-23.
9–1 Primary Bus Interface Signals 9-4.
9–2 Expansion Bus Interface Signals 9-5.
9–3 Primary-Bus Control Register Bits 9-8.
9–4 Expansion-Bus Control Register Bits 9-9.
9–5 Wait-State Generation 9-11.
9–6 BNKCMP and Bank Size 9-12.
10–1 STRB0, STRB1, and IOSTRB Control Register Bits 10-10.

 Tables

xxvii Contents

10–2 Data-Access Sequence for a Memory Configuration with Two Banks 10-14.
10–3 Wait-State Generation 10-16.
10–4 BNKCMP and Bank Size 10-17.
10–5 Strobe Byte-Enable for 32-Bit-Wide Memory With 8-Bit Data-Type Size 10-21.
10–6 Example of 8-Bit Data-Type Size 10-22.
10–7 Strobe Byte-Enable for 32-Bit-Wide Memory With 16-Bit Data-Type Size 10-22.
10–8 Example of 16-Bit Data-Type Size and 32-Bit-Wide External Memory 10-23.
10–9 Example of 32-Bit-Wide Memory With 32-Bit Data-Type Size 10-25.
10–10 Strobe-Byte Enable Behavior for 16-Bit-Wide Memory with 8-Bit Data-Type Size 10-27. . . .
10–11 Example of 8-Bit Data-Type Size and 16-Bit-Wide External Memory 10-28.
10–12 Example of 16-Bit-Wide Memory With 16-Bit Data-Type Size 10-29.
10–13 Example of 16-Bit-Wide Memory With 32-Bit Data-Type Size 10-31.
10–14 Example of 8-Bit-Wide Memory With 8-Bit Data-Type Size 10-33.
10–15 Example of 8-Bit-Wide Memory With 16-Bit Data-Type Size 10-35.
10–16 Example of 32-Bit Data-Type Size and 8-Bit-Wide Memory 10-37.
11–1 Boot-Loader Mode Selection 11-3.
11–2 Source Data Stream Structure 11-8.
11–3 Byte-Wide Configured Memory 11-9.
11–4 16-Bit-Wide Configured Memory 11-10.
11–5 32-Bit-Wide Configured Memory 11-10.
11–6 TMS320C31 Interrupt and Trap Memory Maps 11-12.
11–7 Boot-Loader Mode Selection 11-15.
11–8 Source Data Stream Structure 11-21.
12–1 Timer Global-Control Register Bits Summary 12-5.
12–2 Serial-Port Global-Control Register Bits Summary 12-18.
12–3 FSX/DX/CLKX Port-Control Register Bits Summary 12-22.
12–4 FSR/DR/CLKR Port-Control Register Bits Summary 12-24.
12–5 Receive/Transmit Timer-Control Register Register Bits Summary 12-25.
12–6 DMA Global-Control Register Bits Summary 12-54.
12–7 CPU/DMA Interrupt-Enable Register Bits 12-61.
12–8 TMS320C32 DMA PRI Bits and CPU/DMA Arbitration Rules 12-64.
13–1 Load and Store Instructions 13-2.
13–2 2-Operand Instructions 13-3.
13–3 3-Operand Instructions 13-4.
13–4 Program-Control Instructions 13-5.
13–5 Low-Power Control Instructions 13-5.
13–6 Interlocked-Operations Instructions 13-6.
13–7 Parallel Instructions 13-6.
13–8 Instruction Set Summary 13-10.
13–9 Parallel Instruction Set Summary 13-17.
13–10 Indirect Addressing 13-22.
13–11 Output Value Formats 13-28.
13–12 Condition Codes and Flags 13-30.
13–13 Instruction Symbols 13-33.
13–14 CPU Register Syntax 13-36.
A–1 TMS320C3x Instruction Opcodes A-2.

Examples

xxviii

Examples

4–1 Pipeline Effects of Modifying the Cache Control Bits 4-23.
5–1 Positive Number 5-10.
5–2 Negative Number 5-11.
5–3 Fractional Number 5-11.
5–4 IEEE-to-TMS320C3x Conversion (Fast Version) 5-17.
5–5 IEEE-to-TMS320C3x Conversion (Complete Version) 5-19.
5–6 TMS320C3x-to-IEEE Conversion (Fast Version) 5-22.
5–7 TMS320C3x-to-IEEE Conversion (Complete Version) 5-24.
5–8 Floating-Point Multiply (Both Mantissas = –2.0) 5-29.
5–9 Floating-Point Multiply (Both Mantissas = 1.5) 5-30.
5–10 Floating-Point Multiply (Both Mantissas = 1.0) 5-30.
5–11 Floating-Point Multiply Between Positive and Negative Numbers 5-31.
5–12 Floating-Point Multiply by 0 5-31.
5–13 Floating-Point Addition 5-34.
5–14 Floating-Point Subtraction 5-35.
5–15 Floating-Point Addition With a 32-Bit Shift 5-35.
5–16 Floating-Point Addition/Subtraction With Floating-Point 0 5-36.
5–17 NORM Instruction 5-37.
6–1 Direct Addressing 6-4.
6–2 Auxiliary Register Indirect 6-5.
6–3 Indirect Addressing With Predisplacement Add 6-9.
6–4 Indirect Addressing With Predisplacement Subtract 6-9.
6–5 Indirect Addressing With Predisplacement Add and Modify 6-10.
6–6 Indirect Addressing With Predisplacement Subtract and Modify 6-10.
6–7 Indirect Addressing With Postdisplacement Add and Modify 6-11.
6–8 Indirect Addressing With Postdisplacement Subtract and Modify 6-11.
6–9 Indirect Addressing With Postdisplacement Add and Circular Modify 6-12.
6–10 Indirect Addressing With Postdisplacement Subtract and Circular Modify 6-12.
6–11 Indirect Addressing With Preindex Add 6-13.
6–12 Indirect Addressing With Preindex Subtract 6-13.
6–13 Indirect Addressing With Preindex Add and Modify 6-14.
6–14 Indirect Addressing With Preindex Subtract and Modify 6-14.
6–15 Indirect Addressing With Postindex Add and Modify 6-15.
6–16 Indirect Addressing With Postindex Subtract and Modify 6-15.
6–17 Indirect Addressing With Postindex Add and Circular Modify 6-16.
6–18 Indirect Addressing With Postindex Subtract and Circular Modify 6-16.

 Examples

xxix Contents

6–19 Indirect Addressing With Postindex Add and Bit-Reversed Modify 6-17.
6–20 Short-Immediate Addressing 6-18.
6–21 Long-Immediate Addressing 6-18.
6–22 PC-Relative Addressing 6-19.
6–23 Examples of Formula 2K > R 6-22.
6–24 Circular Addressing 6-24.
6–25 FIR Filter Code Using Circular Addressing 6-25.
6–26 Bit-Reversed Addressing 6-27.
7–1 Repeat-Mode Control Algorithm 7-4.
7–2 RPTB Operation 7-4.
7–3 Incorrectly Placed Standard Branch 7-6.
7–4 Incorrectly Placed Delayed Branch 7-7.
7–5 Pipeline Conflict in an RPTB Instruction 7-7.
7–6 Incorrectly Placed Delayed Branches 7-10.
7–7 Delayed Branch Execution 7-10.
7–8 Busy-Waiting Loop 7-16.
7–9 Multiprocessor Counter Manipulation 7-16.
7–10 Implementation of V(S) 7-18.
7–11 Implementation of P(S) 7-18.
7–12 Code to Synchronize Two TMS320C3x Devices at the Software Level 7-19.
7–13 Pipeline Delay of XF Pin Configuration 7-20.
7–14 Incorrect Use of Interlocked Instructions 7-20.
7–15 Pending Interrupt 7-43.
8–1 Standard Branch 8-5.
8–2 Delayed Branch 8-6.
8–3 Write to an AR Followed by an AR for Address Generation 8-7.
8–4 A Read of ARs Followed by ARs for Address Generation 8-8.
8–5 Program Wait Until CPU Data Access Completes 8-10.
8–6 Program Wait Due to Multicycle Access 8-11.
8–7 Multicycle Program Memory Fetches 8-12.
8–8 Single Store Followed by Two Reads 8-13.
8–9 Parallel Store Followed by Single Read 8-14.
8–10 Interlocked Load 8-15.
8–11 Busy External Port 8-16.
8–12 Multicycle Data Reads 8-17.
8–13 Conditional Calls and Traps 8-18.
8–14 Address Generation Update of an AR Followed by an AR for Address Generation 8-19. . . .
8–15 Write to an AR Followed by an AR for Address Generation Without

a Pipeline Conflict 8-20.
8–16 Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict 8-21.
8–17 Dummy sr2 Read 8-27.
8–18 Operand Swapping Alternative 8-28.
12–1 Timer Output Generation Examples 12-9.
12–2 Maximum Frequency Timer Clock Setup 12-14.

Examples

xxx

12–3 Serial-Port Register Setup #1 12-42.
12–4 Serial-Port Register Setup #1 12-43.
12–5 Serial-Port Register Setup #2 12-43.
12–6 CPU Transfer With Serial Port Transmit Polling Method 12-44.
12–7 TMS320C3x Zero-Glue-Logic Interface to Burr Brown A/D and D/A 12-46.
12–8 Array Initialization With DMA 12-75.
12–9 DMA Transfer With Serial-Port Receive Interrupt 12-76.
12–10 DMA Transfer With Serial-Port Transmit Interrupt 12-77.

1-1

Introduction

The TMS320C3x generation of digital signal processors (DSPs) are high-
performance CMOS 32-bit floating-point devices in the TMS320 family of
single-chip DSPs.

The ’C3x generation integrates both system control and math-intensive functions
on a single controller. This system integration allows fast, easy data movement
and high-speed numeric processing performance. Extensive internal busing and
a powerful DSP instruction set provide the devices with the speed and flexibility
to execute at up to 60 million floating-point operations per second (MFLOPS).
The devices also feature a high degree of on-chip parallelism that allows users
to perform up to 11 operations in a single instruction.

Topic Page

1.1 TMS320C3x Devices 1-2.

1.2 Typical Applications 1-7.

Chapter 1

TMS320C3x Devices

 1-2

1.1 TMS320C3x Devices

The ’C3x family consists of three members: the ’C30, ’C31, and ’C32. The
’C30, ’C31, and ’C32 can perform parallel multiply and arithmetic logic unit
(ALU) operations on integer or floating-point data in a single cycle.

The processors also possess the following features for high performance and
ease of use:

� General-purpose register file

� Program cache

� Dedicated auxiliary register arithmetic units (ARAU)

� Internal dual-access memories

� One direct memory access (DMA) channel (a two-channel DMA on the
TMS320C32) supporting concurrent I/O

� Short machine-cycle time

General-purpose applications are greatly enhanced by the large address
space, multiprocessor interface, internally and externally generated wait states,
two external interface ports (one on the ’C31 and the ’C32) two timers, two serial
ports (one on the ’C31 and the ’C32), and multiple-interrupt structure. The ’C3x
supports a wide variety of system applications from host processor to dedicated
coprocessor.

High-level language is implemented more easily through a register-based archi-
tecture, large address space, powerful addressing modes, flexible instruction
set, and well-supported floating-point arithmetic.

Figure 1–1 shows a block diagram of ’C3x devices.

TMS320C3x Devices

1-3Introduction

Figure 1–1. TMS320C3x Devices Block Diagram

Primary port
memory interface

Data access
32-bit (’C30-’C31)
8/16/32-bit (’C32)

Program access
32-bit (’C30-’C31)
16/32-bit (’C32)

RDY
HOLD
HOLDA
STRB (’C30-’C31)

R/W
D31-0
A23-0

STRB0_B3-0 (’C32)
STRB1_B3-0 (’C32)

IOSTRB (’C32)
PRGW (’C32)

Serial port 0

Timer 0

Timer 1

Program
cache

(64 x 32)

RAM
block 0

1K x 32 (’C30-’C31)
256 x 32 (’C32)

RAM
block 1

1K x 32 (’C30-’C31)
256 x 32 (’C32)

ROM
4K x 32 (’C30)

boot (’C31-’C32)Expansion port
(’C30)

memory interface

32-bit
data access

32-bit
program access

Serial port 1 (’C30)

IOSTRB

XRDY
XD31-0
XA12-0

MSTRB DMA
coprocessor

DMA
channel 0

DMA
channel 1 (’C32)

TCLK0

TCLK1

CLKX0
DX0
FSX0
CLKR0
DR0
FSR0

CLKX1
DX1
FSX1
CLKR1
DR1
FSR1

CPU
Integer and

floating-point
multiplier

Integer and
floating-point

multiplier

8 extended-precision registers

8 auxiliary registers

2 index registers

Address
generation 0

Address
generation 1

12 control registers

2 low-power modes
(’C31-’C32)

C
on

tro
lle

r

RESET
INT3-3

IACK
XF1-0

H1
H3

MCBL/MP
X2/CLKIN

VDD
VSSSHZE-

MU6-0
X1

1.1.1 TMS320C3x Key Specifications

The key specifications of the ’C3x devices include the following:

� Performance up to 60 MFLOPS
� Highly efficient C language engine
� Large address space: 16M words � 32 bits
� Fast memory management with on-chip DMA
� Industry-exclusive 3-V versions available on some devices

1.1.2 TMS320C30

The ’C30 is the first member of the ’C3x generation. It differs from the ’C31 and
’C32 by offering 4K ROM, 2K RAM, a second serial port, and a second external
bus.

1.1.3 TMS320C31 and TMS320LC31

The ’C31 and ’LC31 are the second members of the ’C3x generation. They are
low-cost 32-bit floating-point DSPs which have a boot-loader program, 2K RAM,
single external port, single serial port, and are available in 3.3-V operation
(’LC31).

TMS320C3x Devices

 1-4

1.1.4 TMS320C32

The ’C32 is the newest member of the ’C3x generation. They are enhanced
versions of the ’C3x family and the lowest cost floating-point processors on the
market today. These enhancements include a variable-width memory inter-
face, two-channel DMA coprocessor with configurable priorities, flexible boot
loader, and a relocatable interrupt vector table.

TMS320C3x Devices

1-5Introduction

Ta
bl

e
1–

1.
T

M
S

32
0C

30
, T

M
S

32
0C

31
, T

M
S

32
0L

C
31

, a
nd

 T
M

S
32

0C
32

 C
om

pa
ris

on

D
i

F
C

l

M
em

or
y

(w
or

ds
)

P
i

h
l

P
k

T
D

i
F

C
yc

le
O

n-
C

hi
p

O
ff-

C
hi

p
P

er
ip

he
ra

ls

P
k

T
D

ev
ic

e
N

am
e

F
re

q
(M

H
z)

C
yc

le
Ti

m
e

(n
s)

R
A

M
R

O
M

C
ac

he
P

ar
al

le
l

S
er

ia
l

D
M

A
C

ha
nn

el
s

Ti
m

er
s

P
ac

ka
ge

Ty
pe

Te
m

pe
ra

tu
re

’C
30

27
75

2K
4K

64
16

M
�

32
8K
�

32
2

1
2

18
1

P
G

A
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)

’C
30

33
60

2K
4K

64
16

M
�

32
8K
�

32
2

1
2

18
1

P
G

A
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)
–5

5°
 to

 1
25

°
(m

ili
ta

ry
)

(5
 V

)
40

50
2K

4K
64

16
M
�

32
8K
�

32
2

1
2

18
1

P
G

A
20

8
P

Q
F

P
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)

50
40

2K
4K

64
16

M
�

32
8K
�

32
2

1
2

18
1

P
G

A
20

8
P

Q
F

P
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)

’C
31

27
75

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

–5
5°

 to
 1

25
°

(m
ili

ta
ry

)

’C
31

33
60

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

–4
0°

 to
 1

25
°

(e
xt

en
de

d)
–5

5°
 to

 1
25

°
(m

ili
ta

ry
)

’C
31

(5
 V

)

40
50

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

–4
0°

 to
 1

25
°

(e
xt

en
de

d)
–5

5°
 to

 1
25

°
(m

ili
ta

ry
)

50
40

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

–4
0°

 to
 1

25
°

(e
xt

en
de

d)

60
33

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

–4
0°

 to
 1

25
°

(e
xt

en
de

d)

’L
C

31
33

60
2K

B
oo

t l
oa

de
r

64
16

M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

(3
.3

 V
)

40
50

2K
B

oo
t l

oa
de

r
64

16
M
�

32
1

1
2

13
2

P
Q

F
P

0°
 to

 8
5°

 (
co

m
m

er
ci

al
)

TMS320C3x Devices

1-6

Ta
bl

e
1–

1.
T

M
S

32
0C

30
, T

M
S

32
0C

31
, T

M
S

32
0L

C
31

, a
nd

 T
M

S
32

0C
32

 C
om

pa
ris

on
 (

C
on

tin
ue

d)

D
i

F
C

l

M
em

or
y

(w
or

ds
)

P
i

h
l

P
k

T
D

i
F

C
yc

le
O

n-
C

hi
p

O
ff-

C
hi

p
P

er
ip

he
ra

ls

P
k

T
D

ev
ic

e
N

am
e

F
re

q
(M

H
z)

C
yc

le
Ti

m
e

(n
s)

R
A

M
R

O
M

C
ac

he
P

ar
al

le
l

S
er

ia
l

D
M

A
C

ha
nn

el
s

Ti
m

er
s

P
ac

ka
ge

Ty
pe

Te
m

pe
ra

tu
re

’C
32

40
50

51
2

B
oo

t l
oa

de
r

64
16

M
�

32
/1

6/
8

1
2

2
14

4
P

Q
F

P
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)
–4

0°
 to

 1
25

°(
ex

te
nd

ed
)

’C
32

(5
 V

)

50
40

51
2

B
oo

t l
oa

de
r

64
16

M
�

32
/1

6/
8

1
2

2
14

4
P

Q
F

P
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)
–4

0°
 to

 1
25

°
(e

xt
en

de
d)

–5
5°

 to
 1

25
°

(m
ili

ta
ry

)

60
33

51
2

B
oo

t l
oa

de
r

64
16

M
�

32
/1

6/
8

1
2

2
14

4
P

Q
F

P
0°

 to
 8

5°
 (

co
m

m
er

ci
al

)

Typical Applications

1-7Introduction

1.2 Typical Applications

The TMS320 family’s versatility, realtime performance, and multiple functions
offer flexible design approaches in a variety of applications, which are shown
in Table 1–2.

Table 1–2. Typical Applications of the TMS320 Family

General-Purpose DSP Graphics/Imaging Instrumentation

Digital filtering
Convolution
Correlation
Hilbert transforms
Fast Fourier transforms
Adaptive filtering
Windowing
Waveform generation

3-D transformations rendering
Robot vision
Image transmission/compression
Pattern recognition
Image enhancement
Homomorphic processing
Workstations
Animation/digital map
Bar-code scanners

Spectrum analysis
Function generation
Pattern matching
Seismic processing
Transient analysis
Digital filtering
Phase-locked loops

Voice/Speech Control Military

Voice mail
Speech vocoding
Speech recognition
Speaker verification
Speech enhancement
Speech synthesis
Text-to-speech
Neural networks

Disk control
Servo control
Robot control
Laser printer control
Engine control
Motor control
Kalman filtering

Secure communications
Radar processing
Sonar processing
Image processing
Navigation
Missile guidance
Radio frequency modems
Sensor fusion

Telecommunications Automotive

Echo cancellation
ADPCM transcoders
Digital PBXs
Line repeaters
Channel multiplexing
Modems
Adaptive equalizers
DTMF encoding/decoding
Data encryption

FAX
Cellular telephones
Speaker phones
Digital speech
Interpolation (DSI)
X.25 packet switching
Video conferencing
Spread spectrum
Communications

Engine control
Vibration analysis
Antiskid brakes
Anticollision
Adaptive ride control
Global positioning
Navigation
Voice commands
Digital radio
Cellular telephones

Consumer Industrial Medical

Radar detectors
Power tools
Digital audio/TV
Music synthesizer
Toys and games
Solid-state answering
Machines

Robotics
Numeric control
Security access
Power line monitors
Visual inspection
Lathe control
CAM

Hearing aids
Patient monitoring
Ultrasound equipment
Diagnostic tools
Prosthetics
Fetal monitors
MR imaging

Introduction

 1-8

2-1

Architectural Overview

This chapter provides an architectural overview of the ’C3x processor. It includes
a discussion of the CPU, memory interface, boot loader, peripherals, and direct
memory access (DMA) of the ’C3x processor.

Topic Page

2.1 Overview 2-2.

2.2 Central Processing Unit (CPU) 2-6.

2.3 CPU Primary Register File 2-9.

2.4 Other Registers 2-12.

2.5 Memory Organization 2-13.

2.6 Internal Bus Operation 2-18.

2.7 External Memory Interface 2-19.

2.8 Interrupts 2-21.

2.9 Peripherals 2-22.

2.10 Direct Memory Access (DMA) 2-24.

2.11 TMS320C30, TMS320C31, and TMS320C32 Differences 2-26.

Chapter 2

Overview

 2-2

2.1 Overview

The ’C3x architecture responds to system demands that are based on sophisti-
cated arithmetic algorithms that emphasize both hardware and software solu-
tions. High performance is achieved through the precision and wide dynamic
range of the floating-point units, large on-chip memory, a high degree of parallel-
ism, and the DMA controller.

Figure 2–1 through Figure 2–3 show functional block diagrams of the ’C30,
’C31, and ’C32 architectures, respectively.

Overview

2-3Architectural Overview

Figure 2–1. TMS320C30 Block Diagram

SHZ

ARAU0 ARAU1

DISP0, IR0, IR1

ÉÉ
ÉÉ
ÉÉ
ÉÉ

ALU

32-bit
barrel
shifter

PC

RAM
block 1

(1K × 32)

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉ
ÉÉÉ

ROM
block

(4K × 32)

Cache
(64 × 32)

RAM
block 0

(1K × 32)

RDY
HOLD

HOLDA
STRB

R/W
D31–D0
A23–A0

RESET

IR

CPU1

REG1

REG2

É
É
É
É

É

É
ÉÉ
É
É
É

XRDY
MSTRB
IOSTRBÉÉÉ

ÉÉÉ
XR/W
XD31–XD0
XA12–XA0

40

32

32

32

32
32

32

32

24

24

24

24

BK

Extended-
precision
registers
(R7–R0)

Auxiliary
registers

(AR0–AR7)

Other
 registers

(12)

40

40

40

40

Multiplier

DMA controller

Global-control
register

Source-address
register

Destination-
address
register

Serial port 0

Port-control
register

R/X timer
register

Data-transmit
register

Data-receive
register

FSX0
DX0
CLKX0
FSR0
DR0
CLKR0

Serial port 1

ÉÉÉ
ÉÉÉ

R/Xtimer
registerÉÉÉÉÉ

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉ
Data-transmit

register

Data-receive
register

FSX1
DX1
CLKX1

FSR1

DR1
CLKR1

Timer0

Global-control
register

Timer-period
register

Timer-counter
register

TCLK0

Timer1

Global-control
register

Timer-period
register

Timer-counter
register

TCLK1

Port control

Primary

Expansion

Transfer-
counter
register

PDATA bus

PADDR bus

DDATA bus

DADDR1 bus

DADDR2 bus

DMADATA bus

DMAADDR bus

24

40

32 32 24 24 32 24

INT3–0
IACK

MC/MP
XF(1,0)

VDD(3-0)
IODVDD(1,0)
ADVDD(1,0)

PDVDD
DDVDD(1,0)

MDVDD
VSS(3-0)

DVSS(3–0)
CVSS(1,0)

IVSS
VBBP
SUBS

X1
X2/CLKIN

H1
H3

EMU6-0
RSV10–0

32 24 24 24 2432 32 32

CPU2

32 32 40 40

M
ul

tip
le

xe
r

Multiplexer

C
on

tr
ol

le
r

C
P

U
1

R
E

G
IS

T
E

R
 1

R
E

G
IS

T
E

R
2

P
er

ip
he

ra
l D

at
a

B
us

P
er

ip
he

ra
l A

dd
re

ss
 B

us

M
ul

tip
le

xe
r

ÉÉÉÉ
ÉÉÉÉ

Port-control
register

Legend:

PDATA bus – program data bus

PADDR bus – program address bus

DDATA bus – data data bus

DADDR1 bus – data address 1 bus

DADDR2 bus – data address 2 bus

Overview

 2-4

Figure 2–2. TMS320C31 Block Diagram

32-bit
barrel
shifter

ALU

40

24

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

ÉÉÉ
ÉÉÉ

Boot
loader

Cache
(64 × 32)

RAM
block 0

(1K × 32)

RAM
block 1

(1K × 32)

RDY

HOLD

HOLDA

STRB

R / W

D31– D0

A23 – A0

RESET

IR

PC CPU1

REG1

REG2

Multiplexer

40

32

32

32

32
32

32

32

24

24

24

24

BKARAU0 ARAU1

DISP0, IR0, IR1

Extended-
precision
registers
(R7–R0)

Auxiliary
registers

(AR0 – AR7)

Other
registers

(12)

40

40
40

Multiplier

DMA controller

Global-control
register

Source-address
register

Destination-
address
register

Serial port 0

Serial-port control
register

Receive/transmit
timer register

Data-transmit
register

Data-receive
register

FSX0

DX0

CLKX0

FSR0

DR0

CLKR0

Timer0

Global-control
register

Timer-period
register

Timer-counter
register

TCLK0

Timer1

Global-control
register

Timer-period
register

Timer-counter
register

TCLK1

Port Control

Primary STRB-
control register

Transfer-
counter
register

PDATA bus

DDATA bus

DADDR1 bus

DADDR2 bus

DMADATA bus

DMAADDR bus

24

40

32 32 24 24 32

INT(3 – 0)

IACK

MCBL / MP

XF(1,0)

VDD(19 – 0)

VSS(24 – 0)

X1

X2 / CLKIN

H1

H3

EMU(3 – 0)

32 24 24 24 2432 32 32

CPU2

32 32 40 40

M
U

X

C
on

tr
ol

le
r

P
er

ip
he

ra
l D

at
a

B
us

P
er

ip
he

ra
l A

dd
re

ss
 B

us

C
P

U
1

R
E

G
1

R
E

G
2

M
ul

tip
le

xe
r

SHZ

M
ul

tip
le

xe
r

PADDR bus

Legend:

PDATA bus – program data bus

PADDR bus – program address bus

DDATA bus – data data bus

DADDR1 bus – data address 1 bus

DADDR2 bus – data address 2 bus

Overview

2-5Architectural Overview

Figure 2–3. TMS320C32 Block Diagram

24

24

40

Destination-address register

Global-control
register

Timer0

Timer-period
register

Timer-counter
register

Timer-counter
register

Global-control
register

ÉÉÉÉ
ÉÉÉÉ

Serial-port
control register

Destination register

Source-address register

Transfer-counter rregister

ÉÉÉ
ÉÉÉ

Boot
ROM

Program
cache

(64 × 32)

RAM
block 0

(256 × 32)

RAM
block 1

(256 × 32)

IR

PC

CPU1

REG1

REG2

Multiplexer

40

32

32

32

32
32

32

32

24

24

24

BKARAU0 ARAU1

DISP0, IR0, IR1

Extended-
precision
registers
(R0–R7)

Auxiliary
registers

(AR0–AR7)

Other
registers

(12)

40

40

40

40

Multiplier

32-bit
barrel
shifter

ALU

External
memory
interface

Serial port

ÉÉÉÉData-transmit
register

Data-receive
register

FSX0
DX0
CLKX0
FSR0
DR0
CLKR0

TCLK0

Timer1

Timer-period
register

TCLK1

PDATA bus

PADDR bus

DDATA bus

DADDR1 bus

DADDR2 bus

DMADATA bus

40

32 24 24 24 2432 32 32

CPU2

32 32 40

ÉÉÉÉÉ
ÉÉÉÉÉ

Receive/transmit
(R/X) timer register

C
on

tr
ol

le
r

C
P

U
1

R
E

G
1

R
E

G
2

DMAADDR bus

STRB1 control reg.

IOSTRB control reg.

STRB1

IOSTRB

STRB0

RESET
INT(3-0)

IACK
XF(1,0)

H1
H3

MCBL / MP
CLKIN

CVSS(6-0)
DVSS(6-0)
IVSS(3-9)

DVDD(11-3)
VDDL(7-0)
VSSL(5-0)

VSUBS
SHZ

EMU0–3

32

M
ul

tip
le

xe
r

A23 – A0

D31 – D0

R / W

RDY

HOLD

HOLDA

PRGW

STRB0_B3/A–1

STRB0_B2/A–2
STRB0_B1
STRB0_B0

IOSTRB

STRB1_B3/A–1

STRB1_B2/A–2
STRB1_B1
STRB1_B0

Source-address register

Multiplexer

Transfer-counter

Global-control register

Global-control register

DMA channel 1

DMA channel 0

DMA controller

STRB0 control reg.

P
er

ip
he

ra
l a

dd
re

ss
 b

us

P
er

ip
he

ra
l d

at
a

bu
s

Legend:

PDATA bus – program data bus

PADDR bus – program address bus

DDATA bus – data data bus

DADDR1 bus – data address 1 bus

DADDR2 bus – data address 2 bus

Central Processing Unit (CPU)

 2-6

2.2 Central Processing Unit (CPU)

The ’C3x devices (’C30, ’C31, and ’C32) have a register-based CPU architec-
ture. The CPU consists of the following components:

� Floating-point/integer multiplier
� Arithmetic logic unit (ALU)
� 32-bit barrel shifter
� Internal buses (CPU1/CPU2 and REG1/REG2)
� Auxiliary register arithmetic units (ARAUs)
� CPU register file

Figure 2–4 shows a diagram of the various CPU components.

Central Processing Unit (CPU)

2-7Architectural Overview

Figure 2–4. Central Processing Unit (CPU)

Multiplexer

Multiplier
32-bit barrel

shifter

Extended-
precision
registers
(R0–R7)

Disp†, IR0, IR1

ARAU0 ARAU1

Auxiliary
registers

(AR0–AR7)

Other
registers

(12)

32 32 40 40

40

40

40

40

40

32

24

24

32

32

32

32

24

24

32

32

BK

40
ALU

DADDR1 bus

DADDR2 bus

DDATA bus

CPU1 bus

CPU2 bus

REG1 bus

REG2 bus

R
E

G
1

bu
s

C
P

U
1

bu
s

R
E

G
2

bu
s

D
A

D
D

R
2

 b
us

D
A

D
D

R
1

bu
s

† Disp = an 8-bit integer displacement carried in a program-control instruction

Central Processing Unit (CPU)

 2-8

2.2.1 Floating-Point/Integer Multiplier

The multiplier performs single-cycle multiplications on 24-bit integer and 32-bit
floating-point values. The ’C3x implementation of floating-point arithmetic allows
for floating-point or fixed-point operations at speeds up to 33-ns per instruction
cycle. To gain even higher throughput, you can use parallel instructions to perform
a multiply and an ALU operation in a single cycle.

When the multiplier performs floating-point multiplication, the inputs are 32-bit
floating-point numbers, and the result is a 40-bit floating-point number. When
the multiplier performs integer multiplication, the input data is 24 bits and yields
a 32-bit result. See Chapter 5, Data Formats and Floating-Point Operation, for
detailed information.

2.2.2 Arithmetic Logic Unit (ALU) and Internal Buses

The ALU performs single-cycle operations on 32-bit integer, 32-bit logical,
and 40-bit floating-point data, including single-cycle integer and floating-
point conversions. Results of the ALU are always maintained in 32-bit integer
or 40-bit floating-point formats. The barrel shifter is used to shift up to 32 bits
left or right in a single cycle. See Chapter 5, Data Formats and Floating-Point
Operation, for detailed information.

Four internal buses, CPU1, CPU2, REG1, and REG2 carry two operands from
memory and two operands from the register file, allowing parallel multiplies
and adds/subtracts on four integer or floating-point operands in a single cycle.

2.2.3 Auxiliary Register Arithmetic Units (ARAUs)

Two auxiliary register arithmetic units (ARAU0 and ARAU1) can generate two
addresses in a single cycle. The ARAUs operate in parallel with the multiplier
and ALU. They support addressing with displacements, index registers (IR0 and
IR1), and circular and bit-reversed addressing. See Chapter 6, Addressing
Modes, for more information.

CPU Primary Register File

2-9Architectural Overview

2.3 CPU Primary Register File

The ’C3x provides 28 registers in a multiport register file that is tightly coupled
to the CPU. Table 2–1 lists the register names and functions.

All of the primary registers can be operated upon by the multiplier and ALU and
can be used as general-purpose registers. The registers also have some special
functions. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight auxiliary
registers support a variety of indirect addressing modes and can be used as
general-purpose 32-bit integer and logical registers. The remaining registers
provide such system functions as addressing, stack management, processor
status, interrupts, and block repeat. See Chapter 3, CPU Registers, for more
information.

Table 2–1. Primary CPU Registers
Register
Name Assigned Function Section Page

R0 Extended-precision register 0 3.1.1 3-3

R1 Extended-precision register 1 3.1.1 3-3

R2 Extended-precision register 2 3.1.1 3-3

R3 Extended-precision register 3 3.1.1 3-3

R4 Extended-precision register 4 3.1.1 3-3

R5 Extended-precision register 5 3.1.1 3-3

R6 Extended-precision register 6 3.1.1 3-3

R7 Extended-precision register 7 3.1.1 3-3

AR0 Auxiliary register 0 3.1.2 3-4

AR1 Auxiliary register 1 3.1.2 3-4

AR2 Auxiliary register 2 3.1.2 3-4

AR3 Auxiliary register 3 3.1.2 3-4

AR4 Auxiliary register 4 3.1.2 3-4

AR5 Auxiliary register 5 3.1.2 3-4

AR6 Auxiliary register 6 3.1.2 3-4

AR7 Auxiliary register 7 3.1.2 3-4

DP Data-page pointer 3.1.3 3-4

IR0 Index register 0 3.1.4 3-4

CPU Primary Register File

 2-10

Table 2–1. Primary CPU Registers (Continued)

PageSectionAssigned Function
Register
Name

IR1 Index register 1 3.1.4 3-4

BK Block-size register 3.1.5 3-4

SP System-stack pointer 3.1.6 3-4

ST Status register 3.1.7 3-5

IE CPU/DMA interrupt-enable regis-
ter

3.1.8 3-9

IF CPU interrupt flag 3.1.9 3-11

IOF I/O flag 3.1.10 3-16

RS Repeat start-address 3.1.11 3-17

RE Repeat end-address 3.1.11 3-17

RC Repeat counter 3.1.11 3-17

The extended-precision registers (R7–R0) can store and support operations
on 32-bit integers and 40-bit floating-point numbers. Any instruction that assumes
the operands are floating-point numbers uses bits 39–0. If the operands are
either signed or unsigned integers, only bits 31–0 are used; bits 39–32 remain
unchanged. This is true for all shift operations. See Chapter 5, Data Formats and
Floating-Point Operation, for extended-precision register formats for floating-
point and integer numbers.

The 32-bit auxiliary registers (AR7–AR0) are accessed by the CPU and
modified by the two ARAUs. The primary function of the auxiliary registers is
the generation of 24-bit addresses. They also can be used as loop counters
or as 32-bit general-purpose registers that are modified by the multiplier and
ALU. See Chapter 6, Addressing Modes, for detailed information and examples
of the use of auxiliary registers in addressing.

The data-page pointer (DP) is a 32-bit register. The eight least significant bits
(LSBs) of the data-page pointer are used by the direct addressing mode as a
pointer to the page of data being addressed. Data pages are 64K words long,
with a total of 256 pages.

The 32-bit index registers (IR0, IR1) contain the value used by the ARAU to
compute an indexed address. See Chapter 6, Addressing Modes, for examples
of the use of index registers in addressing.

CPU Primary Register File

2-11Architectural Overview

The ARAU uses the 32-bit block size register (BK) in circular addressing to
specify the data block size.

The system-stack pointer (SP) is a 32-bit register that contains the address
of the top of the system stack. The SP always points to the last element pushed
onto the stack. A push performs a preincrement; a pop performs a postdecre-
ment of the system-stack pointer. The SP is manipulated by interrupts, traps,
calls, returns, and the PUSH and POP instructions. See Section 6.10, System
and User Stack Management, on page 6-29, for more information.

The status register (ST) contains global information relating to the state of the
CPU. Operations usually set the condition flags of the status register according
to whether the result is 0, negative, etc. These include register load and store
operations as well as arithmetic and logical functions. When the status register
is loaded, however, a bit-for-bit replacement is performed with the contents of
the source operand, regardless of the state of any bits in the source operand.
Following a load, the contents of the status register are identical to the contents
of the source operand. This allows the status register to be easily saved and
restored. See Table 3–2 on page 3-6 for a list and definitions of the status regis-
ter bits.

The CPU/DMA interrupt-enable register (IE) is a 32-bit register. The CPU
interrupt-enable bits are in locations 10–0. The DMA interrupt-enable bits are
in locations 26–16. A 1 in a CPU/DMA interrupt-enable register bit enables the
corresponding interrupt. A 0 disables the corresponding interrupt. See Sec-
tion 3.1.8 on page 3-9 for more information.

The CPU interrupt flag register (IF) is also a 32-bit register. A 1 in a CPU
interrupt flag register bit indicates that the corresponding interrupt is set. A
0 indicates that the corresponding interrupt is not set. See Section 3.1.9 on
page 3-11 for more information.

The I/O flag register (IOF) controls the function of the dedicated external pins,
XF0 and XF1. These pins may be configured for input or output and may also
be read from and written to. See Section 3.1.10 on page 3-16 for more informa-
tion.

The repeat-counter (RC) is a 32-bit register that specifies the number of times
to repeat a block of code when performing a block repeat. When the processor
is operating in the repeat mode, the 32-bit repeat start-address register (RS)
contains the starting address of the block of program memory to repeat, and
the 32-bit repeat end-address register (RE) contains the ending address of the
block to repeat.

Other Registers

 2-12

2.4 Other Registers

The program-counter (PC) is a 32-bit register containing the address of the
next instruction to fetch. Although the PC is not part of the CPU register file,
it is a register that can be modified by instructions that modify the program flow.

The instruction register (IR) is a 32-bit register that holds the instruction opcode
during the decode phase of the instruction. This register is used by the instruction
decode control circuitry and is not accessible to the CPU.

Memory Organization

2-13Architectural Overview

2.5 Memory Organization

The total memory space of the ’C3x is 16M (million) 32-bit words. Program,
data, and I/O space are contained within this 16M-word address space, allowing
the storage of tables, coefficients, program code, or data in either RAM or
ROM. In this way, memory usage is maximized and memory space allocated
as desired.

2.5.1 RAM, ROM, and Cache

Figure 2–5 shows how the memory is organized on the ’C30. RAM blocks 0
and 1 are each 1K � 32 bits. The ROM block, available only on the ’C30, is
4K � 32 bits. Each RAM and ROM block is capable of supporting two CPU
accesses in a single cycle.

Figure 2–6 shows how the memory is organized on the ’C31. RAM blocks 0
and 1 are each 1K � 32 bits and support two accesses in a single cycle. A boot
loader allows the loading of program and data at reset from 8-, 16-, 32-bit-wide
memories or serial port.

Figure 2–7 shows how the memory is organized on the ’C32. RAM blocks 0
and 1 are each 256 � 32 bits and support two accesses in a single cycle. A
boot loader allows the loading of program and data at reset from 1-, 2-, 4-, 8-,
16-, and 32-bit-wide memories or serial port. The ’C32 enhanced external
memory interface provides the flexibility to address 8-, 16-, or 32-bit data indepen-
dently of the external memory width. The external memory width can be 8-, 16-,
or 32-bits wide.

The ’C3x’s separate program, data, and DMA buses allow for parallel program
fetches, data reads and writes, and DMA operations. For example, the CPU can
access two data values in one RAM block and perform an external program
fetch in parallel with the DMA controller loading another RAM block, all within
a single cycle.

Memory Organization

 2-14

Figure 2–5. Memory Organization of the TMS320C30

RDY
HOLD

HOLDA
STRB

R/W
D31–D0
A23–A0

XRDY
MSTRB
IOSTRB
XR/W
XD31–XD0
XA12–XA0

DMAADDR bus

DMADATA bus

DADDR2 bus

DADDR1 bus

DDATA bus

PADDR bus

PDATA bus

Program counter/
instruction register CPU

DMA
controller

32 24 24 32 24 24 32

32 24 32 24 24 32 24

32

P
er

ip
he

ra
l b

us

M
ul

tip
le

xe
r

M
ul

tip
le

xe
r

Cache
(64 32)

RAM
block 0

(1K 32)

RAM
block 1

(1K 32)

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ROM block
(4K 32)

Memory Organization

2-15Architectural Overview

Figure 2–6. Memory Organization of the TMS320C31

RDY
HOLD

HOLDA
STRB

R/W
D31–D0
A23–A0

DMAADDR bus

DMADATA bus

DADDR2 bus

DADDR1 bus

DDATA bus

PADDR bus

PDATA bus

Program counter/
instruction register CPU

DMA
controller

32 24 24 32 24 24 32

32 24 32 24 24 32 24

32

P
er

ip
he

ra
l b

us

M
ul

tip
le

xe
r

M
ul

tip
le

xe
r

Cache
(64 � 32)

RAM
block 0

(1K � 32)

RAM
block 1

(1K � 32)

ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

Boot ROM

STRB0_B3/A-1

HOLD
HOLDA
PRGW

R/W
D31–D0
A23–A0

DMAADDR bus

DMADATA bus

DADDR2 bus

DADDR1 bus

DDATA bus

PADDR bus

PDATA bus

Program counter/
instruction register CPU

DMA
controller

32 24 24 32 24 24 32

32 24 32 24 24 32 24

32

P
er

ip
he

ra
l b

us

M
ul

tip
le

xe
r

M
ul

tip
le

xe
r

Cache
(64 � 32)

RAM
block 0

(256 � 32)

RAM
block 1

(256 � 32) Boot ROM

Enhanced
external
memory
interface

STRB0_B2/A-2
STRB0_B1
STRB0_B0

STRB1_B3/A-1
STRB1_B2/A-2

STRB1_B1
STRB1_B0

IOSTRB

Memory Organization

 2-16

Figure 2–7. Memory Organization of the TMS320C32

A 64 � 32-bit instruction cache is provided to store often-repeated sections
of code, which greatly reduces the number of off-chip accesses. This allows
for code to be stored off chip in slower, lower-cost memories. The external
buses are also freed for use by the DMA, external memory fetches, or other
devices in the system.

See Chapter 4, Memory and the Instruction Cache, for more information.

Memory Organization

2-17Architectural Overview

2.5.2 Memory Addressing Modes

The ’C3x supports a base set of general-purpose instructions as well as arithmetic-
intensive instructions that are particularly suited for digital signal processing and
other numeric-intensive applications. See Chapter 6, Addressing Modes, for more
information.

Four groups of addressing modes are provided on the ’C3x. Each group uses
two or more of several different addressing types. The following list shows the
addressing modes with their addressing types.

� General instruction addressing modes:

� Register. The operand is a CPU register.

� Short immediate. The operand is a 16-bit (short) or 24-bit (long) imme-
diate value.

� Direct. The operand is the contents of a 24-bit address formed by
concatenating the 8 bits of data-page pointer and a 16-bit operand.

� Indirect. An auxiliary register indicates the address of the operand.

� 3-operand instruction addressing modes:

� Register. Same as for general addressing mode.

� Indirect. Same as for general addressing mode.

� Parallel instruction addressing modes:

� Register. The operand is an extended-precision register.

� Indirect. Same as for general addressing mode.

� Branch instruction addressing modes:

� Register. Same as for general addressing mode.

� PC-relative. A signed 16-bit displacement or a 24-bit displacement is
added to the PC.

Internal Bus Operation

 2-18

2.6 Internal Bus Operation

Much of the ’C3x’s high performance is due to internal busing and parallelism.
Separate buses allow for parallel program fetches, data accesses, and DMA
accesses:

� Program buses: PADDR and PDATA
� Data buses: DADDR1, DADDR2, and DDATA
� DMA buses: DMAADDR and DMADATA

These buses connect all of the physical spaces (on-chip memory, off-chip
memory, and on-chip peripherals) supported by the ’C3x. Figure 2–5,
Figure 2–6, and Figure 2–7 show these internal buses and their connections
to on-chip and off-chip memory blocks.

The program counter (PC) is connected to the 24-bit program address bus
(PADDR). The instruction register (IR) is connected to the 32-bit program data
bus (PDATA). These buses can fetch a single instruction word every machine
cycle.

The 24-bit data address buses (DADDR1 and DADDR2) and the 32-bit data
data bus (DDATA) support two data-memory accesses every machine cycle.
The DDATA bus carries data to the CPU over the CPU1 and CPU2 buses. The
CPU1 and CPU2 buses can carry two data-memory operands to the multiplier,
ALU, and register file every machine cycle. Also internal to the CPU are register
buses REG1 and REG2, which can carry two data values from the register file
to the multiplier and ALU every machine cycle. Figure 2–4 shows the buses
internal to the CPU section of the processor.

The DMA controller is supported with a 24-bit address bus (DMAADDR) and
a 32-bit data bus (DMADATA). These buses allow the DMA to perform memory
accesses in parallel with the memory accesses occurring from the data and
program buses.

External Memory Interface

2-19Architectural Overview

2.7 External Memory Interface

The ’C30 provides two external interfaces: the primary bus and the expansion
bus. The ’C31 provides one external interface: the primary bus. The ’C32 pro-
vides one enhanced external interface with three independent multi-function
strobes. These buses consist of a 32-bit data bus and a set of control signals. The
primary and enhanced memory buses have a 24-bit address bus, whereas the
expansion bus has a 13-bit address bus. These buses address external program/
data memory or I/O space. The buses also have external RDY signals for wait-
state generation. You can insert additional wait states under software control.
Chapter 9, External Memory Interface, covers external bus operation.

The ’C3x family was designed for 32-bit instructions and 32-bit data operations.
This architecture has many advantages, including a high degree of parallelism
and provisions for a C compiler. However, the ’C30 and ’C31 require a 32-bit-wide
external memory even when the data requires only 8- or 16-bit-wide memories.
The ’C32 enhanced external memory interface overcomes this limitation by pro-
viding the flexibility to address 8-, 16-, or 32-bit data independently of the exter-
nal memory width. In this way, the chip count and the size of external memory
is reduced. The number of memory chips can be further reduced by the ’C32’s
ability to allow code execution from 16- or 32-bit-wide memories. The ’C32
memory interface also reduces the total amount of RAM by allowing the physical
data memory to be 8, 16, or 32 bits wide. Internally, the ’C32 has a 32-bit archi-
tecture. So you can treat the ’C32 as a 32-bit device regardless of the physical
external memory width. The external memory interface handles the conversion
between external memory width and ’C32 internal 32-bit architecture.

2.7.1 TMS320C32 16- and 32-Bit Program Memory

The ’C32 executes code from either 16- or 32-bit-wide memories. When
connected to 32-bit memories, ‘C32 program execution is identical to that
of the ’C31. When connected to 16-bit zero wait-state memory, the ’C32
takes two instruction cycles to fetch a single 32-bit instruction. During the
first cycle, the ’C32 fetches the lower 16 bits. During the second cycle, the
’C32 fetches the upper 16 bits and concatenates them with the previously
fetched lower 16 bits. This process occurs entirely within the memory inter-
face and is transparent to you. An external pin, PRGW, dictates the external
program memory width.

External Memory Interface

 2-20

2.7.2 TMS320C32 8-, 16-, and 32-Bit Data Memory

The ’C32 external memory interface can load and store 8-, 16-, or 32-bit quanti-
ties into external memory and convert them into an internally-equivalent 32-bit
representation. The external memory interface accomplishes this without
changing the CPU instruction set. Figure 2–8 shows the supported external
memory widths, data types and sizes for zero wait-state memory and the asso-
ciated cycle count.

Figure 2–8. TMS320C32-Supported Data Types and Sizes and External Memory Widths
ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory Width
ÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

8 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

16 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

32 ÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
Data ÁÁ
ÁÁ

8ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
Type ÁÁ
ÁÁ

16ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
Size ÁÁ
ÁÁ

32ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2-cycle read ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1-cycle read ÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁ
ÁÁ

To access 8-, 16-, or 32-bit data quantities (types) from 8-, 16-, or 32-bit-wide
memory, the memory interface uses either strobe STRB0 or STRB1, depending
on the address location within the memory map. Each strobe consists of four pins
for byte enables and/or additional addresses. For a 32-bit memory interface, all
four pins are used as strobe byte-enable pins. These strobe byte-enable pins
select one or more bytes of the external memory. For a 16-bit memory interface,
the ’C32 uses one of these pins as an additional address pin, while using two
pins as strobe byte-enable pins. For an 8-bit memory interface, the ’C32 uses
two of these pins as additional address pins while using one pin as strobe pin.
The ’C32 manipulates the behavior of these pins according to the contents of
the bus control registers (one control register per strobe). By setting a few bit
fields in this register, you indicate the data-type size and external memory width.

Interrupts

2-21Architectural Overview

2.8 Interrupts

The ’C3x supports four external interrupts (INT3–INT0), a number of internal
interrupts, and a nonmaskable external RESET signal. These can be used to
interrupt either the DMA or the CPU. When the CPU responds to the interrupt,
the IACK pin can be used to signal an external interrupt acknowledge. Section
7.5, Reset Operation, on page 7-21 covers RESET and interrupt processing.

The ’C30 and ’C31 external interrupts are level-triggered. To reduce external
logic and simplify the interface, the ’C32 external interrupts are edge- and level-
or level-only triggered. The triggering is user-selectable through a bit in the
status register. See Section 3.1.7, Status Register (ST), for more information.

Two external I/O flags, XF0 and XF1, can be configured as input or output pins
under software control. These pins are also used by the interlocked operations
of the ’C3x. The interlocked-operations instruction group supports multiproces-
sor communication. See Section 7.4, Interlocked Operations, on page 7-13 for
examples.

Peripherals

 2-22

2.9 Peripherals

All ’C3x peripherals are controlled through memory-mapped registers on a dedi-
cated peripheral bus. This peripheral bus is composed of a 32-bit data bus and
a 24-bit address bus. This peripheral bus permits straightforward communica-
tion to the peripherals. The ’C3x peripherals include two timers and two serial
ports (only one serial port and one DMA coprocessor are available on the ’C31
and one serial port and two DMA coprocessor channels on the ’C32).
Figure 2–9 shows these peripherals with their associated buses and signals.
See Chapter 12, Peripherals, for more information.

Figure 2–9. Peripheral Modules

ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉÉÉ

Serial port 0

Port-control register

R/X timer register

Data-transmit register

Data-receive register

Timer0

Global-control register

Timer-period register

Timer-counter register

Timer1

Global-control register

Timer-period register

Timer-counter register

FSX0

DX0

CLKX0

FSR0

DR0

CLKR0

FSX1

DX1

CLKX1

FSR1

DR1

CLKR1

TCLK0

TCLK1

ÉÉÉ
ÉÉÉ

Available on ’C30

Serial port 1

Port-control register

R/X timer register

Data-transmit register

Data-receive register

Memory
space

P
er

ip
he

ra
l a

dd
re

ss
 b

us

P
er

ip
he

ra
l d

at
a

bu
s

Peripherals

2-23Architectural Overview

2.9.1 Timers

The two timer modules are general-purpose 32-bit timer/event counters with
two signaling modes and internal or external clocking. They can signal internally
to the ’C3x or externally to the outside world at specified intervals or they can
count external events. Each timer has an I/O pin that can be used as an input
clock to the timer, as an output signal driven by the timer, or as a general-purpose
I/O pin. See Chapter 12, Peripherals, for more information about timers.

2.9.2 Serial Ports

The bidirectional serial ports (two on ’C30, one each on the ’C31 and ’C32) are
totally independent. They are identical to a complementary set of control registers
that control each port. Each serial port can be configured to transfer 8, 16, 24,
or 32 bits of data per word. The clock for each serial port can originate either
internally or externally. An internally generated divide-down clock is provided.
The pins are configurable as general-purpose I/O pins. The serial ports can also
be configured as timers. A special handshake mode allows ’C3x devices to
communicate over their serial ports with guaranteed synchronization.

Direct Memory Access (DMA)

 2-24

2.10 Direct Memory Access (DMA)

The on-chip DMA controller can read from or write to any location in the
memory map without interfering with the CPU operation. The ’C3x can inter-
face to slow, external memories and peripherals without reducing throughput
to the CPU. The DMA controller contains its own address generators, source
and destination registers, and transfer counter. Dedicated DMA address and
data buses minimize conflicts between the CPU and the DMA controller. A
DMA operation consists of a block or single-word transfer to or from memory.
See Section 12.3, DMA Controller, on page 12-48 for more information.
Figure 2–10 shows the DMA controller and its associated buses.

The ’C30 and ’C31 DMA coprocessors have one channel, while the ’C32 DMA
coprocessor has two channels. Each channel of the ’C32 DMA coprocessor is
equivalent to the ’C30/31 DMA with the addition of user-configurable priorities.
Because the DMA and CPU have distinct buses on the ’C3x devices, they can
operate independently of each other. However, when the CPU and DMA access
the same on-chip or external resources, the bandwidth can be exceeded and
priorities must be established. The ’C30 and ’C31 assign highest priority to the
CPU. The ’C32 DMA coprocessor provides more flexibility by allowing you to
choose one of the following priorities:

� CPU: For all resource conflicts, the CPU has priority over the DMA.

� DMA: For all resource conflicts, the DMA has priority over the CPU.

� Rotating: When the CPU and DMA have a resource conflict during con-
secutive instruction cycles, the CPU is granted priority. On the following
cycle, the DMA is granted priority. Alternate access continues as long as
the CPU and DMA requests conflict in consecutive instruction cycles.

The DMA/CPU priority is configured by the DMA PRI bit fields of the corresponding
DMA global-control register. See Section 12.3, DMA Controller, on page 12-48 for
a complete description.

Direct Memory Access (DMA)

2-25Architectural Overview

Figure 2–10. DMA Controller

DMAADDR bus

DMADATA bus

DMA controller

Global-control register

Source-address register

Destination-address register

Transfer-counter register

P
er

ip
he

ra
l a

dd
re

ss
 b

us

P
er

ip
he

ra
l d

at
a

bu
s

TMS320C30, TMS320C31, and TMS320C32 Differences

 2-26

2.11 TMS320C30, TMS320C31, and TMS320C32 Differences

Table 2–2 shows the major differences between the ’C32, ’C31, and the ’C30
devices.

TMS320C30, TMS320C31, and TMS320C32 Differences

2-27Architectural Overview

Table 2–2. Feature Set Comparison

Feature ’C30 ’C31 ’C32

External bus Two buses:

� Primary bus:
32-bit data
24-bit address
STRB active for
0h–7FFFFFh and
80A000h–FFFFFFh

� Expansion bus:
32-bit data
13-bit address
MSTRB active for
800000h–801FFFh
IOSTRB active for
804000h–805FFFh

One bus:

32-bit data
24-bit address
STRB active 0h–7FFFFFh
and 80A000h–FFFFFFh

One bus:

� 32-bit data
24-bit address
STRB0 active for
0h–7FFFFFh and
880000h–8FFFFFh;

� 8-, 16-, 32-bit data in
8-, 16-, 32-bit-wide
memory
STRB1 active for
900000h–FFFFFFh;

� 8-, 16-, 32-bit data in
8-, 16-, 32- bit-wide
memory
IOSTRB active for
810000h–82FFFFh

ROM 4k No No

Boot loader No Yes Yes

On-chip RAM 2k
address:
809800h–809FFFh

2k
address:
809800h–809FFFh

512
address:
87FE00h–87FFFFh

DMA 1 channel
CPU greater priority than
DMA

1 channel
CPU greater priority than
DMA

2 channels
Configurable priorities

Serial ports 2 1 1

Timers 2 2 2

Interrupts Level-triggered Level-triggered Level-triggered or com-
bination of edge- and
level-triggered

Interrupt vector
table

Fixed 0–3Fh Microprocessor: 0–3Fh
fixed
Boot loader:
809C1h–809FFFh fixed

Relocatable

Package 208 PQFP
181 PGA

132 PQFP 144 PQFP

Voltage 5 V 5 V and 3.3 V 5 V

Temperature 0° to 85°C (commercial)
–40 to 125°C (extended)
–55 125°C (military)

0° to 85°C (commercial)
–40 to 125°C (extended)
–55 125°C (military)

0° to 85°C (commercial)
–40 to 125°C (extended)
–55 125°C (military)

 2-28

3-1

CPU Registers

The central processing unit (CPU) register file contains 28 registers that can
be operated on by the multiplier and arithmetic logic unit (ALU). Included in the
register file are the auxiliary registers, extended-precision registers, and index
registers.

Three registers in the ’C32 CPU register file have been modified to support new
features (2-channel DMAs, program execution from 16-bit memory width, etc.)
The registers modified in the ’C32 are: the status (ST) register, interrupt-enable
(IE) register, and interrupt flag (IF) register.

Topic Page

3.1 CPU Multiport Register File 3-2.

3.2 Other Registers 3-18.

3.3 Reserved Bits and Compatibility 3-19.

Chapter 3

CPU Multiport Register File

 3-2

3.1 CPU Multiport Register File

The ’C3x provides 28 registers in a multiport register file that is tightly coupled to
the CPU. The program counter (PC) is not included in the 28 registers. All of these
registers can be operated on by the multiplier and the ALU and can be used as
general-purpose 32-bit registers.

Table 3–1 lists the registers’ names and assigned functions of the ’C3x.

Table 3–1. CPU Registers

Register
Symbol

Register
Machine

Value (hex) Assigned Function Name Section Page

R0 00 Extended-precision register 0 3.1.1 3-3

R1 01 Extended-precision register 1 3.1.1 3-3

R2 02 Extended-precision register 2 3.1.1 3-3

R3 03 Extended-precision register 3 3.1.1 3-3

R4 04 Extended-precision register 4 3.1.1 3-3

R5 05 Extended-precision register 5 3.1.1 3-3

R6 06 Extended-precision register 6 3.1.1 3-3

R7 07 Extended-precision register 7 3.1.1 3-3

AR0 08 Auxiliary register 0 3.1.2 3-4

AR1 09 Auxiliary register 1 3.1.2 3-4

AR2 0A Auxiliary register 2 3.1.2 3-4

AR3 0B Auxiliary register 3 3.1.2 3-4

AR4 0C Auxiliary register 4 3.1.2 3-4

AR5 0D Auxiliary register 5 3.1.2 3-4

AR6 0E Auxiliary register 6 3.1.2 3-4

AR7 0F Auxiliary register 7 3.1.2 3-4

DP 10 Data-page pointer 3.1.3 3-4

IR0 11 Index register 0 3.1.4 3-4

IR1 12 Index register 1 3.1.4 3-4

BK 13 Block-size register 3.1.5 3-4

SP 14 System-stack pointer 3.1.6 3-4

ST 15 Status register 3.1.7 3-5

IE 16 CPU/DMA interrupt-enable 3.1.8 3-9

IF 17 CPU interrupt flags 3.1.9 3-11

IOF 18 I/O flags 3.1.10 3-16

RS 19 Repeat start-address 3.1.11 3-17

RE 1A Repeat end-address 3.1.11 3-17

RC 1B Repeat counter 3.1.11 3-17

CPU Multiport Register File

3-3CPU Registers

The registers also have some special functions for which they are particularly
appropriate. For example, the eight extended-precision registers are especially
suited for maintaining extended-precision floating-point results. The eight auxiliary
registers support a variety of indirect addressing modes and can be used as
general-purpose 32-bit integer and logical registers. The remaining registers
provide system functions, such as addressing, stack management, processor
status, interrupts, and block repeat. See Chapter 6, Addressing Modes, for more
information.

3.1.1 Extended-Precision Registers (R7–R0)

The eight extended-precision registers (R7–R0) can store and support operations
on 32-bit integer and 40-bit floating-point numbers. These registers consist of two
separate and distinct regions:

� Bits 39–32: dedicated to storage of the exponent (e) of the floating-point
number.

� Bits 31–0: store the mantissa of the floating-point number:

� Bit 31: sign bit (s)
� Bits 30–0: the fraction (f)

Any instruction that assumes the operands are floating-point numbers uses
bits 39–0. Figure 3–1 illustrates the storage of 40-bit floating-point numbers
in the extended-precision registers.

Figure 3–1. Extended-Precision Register Floating-Point Format

FractionSignExponent

39 32 31 30 0

Mantissa

For integer operations, bits 31–0 of the extended-precision registers contain
the integer (signed or unsigned). Any instruction that assumes the operands
are either signed or unsigned integers uses only bits 31–0. Bits 39–32 remain
unchanged. This is true for all shift operations. The storage of 32-bit integers
in the extended-precision registers is shown in Figure 3–2.

Figure 3–2. Extended-Precision Register Integer Format

Signed or unsigned integerUnchanged

39 32 31 0

CPU Multiport Register File

 3-4

3.1.2 Auxiliary Registers (AR7–AR0)

The CPU can access the eight 32-bit auxiliary registers (AR7–AR0), and the
two auxiliary register arithmetic units (ARAUs) can modify them. The primary
function of the auxiliary registers is the generation of 24-bit addresses. However,
they can also operate as loop counters in indirect addressing or as 32-bit general-
purpose registers that can be modified by the multiplier and ALU. See Chap-
ter 6, Addressing Modes, for more information.

3.1.3 Data-Page Pointer (DP)

The data-page pointer (DP) is a 32-bit register that is loaded using the load data
page (LDP) instruction (see Chapter 13, Assembly Language Instructions). The
eight LSBs of the data-page pointer are used by the direct addressing mode as a
pointer to the page of data being addressed (see Section 6.3, Direct Addressing,
on page 6-4). Data pages are 64K-words long, with a total of 256 pages. Bits 31–8
are reserved; you must always keep these set to 0 (cleared).

3.1.4 Index Registers (IR0, IR1)

The 32-bit index registers (IR0 and IR1) are used by the ARAU for indexing
the address. See Chapter 6, Addressing Modes, for more information.

3.1.5 Block Size (BK) Register

The 32-bit block size register (BK) is used by the ARAU in circular addressing to
specify the data block size. See Section 6.7, Circular Addressing, on page 6-21
for more information.

3.1.6 System-Stack Pointer (SP)

The system-stack pointer (SP) is a 32-bit register that contains the address of the
top of the system stack. The SP always points to the last element pushed onto
the stack. The SP is manipulated by interrupts, traps, calls, returns, and the
PUSH, PUSHF, POP, and POPF instructions. Stack pushes and pops perform
preincrements and postdecrements on all 32 bits of the SP. However, only the
24 LSBs are used as an address. See Section 6.10, System and User Stack
Management, on page 6-29 for more information.

CPU Multiport Register File

3-5CPU Registers

3.1.7 Status (ST) Register

The status (ST) register contains global information about the state of the CPU.
Operations usually set the condition flags of the status register according to
whether the result is 0, negative, etc. This includes register load and store
operations as well as arithmetic and logical functions. However, when the
status register is loaded, the contents of the source operand replace the ST’s
contents bit for bit, regardless of the state of any bits in the source operand.
Following an ST load, the contents of the status register are identical to the
contents of the source operand. This allows the status register to be saved
easily and restored. At system reset, a 0 is written to this register.

Figure 3–3 shows the format of the status register for the ’C30 and ’C31 devices.
Figure 3–4 shows the format of the status register for the ’C32 device. Table 3–2
describes the status register bits, their names, and their functions.

Figure 3–3. Status Register (TMS320C30 andTMS320C31)

xxxx xx GIE CC CE CF xx RM OVM LUF LV UF N Z V

31 – 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

R/W R/W R/W R/WR/W R/W R/W R/W R/WR/W R/W

0

C

R/W R/W

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

Figure 3–4. Status Register (TMS320C32 Only)

PRGW
status

INT
config

xx GIE CC CE CF xx RM OVM LUF LV UF N Z V

31 – 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

R R/W R/W R/W R/W R/WR/W R/W R/W R/W R/WR/W R/W

0

C

R/W R/W

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Multiport Register File

 3-6

Table 3–2. Status Register Bits

Bit Name Reset Value Name Description

C 0 Carry flag Carry condition flag

V 0 Overflow flag Overflow condition flag

Z 0 Zero flag Zero condition flag

N 0 Negative flag Negative condition flag

UF 0 Floating-point under-
flow flag

Floating-point underflow condition flag

LV 0 Latched overflow flag Latched overflow condition flag

LUF 0 Latched floating-point
underflow flag

Latched floating-point underflow condition flag

OVM 0 Overflow mode flag Overflow mode flag

The overflow mode flag affects only integer operations.

If OVM = 0, the overflow mode is turned off and integer
results that overflow are treated in no special way.

If OVM = 1, integer results overflowing in the positive
direction are set to the most positive, 2s-complement
number (7FFF FFFFh), and integer results overflowing
in the negative direction are set to the most negative
32-bit, 2s-complement number (8000 0000h).

RM 0 Repeat mode flag Repeat mode flag

If RM = 1, the PC is modified in either the repeat-block
or repeat-single mode.

CE 0 Cache enable CE enables or disables the instruction cache.

Set CE = 1 to enable the cache, allowing the cache to
be used according to the least recently used (LRU)
stack manipulation.

Set CE = 0 to disable the cache, preventing cache
updates or modifications (no cache fetches can be
made). Cache clearing (CC = 1) is allowed when
CE = 0.

Note: If a load of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.

CPU Multiport Register File

3-7CPU Registers

Table 3–2. Status Register Bits (Continued)

Bit Name DescriptionNameReset Value

CF 0 Cache freeze Enables or disables the instruction cache

Set CF = 1 to freeze the cache (cache is not updated),
including LRU stack manipulation. If the cache is
enabled (CE = 1), fetches from the cache are allowed,
but modification of the cache contents is not allowed.
Cache clearing (CC = 1) is allowed. At reset, this bit
is cleared to 0, but it is set to 1 after reset.

When CF = 0, the cache is automatically updated by
instruction fetches from external memory. Also, when
CF = 0, cache clearing (CC = 1) is allowed.

The following table summarizes the CE and CF bits:

CE

0

0

1

1

CF

0

1

0

1

Effect

Cache not enabled

Cache not enabled

Cache enabled and not frozen

Cache enabled but frozen
(cache read only)

CC 0 Cache clear CC = 1 invalidates all entries in the cache. This bit is
always cleared after it is written to, and is always read
as 0. At reset, 0 is written to this bit.

GIE 0 Global interrupt-enable If GIE = 1, the CPU responds to an enabled interrupt.

If GIE = 0, the CPU does not respond to an enabled
interrupt.

INT config 0 Interrupt configuration
(‘C32 only)

Sets the external interrupt signals INT3 – INT0 for level-
or edge-triggered interrupts.

INT Config

0

1

Effect

All the external interrupts (INT3 – INT0)
are configured as level-triggered
interrupts. Multiple interrupts may be
triggered when the signal is active for
a long period of time.

All the external interrupts (INT3 – INT0)
are configured as edge-triggered inter-
rupts. Edge and duration are required
for all interrupts to be recognized.

Note: If a load of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.

CPU Multiport Register File

 3-8

Table 3–2. Status Register Bits (Continued)

Bit Name DescriptionNameReset Value

PRGW Dependent
on PRGW
pin level

Program width status
(‘C32 only)

Indicates the status of the external input PRGW pin.
When the signal of the PRGW pin is high, the PRGW
status bit is set to 1, indicating a 16-bit memory width.
The ‘C32 performs two fetches to retrieve a single 32-bit
instruction word. The PRGW bit is a read-only bit, and
can have the following values:

PRG

0

1

Effect

Instruction fetches use one 32-bit exter-
nal program memory read.

Instruction fetches use two 16-bit exter-
nal program memory reads.

Note: If a load of the status register occurs simultaneously with a CPU interrupt pulse trying to reset GIE, GIE is reset.

CPU Multiport Register File

3-9CPU Registers

3.1.8 CPU/DMA Interrupt-Enable (IE) Register

The CPU/DMA interrupt-enable (IE) register of the ’C30, ’C31, and ’C32 are
32-bit registers (see Figure 3–5 and Figure 3–6). The CPU interrupt-enable bits
are in locations 10–0 for ’C30 and ’C31 devices, and 11–0 for ’C32 devices. The
direct memory access (DMA) interrupt-enable bits are in locations 26–16 for
‘C30 and ‘C31 devices, and 31–16 for ’C32 devices. A 1 in a CPU/DMA IE bit
enables the corresponding interrupt. A 0 disables the corresponding interrupt.
At reset, 0 is written to this register.

Table 3–3 describes the interrupt-enable register bits, their names, and their
functions.

Figure 3–5. CPU/DMA Interrupt-Enable (IE) Register
(TMS320C30 and TMS320C31)

xx

31

xx

30

xx

29

xx

28

xx

27

EDINT
(DMA)

26

R/W

ETINT1
(DMA)

25

R/W

ETINT0
(DMA)

24

R/W

ERINT1
(DMA)

23

R/W

EXINT1
(DMA)

22

R/W

ERINT0
(DMA)

21

R/W

EXINT0
(DMA)

20

R/W

EINT3
(DMA)

19

R/W

EINT2
(DMA)

18

R/W

EINT1
(DMA)

17

R/W

EINT0
(DMA)

16

R/W

xx

15

xx

14

xx

13

xx

12

xx
EDINT
(CPU)

10

R/W

ETINT1
(CPU)

9

R/W

ETINT0
(CPU)

8

R/W

ERINT1
(CPU)

7

R/W

EXINT1
(CPU)

6

R/W

ERINT0
(CPU)

5

R/W

EXINT0
(CPU)

4

R/W

EINT3
(CPU)

3

R/W

EINT2
(CPU)

2

R/W

EINT1
(CPU)

1

R/W

EINT0
(CPU)

0

R/W

11

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

Figure 3–6. CPU/DMA Interrupt-Enable (IE) Register (TMS320C32)

EINT1
(DMA0)

16

EINT0
(DMA0)

31 30 29 28

EDINT1
(DMA0)

26

R/W

ETINT1
(DMA0)

25

R/W

ETINT0
(DMA0)

24

R/W

ETINT1
(DMA1)

23

R/W

ETINT0
(DMA1)

22

R/W

ERINT0
(DMA1)

21

R/W

EXINT0
(DMA0)

20

R/W

EINT3
(DMA0)

19

R/W

EINT2
(DMA0)

18

R/W

17

R/W R/W

EDINT0
(DMA1)

27

R/W

EINT0
(DMA1)

R/W

EINT1
(DMA1)

R/W

EINT2
(DMA1)

R/W

EINT3
(DMA1)

R/W

xx

15

xx

14

xx

13

xx

12

EDINT0
(CPU)

10

R/W

ETINT1
(CPU)

9

R/W

ETINT0
(CPU)

8

R/W

xx

7

xx

6

R/W

ERINT0
(CPU)

5

R/W

EXINT0
(CPU)

4

R/W

EINT3
(CPU)

3

R/W

EINT2
(CPU)

2

R/W

EINT1
(CPU)

1

R/W

EINT0
(CPU)

0

R/W

11

EDINT1
(CPU)

R/W

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Multiport Register File

 3-10

Table 3–3. IE Bits and Functions

Abbreviation
Reset
Value Description

EINT0 (CPU) 0 CPU external interrupt 0 enable

EINT1 (CPU) 0 CPU external interrupt 1 enable

EINT2 (CPU) 0 CPU external interrupt 2 enable

EINT3 (CPU) 0 CPU external interrupt 3 enable

EXINT0 (CPU) 0 CPU serial port 0 transmit interrupt enable

ERINT0 (CPU) 0 CPU serial port 0 receive interrupt enable

EXINT1 (CPU) 0 CPU serial port 1 transmit interrupt enable (’C30 only)

ERINT1 (CPU) 0 CPU serial port 1 receive interrupt enable (’C30 only)

ETINT0 (CPU) 0 CPU timer0 interrupt enable

ETINT1 (CPU) 0 CPU timer1 interrupt enable

EDINT (CPU) 0 CPU DMA controller interrupt enable
(’C30 and ’C31 only)

EDINT0 (CPU) 0 CPU DMA0 controller interrupt enable (’C32 only)

EDINT1 (CPU) 0 CPU DMA1 controller interrupt enable (’C32 only)

EINT0 (DMA) 0 DMA external interrupt 0 enable (’C30 and ’C31 only)

EINT1 (DMA) 0 DMA external interrupt 1 enable (’C30 and ’C31 only)

EINT2 (DMA) 0 DMA external interrupt 2 enable (’C30 and ’C31 only)

EINT3 (DMA) 0 DMA external interrupt 3 enable (’C30 and ’C31 only)

EINT0 (DMA0) 0 DMA0 external interrupt 0 enable (’C32 only)

EINT1 (DMA0) 0 DMA0 external interrupt 1 enable (’C32 only)

EINT2 (DMA0) 0 DMA0 external interrupt 2 enable (’C32 only)

EINT3 (DMA0) 0 DMA0 external interrupt 3 enable (’C32 only)

EXINT0 (DMA) 0 DMA serial port 0 transmit interrupt enable
(’C30 and ’C31 only)

ERINT0 (DMA) 0 DMA serial port 0 receive interrupt enable
(’C30 and ’C31 only)

EXINT1 (DMA) 0 DMA serial port 1 transmit interrupt enable (’C30 only)

ERINT1 (DMA) 0 DMA serial port 1 receive interrupt enable (’C30 only)

EXINT0 (DMA0) 0 DMA0 serial port 1 transmit interrupt enable (’C32 only)

ERINT0 (DMA1) 0 DMA1 serial port 1 receive interrupt enable (’C32 only)

CPU Multiport Register File

3-11CPU Registers

Table 3–3. IE Bits and Functions(Continued)

Abbreviation Description
Reset
Value

ETINT0 (DMA) 0 DMA timer0 interrupt enable (’C30 and ’C31)

ETINT1 (DMA) 0 DMA timer1 interrupt enable (’C30 and ’C31 only)

ETINT0 (DMA0) 0 DMA0 timer1 interrupt enable (’C32 only)

ETINT1 (DMA0) 0 DMA0 timer1 interrupt enable (’C32 only)

ETINT0 (DMA1) 0 DMA1 timer0 interrupt enable (’C32 only)

ETINT1 (DMA1) 0 DMA1 timer1 interrupt enable (’C32 only)

EDINT (DMA) 0 DMA controller interrupt enable (’C30 and ’C31 only)

EDINT1 (DMA0) 0 DMA0-DMA1 controller interrupt enable (’C32 only)

EDINT0 (DMA1) 0 DMA1-DMA0 controller interrupt enable (’C32 only)

EINT0 (DMA1) 0 DMA1 external interrupt 0 enable (’C32 only)

EINT1 (DMA1) 0 DMA1 external interrupt 1 enable (’C32 only)

EINT2 (DMA1) 0 DMA1 external interrupt 2 enable (’C32 only)

EINT3 (DMA1) 0 DMA1 external interrupt 2 enable (’C32 only)

3.1.9 CPU Interrupt Flag (IF) Register

Figure 3–7, Figure 3–8, and Figure 3–9 show the 32-bit CPU interrupt flag reg-
isters (IF) for the ‘C30, ‘C31, and ‘C32 devices, respectively. A 1 in a CPU IF
register bit indicates that the corresponding interrupt is set. The IF bits are set
to 1 when an interrupt occurs. They may also be set to 1 through software to
cause an interrupt. A 0 indicates that the corresponding interrupt is not set. If
a 0 is written to an IF register bit, the corresponding interrupt is cleared. At reset,
0 is written to this register. Table 3–4 describes the interrupt flag register bits,
their names, and their functions.

CPU Multiport Register File

 3-12

Figure 3–7. TMS320C30 CPU Interrupt Flag (IF) Register

XINT1RINT1yy yy

71115–1231–16

xx

10

DINT

9

TINT1

8

TINT0

5

RINT0

4

XINT0

3

INT3

2

INT2

1

INT1

6 0

INT0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Notes: 1) xx = reserved bit, read as 0

2) yy = reserved bit, set to 0 at reset; can store value

3) R = read, W = write

Figure 3–8. TMS320C31 CPU Interrupt Flag (IF) Register

yy yy xx

71115–1231–16

xx

10

DINT

9

TINT1

8

TINT0

5

RINT0

4

XINT0

3

INT3

2

INT2

1

INT1xx

6 0

INT0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Notes: 1) xx = reserved bit, read as 0

2) yy = reserved bit, set to 0 at reset

3) R = read, W = write

Figure 3–9. TMS320C32 CPU Interrupt Flag (IF) Register

DINT1xx xx

71115–1231–16

ITTP

10

DINT0

9

TINT1

8

TINT0

5

RINT0

4

XINT0

3

INT3

2

INT2

1

INT1xx

6 0

INT0

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

CPU Multiport Register File

3-13CPU Registers

Table 3–4. IF Bits and Functions

Bit
Name

Reset
Value Function

INT0 0 External interrupt 0 flag

INT1 0 External interrupt 1 flag

INT2 0 External interrupt 2 flag

INT3 0 External interrupt 3 flag

XINT0 0 Serial port 0 transmit flag

RINT0 0 Serial port 0 receive flag

XINT1 0 Serial port 1 transmit flag (‘C30 only)

RINT1 0 Serial port 1 receive interrupt flag (‘C30 only)

TINT0 0 Timer 0 interrupt flag

TINT1 0 Timer 1 interrupt flag

DINT 0 DMA channel interrupt flag (‘C30 and ‘C31 only)

DINT0 0 DMA0 channel interrupt flag (‘C32 only)

DINT1 0 DMA1 channel interrupt flag (‘C32 only)

ITTP 0 Interrupt-trap table pointer (see Section 3.1.9.1)

Allows the relocation of interrupt and trap vector tables (‘C32 only)

Note: If a load of the interrupt flag (IF) register occurs simultaneously with a set of a flag by an
interrupt pulse, the loading of the flag has higher priority and overwrites the value of the
interrupt flag register.

CPU Multiport Register File

 3-14

3.1.9.1 Interrupt-Trap Table Pointer (ITTP)

Similar to the rest of the ‘C3x device family, the ’C32’s reset vector location
remains at address 0. However, the interrupt and trap vectors are relocatable.
This is achieved by the interrupt-trap table pointer (ITTP) bit field in the CPU
interrupt flag register, shown in Figure 3–9. The ITTP bit field dictates the
starting location (base) of the interrupt-trap vector table. This base address
is formed by left shifting by eight bits the value of the ITTP bit field. This shifted
value is called the effective base address and is referenced as EA[ITTP], as
shown in Figure 3–10. Therefore, the location of an interrupt or trap vector
is given by the addition of the effective base address formed by the ITTP bit
field (EA[ITTP]) and the offset of the interrupt or trap vector in the interrupt-
trap vector table, as shown in Figure 3–11. For example, if the ITTP contains
the value 100h, the serial port transmit interrupt vector is located at 10005h.
Note that the vectors stored in the interrupt-trap vector table are the addresses
of the start of the respective interrupt and trap routines. Furthermore, the
interrupt-trap vector table must lie on a 256-word boundary, since the eight
LSBs of the effective base address of the interrupt-trap vector table are 0.

See Section 7.6, Interrupts, on page 7-26 for more information on interrupt
vector tables.

Figure 3–10. Effective Base Address of the Interrupt-Trap Vector Table

Bits 31–16 of the CPU interrupt flag register 00000000

7 0823

EA[ITTP] =

CPU Multiport Register File

3-15CPU Registers

Figure 3–11.Interrupt and Trap Vector Locations

EA (ITTP) + 3Fh

EA (ITTP) + 3Eh

EA (ITTP) + 3Dh

EA (ITTP) + 3Ch

EA (ITTP) + 3Bh

EA (ITTP) + 20h TRAP0

EA (ITTP) + 1Fh

EA (ITTP) + 0Dh

DINT1EA (ITTP) + 0Ch

DINT0EA (ITTP) + 0Bh

TINT1EA (ITTP) + 0Ah

TINT0EA (ITTP) + 09h

EA (ITTP) + 08h

EA (ITTP) + 07h

RINT0EA (ITTP) + 06h

XINT0EA (ITTP) + 05h

INT3EA (ITTP) + 04h

INT2EA (ITTP) + 03h

INT1EA (ITTP) + 02h

INT0EA (ITTP) + 01h

EA (ITTP) + 00h

TRAP31 (reserved)

TRAP30 (reserved)

TRAP29 (reserved)

TRAP28 (reserved)

TRAP27

Reserved

Reserved

Reserved

Reserved

.

.

.

.

CPU Multiport Register File

 3-16

3.1.10 I/O Flag (IOF) Register

The I/O flag (IOF) register is shown in Figure 3–12 and controls the function
of the dedicated external pins, XF0 and XF1. These pins can be configured for
input or output. The pins can also be read from and written to. At reset, 0 is
written to this register. Table 3–5 describes the I/O flags register bits, their
names, and their functions.

Figure 3–12. I/O Flag (IOF) Register

R R/W R/W R R/W R/W

INXF1

7

OUTXF1

6

I/OXF1

5

INXF0

3

OUTXF0

2

I/OXF0

1

xx

011–815–1231–16 4

xxxx xxxx

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

Table 3–5. IOF Bits and Functions

Bit Name
Reset
Value Function

I/OXF0 0 If 0, XF0 is configured a general-purpose input pin.

If 1, XF0 is configured a general-purpose output pin.

OUTXF0 0 Data output on XF0.

INXF0 0 Data input on XF0. A write has no effect.

I/OXF1 0 If 0, XF1 is configured a general-purpose input pin.

If 1, XF1 is configured a general-purpose output pin.

OUTXF1 0 Data output on XF1.

INXF1 0 Data input on XF1. A write has no effect.

CPU Multiport Register File

3-17CPU Registers

3.1.11 Repeat-Counter (RC) and Block-Repeat (RS, RE) Registers

The repeat-counter (RC) register is a 32-bit register that specifies the number
of times a block of code is to be repeated when a block repeat is performed.
If RC contains the number n, the loop is executed n + 1 times.

The 32-bit repeat start-address (RS) register contains the starting address of
the program-memory block to be repeated when the CPU is operating in the
repeat mode.

The 32-bit repeat end-address (RE) register contains the ending address of
the program-memory block to be repeated when the CPU is operating in the
repeat mode.

Note: RE < RS

If RE< RS and the block mode is enabled, the code between RE and RS is
bypassed when the program counter encounters the repeat end (RE) ad-
dress.

Other Registers

 3-18

3.2 Other Registers

3.2.1 Program-Counter (PC) Register

The program counter (PC) is a 32-bit register containing the address of the
next instruction fetch. While the program-counter register is not part of the
CPU register file, it can be modified by instructions that modify the program
flow.

3.2.2 Instruction Register (IR)

The instruction register (IR) is a 32-bit register that holds the instruction op-
code during the decode phase of the instruction. This register is used by the
instruction decode control circuitry and is not accessible to the CPU.

Reserved Bits and Compatibility

3-19CPU Registers

3.3 Reserved Bits and Compatibility

To retain compatibility with future members of the ’C3x family of microprocessors,
reserved bits that are read as 0 must be written as 0. You must not modify the
current value of a reserved bit that has an undefined value. In other cases, you
should maintain the reserved bits as specified.

 3-20

4-1

Memory and the Instruction Cache

The ’C3x provides a total memory space of 16M (million) 32-bit words that contain
program, data, and I/O space. Two RAM blocks of 1K � 32 bits each (available
on the ’C30 and ’C31) or two RAM blocks of 256 � 32 bits (available on the ’C32)
and a ROM block of 4K � 32 bits (available only on the ’C30) or boot loader
(available on the ’C31 and the ’C32) permit two CPU accesses in a single cycle.

A 64 � 32-bit instruction cache stores often-repeated sections of code, greatly
reducing the number of off-chip accesses and allowing code to be stored off-chip
in slower, lower-cost memories.

Topic Page

4.1 Memory 4-2.

4.2 Reset/Interrupt/Trap Vector Map 4-14.

4.3 Instruction Cache 4-19.

Chapter 4

Memory

 4-2

4.1 Memory

The ’C3x accesses a total memory space of 16M (million) 32-bit words of pro-
gram, data, and I/O space and allows tables, coefficients, program code, or
data to be stored in either RAM or ROM. In this way, you can maximize memory
usage and allocate memory space as desired.

RAM blocks 0 and 1 are each 1K � 32 bits on the ’C30 and ’C31. The ROM
block is 4K � 32 bits on the ’C30. The ’C31 and ’C32 have a boot ROM. By
manipulating one external pin (MC/MP or MCBL/MP), you can configure the first
1000h words of memory to address the on-chip ROM or external RAM. Each on-
chip RAM and ROM block can support two CPU accesses in a single cycle. The
separate program buses, data buses, and DMA buses allow for parallel program
fetches, data reads/writes, and DMA operations, which are covered in Chap-
ter 11, Peripherals.

4.1.1 Memory Maps

The following sections describe the memory maps for the ’C30, ’C31, and
’C32.

4.1.1.1 TMS320C30 Memory Map

The memory map depends on whether the processor is running in micro-
processor mode (MC/MP = 0) or microcomputer mode (MC/MP = 1). The
memory maps for these modes are similar (see Figure 4–1 on page 4-4).
Locations 800000h–801FFFh are mapped to the expansion bus. When this
region is accessed, MSTRB is active. Locations 802000h–803FFFh are
reserved. Locations 804000h–805FFFh are mapped to the expansion bus.
When this region is accessed, IOSTRB is active. Locations 806000h–
807FFFh are reserved. All of the memory-mapped peripheral bus registers
are in locations 808000h–8097FFh. In both modes, RAM block 0 is located
at addresses 809800h–809BFFh, and RAM block 1 is located at addresses
809C00h–809FFFh. Locations 80A000h–0FFFFFFh are accessed over the
external memory port (STRB active).

� Microprocessor Mode

In microprocessor mode, the 4K on-chip ROM is not mapped into the ’C3x
memory map. Locations 0h–03Fh consist of interrupt vector, trap vector,
and reserved locations, all of which are accessed over the external memory
port (STRB active) (see Figure 4–1 on page 4-4). Locations
040h–7FFFFFh are also accessed over the external memory port.

Memory

4-3Memory and the Instruction Cache

� Microcomputer Mode

In microcomputer mode, the 4K on-chip ROM is mapped into locations
0h–0FFFh. There are 192 locations (0h–0BFh) within this block for interrupt
vectors, trap vectors, and a reserved space (’C30). Locations 1000h–
7FFFFFh are accessed over the external memory port (STRB active).

Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 describes the peripheral
memory maps in greater detail and Section 4.2, Reset/Interrupt/Trap Vector Map,
on page 4-14 provides the vector locations for reset, interrupts, and traps.

Be careful! Access to a reserved area produces unpredictable
results.

Memory

 4-4

Figure 4–1. TMS320C30 Memory Maps

Reset, interrupt, trap vectors,
and reserved locations (64)

(external STRB active)

0h

03Fh
040h

External
STRB active

(8.192M words)

7FFFFFh

Expansion bus
MSTRB active

(8K words)

800000h

801FFFh

Reserved
(8K words)

802000h

803FFFh

Expansion bus
IOSTRB active

(8K words)

804000h

805FFFh

Reserved
(8K words)

806000h

807FFFh
808000h

Peripheral bus
memory-mapped

registers
(6K words internal)

8097FFh

RAM block 0
(1K words internal)

809800h

809BFFh

RAM block 1
(1K words internal)

809C00h

809FFFh

External
STRB active

(7.96M words)

80A000h

FFFFFFh

Reset, interrupt, trap vectors,
and reserved locations (192)

0h

0BFh

7FFFFFh

Expansion bus
MSTRB active

(8K words)

800000h

801FFFh

Reserved
(8K words)

802000h

803FFFh

Expansion bus
IOSTRB active

(8K words)

804000h

805FFFh

Reserved
(8K words)

806000h

807FFFh
808000h

Peripheral bus
memory-mapped

registers
(Internal)

(6K words internal)

8097FFh

RAM block 0
(1K words internal)

809800h

809BFFh

RAM block 1
(1K words internal)

809C00h

809FFFh

External
STRB active

(7.96M words)

80A000h

FFFFFFh

Microprocessor mode Microcomputer mode

ROM
(Internal)

0C0h

0FFFh

External
STRB active

(8.188M words)

1000h

Memory

4-5Memory and the Instruction Cache

4.1.1.2 TMS320C31 Memory Map

The memory map depends on whether the processor is running in micropro-
cessor mode (MCBL/MP = 0) or microcomputer mode (MCBL/MP = 1). The
memory maps for these modes are similar (see Figure 4–2 on page 4-6).
Locations 800000h–807FFFh are reserved. All of the memory-mapped
peripheral bus registers are in locations 808000h–8097FFh. In both modes,
RAM block 0 is located at addresses 809800h–809BFFh, and RAM block 1 is
located at addresses 809C00h–809FFFh. Locations 80A000h–0FFFFFFh
are accessed over the external memory port (STRB active).

� Microprocessor Mode

In microprocessor mode, the boot loader is not mapped into the ’C3x
memory map. Locations 0h–03Fh consist of interrupt vector, trap vector,
and reserved locations, all of which are accessed over the external
memory port (STRB active) (see Figure 4–2 on page 4-6). Locations
040h–7FFFFFh are also accessed over the external memory port.

� Microcomputer Mode

In microcomputer mode, the boot loader ROM is mapped into locations
0h–0FFFh. The last 63 words (809FC1h to 809FFFh) of internal RAM
Block 1 are used for interrupt and trap branches (see Figure 4–2 on page
4-6). Locations 1000h–7FFFFFh are accessed over the external
memory port (STRB active).

Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 describes the
peripheral memory maps in greater detail and Section 4.2, Reset/Interrupt/
Trap Vector Map, on page 4-14 provides the vector locations for reset, inter-
rupts, and traps.

Be careful! Access to a reserved area produces unpredictable
results.

Memory

 4-6

Figure 4–2. TMS320C31 Memory Maps

Reset, interrupt, trap vectors,
and reserved locations (64)

(external STRB active)

0h

03Fh
040h

External
STRB active

(8.192M words)

7FFFFFh

Reserved
(32K words)

800000h

807FFFh

Peripheral bus
memory-mapped

registers
(6K words internal)

808000h

8097FFh

RAM block 0
(1K words internal)

809800h

809BFFh

RAM block 1
(1K words internal)

809C00h

809FFFh
80A000h

External
STRB active

(7.96M words)

FFFFFFh

0h

0FFFh
1000h

7FFFFFh

Reserved
(32K words)

800000h

807FFFh

Peripheral bus
memory-mapped

registers
(6K words internal)

808000h

8097FFh

RAM block 0
(1K words internal)

809800h

809BFFh
809C00h

809FFFh
80A000h

External
STRB
active

(7.96M words)
FFFFFFh

Boot 1

400000h

RAM block 1
(1K – 63 words internal)

809FC0h
809FC1h

User program interrupt
and trap branches
(63 words internal)

Boot 3FFF000h

External
STRB
active

(8.188M words)

Reserved for boot-
loader operations†

Microprocessor mode Microcomputer/boot-loader mode

† See Section 3.1.3, Data-Page Pointer (DP), on page 3-4 for more information.

Boot 2

Memory

4-7Memory and the Instruction Cache

4.1.1.3 TMS320C32 Memory Map

The memory map depends on whether the processor is running in micropro-
cessor mode (MCBL/MP = 0) or microcomputer mode (MCBL/MP = 1). The
memory maps for these modes are similar (see Figure 4–3 on page 4-8).
Locations 800000h–807FFFh, 809800h–80FFFh, and 830000H–87FDFFh are
reserved. Locations 810000h–82FFFFh are mapped to the external bus with
IOSTRB active. All of the memory-mapped peripheral bus registers are in loca-
tions 808000h–8097FFh. In both modes, RAM block 0 is located at addresses
87FE00h–87FEFFh, and RAM block 1 is located at addresses 87FF00h–
87FFFFh. Locations 900000h–FFFFFFh are mapped to the external bus with
STRB1 active.

Unlike the fixed interrupt-trap vector table location of the ’C30 and ’C31 devices,
the ’C32 has a user-relocatable interrupt-trap vector table. The interrupt-trap
vector table must start on a 256-word boundary. The starting location is pro-
grammed through the interrupt-trap table pointer (ITTP) bit field in the CPU inter-
rupt flag (IF) register. See Section 3.1.9.1, Interrupt-Trap Table Pointer (ITTP),
on page 3-14.

� Microprocessor Mode

In microprocessor mode, the boot loader is not mapped into the ’C3x memory
map. Locations 0h–7FFFFFFh are accessed over the external memory port
(STRB0 active) with location 0h containing the reset vector.

� Microcomputer Mode

In microcomputer mode, the on-chip boot loader ROM is mapped into
locations 0h–0FFFh. Locations 1000h–7FFFFFh are accessed over the
external memory port (STRB0 active).

The ’C32 boot loader has additional modes over the ’C31 boot loader to handle
the data types, sizes, and memory widths supported by the external memory inter-
face. The memory boot load supports data transfer with and without handshaking.
The handshake mode allows synchronous program transfer by using two pins as
data-acknowledge and data-ready signals.

See Section 4.1.2, Peripheral Bus Memory Map, on page 4-9 and Section 4.2,
Reset/Interrupt/Trap Vector Map, on page 4-14 for more information.

Be careful! Access to a reserved area produces unpredictable
results.

Memory

 4-8

Figure 4–3. TMS320C32 Memory Maps

External memory
STRB1 active

(7.168M words)

External memory
STRB1 active

(7.168M words)

Boot 3

External memory
STRB0 active
(512K words)

Microprocessor mode Microcomputer/boot-loadermode

900001h

Boot 2
810001h

Boot 1

1001h

1000h
0FFFh

boot-loader operations
Reserved for

External memory
STRB0 active

(8.188M words)

Reserved
(32K words)

Reserved
(26K words)

Peripheral bus
memory-mapped registers

(6K words internal)

0h

7FFFFFh
800000h

807FFFh
808000h

809800h

80FFFFh
810000h

8097FFh

Reserved
(319.5K words)

External memory
IOSTRB active (128K)

(128K words)

External memory
STRB0 active
(512K words)

82FFFFh
830000h

87FDFFh
87FE00h

87FEFFh

87FFFFh
880000h

900000h
8FFFFFh

87FF00h

FFFFFFh

87FEFFh
RAM block 1

(256 words internal)

RAM block 0
(256 words internal)

Reserved
(319.5K words)

External memory
IOSTRB active (128K)

(128K words)

Reserved
(26K words)

(6K words internal)
memory-mapped registers

Peripheral bus

Reserved
(32K words)

FFFFFFh

900000h
8FFFFFh

880000h
87FFFFh

87FF00h

87FE00h
87FDFFh

830000h
82FFFFh

810000h
80FFFFh

809800h
8097FFh

808000h
807FFFh

800000h
7FFFFFh

0h

External memory
STRB0 active

(8.192M words)

Reset-vector location

RAM block 0
(256 words internal)

RAM block 1
(256 words internal)

Memory

4-9Memory and the Instruction Cache

4.1.2 Peripheral Bus Memory Map

The following sections describe the peripherial bus memory maps for the ’C30,
’C31, and ’C32.

4.1.2.1 TMS320C30 Peripheral Bus Memory Map

The ’C30 memory-mapped peripheral registers are located starting at address
808000h. Figure 4–4 on page 4-10 shows the peripheral bus memory map. The
shaded blocks are reserved.

Memory

 4-10

Figure 4–4. TMS320C30 Peripheral Bus Memory-Mapped Registers

Serial port 1 data transmit

808064h Primary-buscontrol

808060h Expansion-buscontrol

80804Ch Serial port 0 data receive

808048h Serial port 0 data transmit

FSR/DR/CLKR serial port 0 control

808046h Serial port 0 R/X timer period

808045h Serial port 0 R/X timer counter

808044h Serial port 0 R/X timer control

808043h

808042h FSX/DX/CLKX serial port 0 control

Serial port 0 global control808040h

Timer 1 period register808038h

Timer 1 counter808034h

Timer 1 global control808030h

Timer 0 period808028h

Timer 0 counter808024h

Timer 0 global control808020h

DMA transfer counter808008h

DMA destination address808006h

DMA source address808004h

808000h DMA global control

Serial port 1 global control808050h

FSR/DR/CLKR serial port 1 control

808056h Serial port 1 R/X timer period

808055h Serial port 1 R/X timer counter

808054h Serial port 1 R/X timer control

808053h

808052h FSX/DX/CLKX serial port 1 control

808058h

80805Ch Serial port 1 data receive

Memory

4-11Memory and the Instruction Cache

4.1.2.2 TMS320C31 Peripheral Bus Memory Map

The ’C31 memory-mapped peripheral registers are located starting at address
808000h. Figure 4–5 shows the peripheral bus memory map. The shaded
blocks are reserved.

Figure 4–5. TMS320C31 Peripheral Bus Memory-Mapped Registers

808064h Primary-buscontrol

80804Ch Serial port data receive

808048h Serial port data transmit

FSR/DR/CLKR serial port control

808046h Serial port R/X timer period

808045h Serial port R/X timer counter

808044h Serial port R/X timer control

808043h

808042h FSX/DX/CLKX serial port control

Serial port global control808040h

Timer 1 period register808038h

Timer 1 counter808034h

Timer 1 global control808030h

Timer 0 period808028h

Timer 0 counter808024h

Timer 0 global control808020h

DMA transfer counter808008h

DMA destination address808006h

DMA source address808004h

808000h DMA global control

Memory

 4-12

4.1.2.3 TMS320C32 Peripheral Bus Memory Map

The ’C32’s memory-mapped peripheral and external-bus control registers are
located starting at address 808000h, as shown in Figure 4–6 on page 4-13. The
shaded blocks are reserved.

Memory

4-13Memory and the Instruction Cache

Figure 4–6. TMS320C32 Peripheral Bus Memory-Mapped Registers

8097FFh
808068h STRB1 bus control

808064h STRB0 bus control

808060h IOSTRB bus control

80804Ch Serial port data receive

808048h Serial port data transmit

FSR/DR/CLKR serial port control

808046h Serial port R/X timer period
808045h Serial port R/X timer counter

808044h Serial port R/X timer control

808043h

808042h FSX/DX/CLKX serial port control

808014h

Serial port global control808040h

Timer 1 period register808038h

Timer 1 counter808034h

Timer 1 global control808030h

Timer 0 period808028h

Timer 0 counter808024h

Timer 0 global control808020h

DMA 1 transfer counter808018h

DMA 1 destination address808016h

DMA 1 source address

808010h DMA 1 global control

DMA 0 transfer counter808008h

DMA 0 destination address808006h

DMA 0 source address808004h

808000h DMA 0 global control

Reset/Interrupt/Trap Vector Map

 4-14

4.2 Reset/Interrupt/Trap Vector Map

The addresses for the reset, interrupt, and trap vectors are 00h–3Fh, as shown
in Figure 4–7 and Figure 4–8. The reset vector contains the address of the reset
routine.

� ’C30 and ’C31 Microprocessor and Microcomputer Modes

In the microprocessor mode of the ’C30 and ’C31 and the microcomputer
mode of the ’C30, the reset interrupt and trap vectors stored in locations
0h–3Fh are the addresses of the starts of the respective reset, interrupt,
and trap routines. For example, at reset, the content of memory location
00h (reset vector) is loaded into the PC, and execution begins from that
address (see Figure 4–8 on page 4-16).

� ’C31 Microcomputer/Boot-Loader Mode

In the microcomputer/boot-loader mode of the ’C31, the interrupt and trap
vectors stored in locations 809FC1h–809FFFh are branch instructions to
the start of the respective interrupt and trap routines (see Figure 4–9 on
page 4-17).

� ’C32 Microprocessor and Microcomputer/Boot-Loader Mode

The ’C32 has a user-relocatable interrupt-trap vector table. The interrupt-
trap vector table must start on a 256-word boundary. The starting location is
programmed through the interrupt-trap table pointer (ITTP) bit field in the
CPU interrupt flag (IF) register. See Section 3.1.9.1, Interrupt-Trap Table
Pointer (ITTP), on page 3-14. The reset vector is stored at location 0h in
microprocessor mode.

Reset/Interrupt/Trap Vector Map

4-15Memory and the Instruction Cache

Figure 4–7. Reset, Interrupt, and Trap Vector Locations for the TMS320C30
Microprocessor Mode

RESET00h

INT001h

INT102h

INT203h

INT304h

XINT005h

RINT006h

XINT107h

RINT108h

TINT009h

TINT10Ah

DINT0Bh

0Ch

1Fh

TRAP 020h

�

�

�

TRAP 273Bh

3Ch

3Dh

3Eh

3Fh

Reserved

TRAP 28 (reserved)

TRAP 29 (reserved)

TRAP 30 (reserved)

TRAP 31 (reserved)

Note: Traps 28–31

Traps 28–31 are reserved; do not use them .

Reset/Interrupt/Trap Vector Map

 4-16

Figure 4–8. Reset, Interrupt, and Trap Vector Locations for theTMS320C31
Microprocessor Mode

00h RESET

01h INT0

02h INT1

03h INT2

04h INT3

05h XINT0

06h RINT0

07h XINT1 (Reserved)

08h RINT1 (Reserved)

09h TINT0

0Ah TINT1

0Bh DINT

 0Ch

1Fh
Reserved

20h TRAP 0

•

 •

 •

3Bh TRAP 27

3Ch TRAP 28 (reserved)

3Dh TRAP 29 (reserved)

3Eh TRAP 30 (reserved)

3Fh TRAP 31 (reserved)

Note: Traps 28–31

Traps 28–31 are reserved; do not use them .

Reset/Interrupt/Trap Vector Map

4-17Memory and the Instruction Cache

Figure 4–9. Interrupt and Trap Branch Instructions for the TMS320C31
Microcomputer Mode

809FC1h INT0

809FC2h INT1

809FC3h INT2

809FC4h INT3

809FC5h XINT0

809FC6h RINT0

809FC7h XINT1 (reserved)

809FC8h RINT1 (reserved)

809FC9h TINT0

809FCAh TINT1

809FCBh DINT

809FCCh

809FDFh
Reserved

809FE0h TRAP 0

809FE1h TRAP 1

•

 •

 •

809FFBh TRAP 27

809FFCh TRAP 28 (reserved)

809FFDh TRAP 29 (reserved)

809FFEh TRAP 30 (reserved)

809FFFh TRAP 31 (reserved)

Note: Traps 28–31

Traps 28–31 are reserved; do not use them .

Unlike the ’C31’s microprocessor mode, the ’C31 microcomputer/boot loader
mode uses a dual-vectoring scheme to service interrupts and trap requests. In
this dual vectoring scheme, a branch instruction rather than a vector address
is used.

Reset/Interrupt/Trap Vector Map

 4-18

Figure 4–10. Interrupt and Trap Vector Locations for TMS320C32

EA (ITTP) + 3Fh

EA (ITTP) + 3Eh

EA (ITTP) + 3Dh

EA (ITTP) + 3Ch

EA (ITTP) + 3Bh

EA (ITTP) + 20h TRAP0

EA (ITTP) + 1Fh

EA (ITTP) + 0Dh

DINT1EA (ITTP) + 0Ch

DINT0EA (ITTP) + 0Bh

TINT1EA (ITTP) + 0Ah

TINT0EA (ITTP) + 09h

EA (ITTP) + 08h

EA (ITTP) + 07h

RINT0EA (ITTP) + 06h

XINT0EA (ITTP) + 05h

INT3EA (ITTP) + 04h

INT2EA (ITTP) + 03h

INT1EA (ITTP) + 02h

INT0EA (ITTP) + 01h

EA (ITTP) + 00h

TRAP31 (reserved)

TRAP30 (reserved)

TRAP29 (reserved)

TRAP28 (reserved)

TRAP27

Reserved

Reserved

Reserved

Reserved

.

.

.

.

Note: Traps 28–31

Traps 28–31 are reserved; do not use them .

Instruction Cache

4-19Memory and the Instruction Cache

4.3 Instruction Cache

A 64 × 32-bit instruction cache speeds instruction fetches and lowers system
cost by caching program fetches from external memory. The instruction cache
allows the use of slow, external memories while still achieving single-cycle access
performances. This reduces the number of off-chip accesses necessary and
allows code to be stored off-chip in slower, lower-cost memories. The cache
also frees external buses from program fetches so that they can be used by
the DMA or other system elements.

The cache can operate automatically, with no user intervention. Subsection
4.3.2 describes a form of the least recently used (LRU) cache update algorithm.

4.3.1 Instruction-Cache Architecture

The instruction cache (see Figure 4–12) contains 64 32-bit words of RAM; it
is divided into two 32-word segments. A 19-bit segment start address (SSA)
register is associated with each segment. For each word in the cache, there
is a corresponding single bit-present (P) flag.

When the CPU requests an instruction word from external memory, the cache
algorithm checks to determine if the word is already contained in the instruction
cache. Figure 4–11 shows how the cache-control algorithm partitions an
instruction address. The algorithm uses the19 most significant bits (MSBs) of
the instruction address to select the segment; the five least significant bits
(LSBs) define the address of the instruction word within the pertinent segment.
The algorithm compares the 19 MSBs of the instruction address with the two
SSA registers. If there is a match, the algorithm checks the relevant P flag. The
P flag indicates if a word within a particular segment is already present in cache
memory:

� P = 1: the word is already present in cache memory

� P = 0: the location cache is invalid

Figure 4–11.Address Partitioning for Cache Control Algorithm

Instruction word
address within segment

Segment start address
(SSA)

5 423 0

If there is no match, one of the segments must be replaced by the new data. The
segment replaced in this circumstance is determined by the LRU algorithm. The
LRU stack (see Figure 4–12) is maintained for this purpose.

Instruction Cache

 4-20

Figure 4–12. Instruction-Cache Architecture

Segment start
address registers Segment words LRU

Stack

SSA register 0 Segment word 0

Segment word 1

Segment word 30

Segment word 31

Segment word 0

Segment word 1

Segment word 30

Segment word 31

MRU segment number

LRU segment number
Segment 0

Segment 1

P
flags

0

1

30

31

0

1

30

31

32

19

SSA register 1

The LRU stack determines which of the two segments qualifies as the least
recently used after each access to the cache. Each time a segment is accessed,
its segment number is removed from the LRU stack and pushed onto the top
of the LRU stack. Therefore, the number at the top of the stack is the most re-
cently used (MRU) segment number, and the number at the bottom of the stack
is the least recently used segment number.

At reset, the LRU stack is initialized with 0 at the top and 1 at the bottom. All
P flags in the instruction cache are cleared.

When a replacement is necessary, the LRU segment is selected for replace-
ment. Also, the 32 P flags for the segment to be replaced are set to 0, and the
segment’s SSA register is replaced with the 19 MSBs of the instruction address.

Instruction Cache

4-21Memory and the Instruction Cache

4.3.2 Instruction-Cache Algorithm

When the ’C3x requests an instruction word from external memory, one of two
possible actions occurs: a cache hit or a cache miss.

� Cache Hit. The cache contains the requested instruction, and the following
actions occur:

� The instruction word is read from the cache.

� The number of the segment containing the word is removed from the
LRU stack and pushed to the top of the LRU stack (if it is not already at
the top), thus moving the other segment number to the bottom of the
stack.

� Cache Miss. The cache does not contain the instruction. There are two
types of cache misses:

� Subsegment miss . The segment address register matches the instruc-
tion address, but the relevant P flag is not set. The following actions
occur in parallel:

� The instruction word is read from memory and copied into the cache.

� The number of the segment containing the word is removed from
the LRU stack and pushed to the top of the LRU stack (if it is not
already at the top), thus moving the other segment number to the
bottom of the stack.

� The relevant P flag is set.

� Segment miss. Neither of the segment addresses matches the instruc-
tion address. The following actions occur in parallel:

� The LRU segment is selected for replacement. The P flags for all
32 words are cleared.

� The SSA register for the selected segment is loaded with the
19 MSBs of the address of the requested instruction word.

� The instruction word is fetched and copied into the cache. It goes
into the appropriate word of the LRU segment. The P flag for that
word is set to 1.

� The number of the segment containing the instruction word is
removed from the LRU stack and pushed to the top of the LRU
stack, thus moving the other segment number to the bottom of
the stack.

Instruction Cache

 4-22

Only instructions may be fetched from the program cache. All reads and writes
of data in memory bypass the cache. Program fetches from internal memory
do not modify the cache and do not generate cache hits or misses. The pro-
gram cache is a single-access memory block. Dummy program fetches (for
example, those following a branch) are treated by the cache as valid program
fetches and can generate cache misses and cache updates.

Notes: Using Self-Modifying Code

Be careful when using self-modifying code. If an instruction resides in the
cache and the corresponding location in primary memory is modified, the
copy of the instruction in the cache is not modified.

You can use the cache more efficiently by aligning program code on 32-word
address boundaries. Do this with the .align directive when coding assembly
language.

4.3.3 Cache Control Bits

Three cache control bits are located in the CPU status register:

� Cache Clear Bit (CC) . Set CC = 1 to invalidate all entries in the cache. This
bit is always cleared after it is written to; it is always read as a 0. At reset,
the cache is cleared, and 0 is written to this bit.

� Cache Enable Bit (CE) . Set CE = 1 to enable the cache, allowing the
cache to be used according to the LRU cache algorithm. Set CE = 0 to dis-
able the cache; this prevents cache update modifications (thus, no cache
fetches can be made). At reset, 0 is written to this bit. Cache clearing (CC
= 1) is allowed when CE = 0.

� Cache Freeze Bit (CF) . Set CF = 1 to freeze both the cache and LRU
stack manipulation. If the cache is enabled (CE = 1) and the cache is
frozen (CF = 1), fetches from the cache are allowed, but modification of
cache contents is not allowed. Cache clearing (CC = 1) is allowed when
CF = 1 or CF = 0. At reset, this CF bit is cleared to 0.

Table 4–1 shows the combined effect of the CE and CF.

Instructions may
be fetched before
cache is enabled
or frozen.

Cache cleared

Instructions may
be fetched before
cache cleared.

Instruction Cache

4-23Memory and the Instruction Cache

Table 4–1. Combined Effect of the CE and CF Bits

CE CF Effect

0 0 Cache not enabled

0 1 Cache not enabled

1 0 Cache enabled and not frozen

1 1 Cache enabled and frozen

When the CE or CF bits of the CPU status register are modified, the following
four instructions may or may not be fetched from the cache or external memory
(see Example 4–1).

When the CC bit of the CPU status register is modified, the following five instruc-
tions may or may not be fetched from the cache before the cache is cleared (see
Example 4–1).

Example 4–1. Pipeline Effects of Modifying the Cache Control Bits

Pipeline Operation

Cycle Fetch Decode Read Execute

n LDI 1000h, ST

n+1 LDI 1h, R1 LDI 1000h, ST

n+2 LDI 2h, R2 LDI 1h, R1 LDI 1000h, ST

n+3 LDI 3h, R3 LDI 2h, R2 LDI 1h, R1 LDI 1000h, ST

n+4 LDI 4h, R4 LDI 3h, R3 LDI 2h, R2 LDI 1h, R1

n+5 LDI 5h, R5 LDI 4h, R4 LDI 3h, R3 LDI 2h, R2

n+6 LDI 5h, R5 LDI 4h, R4 LDI 3h, R3

n+7 LDI 5h, R5 LDI 4h, R4

n+8 LDI 5h, R5

 4-24

5-1

Data Formats and Floating-Point Operation

In the ’C3x architecture, data is organized into three fundamental types: integer,
unsigned integer, and floating-point. The terms integer and signed integer are
equivalent. The ’C3x supports short and single-precision formats for signed and
unsigned integers. It also supports short, single-precision, and extended-
precision formats for floating-point data.

Floating-point operations make fast, trouble-free, accurate, and precise com-
putations. Specifically, the ’C3x implementation of floating-point arithmetic facili-
tates floating-point operations at integer speeds, while preventing problems with
overflow, operand alignment, and other burdensome tasks that are common in
integer operations.

This chapter discusses data formats and floating-point operations supported
in the ’C3x.

Topic Page

5.1 Integer Formats 5-2.

5.2 Unsigned-Integer Formats 5-3.

5.3 Floating-Point Formats 5-4.

5.4 Floating-Point Conversion (IEEE Std. 754) 5-14.

5.5 Floating-Point Multiplication 5-26.

5.6 Floating-Point Addition and Subtraction 5-32.

5.7 Normalization Using the NORM Instruction 5-37.

5.8 Rounding (RND Instruction) 5-39.

5.9 Floating-Point to Integer Conversion (FIX Instruction) 5-41.

5.10 Integer to Floating-Point Conversion (FLOAT Instruction) 5-43.

5.11 Fast Logarithms on a Floating-Point Device 5-44.

Chapter 5

Integer Formats

 5-2

5.1 Integer Formats

The ’C3x supports two integer formats: a 16-bit short-integer format and a
32-bit single-precision integer format.

Note:

When extended-precision registers are used as integer operands, only bits
31–0 are used; bits 39–32 remain unchanged.

5.1.1 Short-Integer Format

The short-integer format is a 16-bit 2s-complement integer format for immediate-
integer operands. For those instructions that assume integer operands, this
format is sign-extended to 32 bits (see Figure 5–1). The range of an integer
si, represented in the short-integer format, is –215 ≤ si ≤ 215 – 1. In Figure 5–1,
s = signed bit.

Figure 5–1. Short-Integer Format and Sign-Extension of Short Integers

15 0

151631 0

Sign-extension of a short integer

s s s s s s s s s s s s s s s s

s

Short-integer format

s

5.1.2 Single-Precision Integer Format

In the single-precision integer format, the integer is represented in 2s-comple-
ment notation. The range of an integer sp, represented in the single-precision
integer format, is –231 ≤ sp ≤ 231 – 1. Figure 5–2 shows the single-precision
integer format.

Figure 5–2. Single-Precision Integer Format

31 0

s

Unsigned-Integer Formats

5-3Data Formats and Floating-Point Operation

5.2 Unsigned-Integer Formats

The ’C3x supports two unsigned-integer formats: a 16-bit short format and a
32-bit single-precision format.

Note:

In extended-precision registers, the unsigned-integer operands use only bits
31–0; bits 39–32 remain unchanged.

5.2.1 Short Unsigned-Integer Format

Figure 5–3 shows the16-bit, short, unsigned-integer format for immediate
unsigned-integer operands. For those instructions which assume unsigned-
integer operands, this format is zero filled to 32 bits. The range of a short
unsigned integer is 0 ≤ si ≤ 216.

Figure 5–3. Short Unsigned-Integer Format and Zero Fill
15 0

151631 0

Short unsigned-integer format

Zero fill of a short unsigned integer

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.2.2 Single-Precision Unsigned-Integer Format

In the single-precision unsigned-integer format, the number is represented as
a 32-bit value, as shown in Figure 5–4. The range of a single-precision unsigned
integer is 0 ≤ sp ≤ 232.

Figure 5–4. Single-Precision Unsigned-Integer Format
31 0

Floating-Point Formats

 5-4

5.3 Floating-Point Formats

The ’C3x supports four floating-point formats:

� A short floating-point format for immediate floating-point operands, consisting
of a 4-bit exponent, a sign bit, and an 11-bit fraction

� (’C32 only) A short floating-point format for use with 16-bit floating-point
data types, consisting of a 2s-complement, 8-bit exponent field, a sign bit,
and a 7-bit fraction

� A single-precision floating-point format by an 8-bit exponent field, a sign
bit, and a 23-bit fraction

� An extended-precision floating-point format consisting of an 8-bit exponent
field, a sign bit, and a 31-bit fraction.

All ’C3x floating-point formats consist of three fields: an exponent field (e), a
single-bit sign field (s), and a fraction field (f). The sign field and fraction field
may be considered as one unit and referred to as the mantissa field (man).

Figure 5–5. General Floating-Point Format

Exponent Sign Fraction

Mantissa

The general equation for calculating the value in a floating-point number is:

x� ss.f2� 2e

In the equation, s is the value of the sign bit, s is the inverse of the value of the
sign bit, f is the binary value of the fraction field, and e is the decimal equivalent
of the exponent field.

The mantissa represents a normalized 2s-complement number. In a normalized
representation, a most significant nonsign bit is implied, thus providing an addi-
tional bit of precision. The implied sign bit is used as follows:

� If s = 0, then the leading two bits of the mantissa are 01.
� If s = 1, then the leading two bits of the mantissa are 10.

If the sign bit, s, is equal to 0, the mantissa becomes 01.f2, where f is the binary
representation of the fraction field. If s is 1, the mantissa becomes 10.f2, where f
is the binary representation of the fraction field.

For example, if f = 000000000012 and s = 0, the value of the mantissa (man)
is 01.000000000012. If s = 1 for the same value of f, the value of man is
10.000000000012.

Floating-Point Formats

5-5Data Formats and Floating-Point Operation

The exponent field is a 2s-complement number that determines the factor of 2
by which the number is multiplied. Essentially, the exponent field shifts the
binary point in the mantissa. If the exponent is positive, then the binary point is
shifted to the right. If the exponent is negative, then the binary point is shifted
to the left.

For example, if man = 01.000000000012 and the e = 1110, then the binary point
is shifted 11 places to the right, producing the number: 01000000000012,
which is equal to 2049 decimal.

5.3.1 Short Floating-Point Format

In the short floating-point format, floating-point numbers are represented by a
2s-complement, 4-bit exponent field (e) and a 2s-complement, 12-bit mantissa
field (man) with an implied most significant nonsign bit (see Figure 5–6).

Figure 5–6. Short Floating-Point Format

Exponent Sign Fraction

15 12 11 10 0

Mantissa

Operations are performed with an implied binary point between bits 11 and 10.
When the implied most significant nonsign bit is made explicit, it is located to the
immediate left of the binary point. The floating-point 2s-complement number x
in the short floating-point format is given by the following:

x = 01.f × 2e if s = 0
x = 10.f × 2e if s = 1
x = 0 if e = –8

You must use the following reserved values to represent 0 in the short floating-
point format:

e = – 8
s = 0
f = 0

Floating-Point Formats

 5-6

The following examples illustrate the range and precision of the short floating-
point format:

Most positive: x = (2 – 2–11) × 27 = 2.5594 × 102

Least positive: x = 1 × 2–7 = 7.8125 × 10–3

Least negative: x = (–1–2–11) × 2–7 = –7.8163 × 10–3

Most negative: x = –2 × 27 = –2.5600 × 102

5.3.2 TMS320C32 Short Floating-Point Format for External 16-Bit Data

To facilitate the handling of 16-bit floating-point data types, the ‘C32 uses a new
short floating-point format for external 16-bit data types. Note that the following
short floating-point format is used only in external 16-bit floating-point data
access. This format is different than the 16-bit immediate short floating-point
data format used in the ‘C32’s instruction set.

In the short floating-point format for external 16-bit data-type size, floating-point
numbers are represented by a 2s-complement, 8-bit exponent field (e), a sign bit
(s), and an 8-bit mantissa field (man) with an implied most significant nonsign bit.

Figure 5–7. TMS320C32 Short Floating-Point Format for External 16-Bit Data

Exponent Sign Fraction

15 08 7 6

Mantissa

Operations are performed with an implied binary point between bits 7 and 6.
When the implied most significant nonsign bit is made explicit, it is located to the
immediate left of the binary point. The floating-point 2s-complement number x
in the short floating-point format is given by:

x = 01.f × 2e if s = 0
x = 10.f × 2e if s = 1
x = 0 if e = –128

You must use the following reserved values to represent 0 in the ‘C32 short
floating-point format for external 16-bit data:

e = –128
s = 0
f = 0

Floating-Point Formats

5-7Data Formats and Floating-Point Operation

The following examples illustrate the range and precision of the ‘C32 short
floating-point format for external 16-bit data:

Most positive: x = (2–2–8) � 2127 = 3.3961775 � 1038

Least positive x = 1 � 2–127 = 5.8774717541 � 10–39

Least negative: x = (–1–2–8) � 2–127 = –5.9004306 � 10–39

Most negative: x = (–2 � 2127) = –3.4028236 � 1038

Note that the floating-point instructions (such as LDF, MPYF, ADDF) and the
integer instructions (such as LDI, MPYI, ADDI) produce different results when
accessing the same memory location. The integer load instructions store the
value in the LSBs of the ‘C32’s registers. A bit field in the strobe control register
controls sign extension or zero fill of the MSBs of the integer value. On the other
hand, the floating-point load instructions store the value in the MSBs of the
‘C32’s registers. For example:

If AR1 = 4000h, R1 = 00 00000000h, the value stored at memory location
4000h is 0180h, and STRB0 is configured for a physical memory size and data
type size of 16 bits.

The result of: ADDI *AR1,R1 is R1 = 00 00000180h, while

The result of: ADDF *AR1,R1 is R1 = 01 C0000000h (= – 3.0), since
– 4.0 + 1.0 = – 3.0

5.3.3 Single-Precision Floating-Point Format

In the single-precision format, the floating-point number is represented by an
8-bit exponent field (e) and a 2s-complement 24-bit mantissa field (man) with
an implied most significant nonsign bit (see Figure 5–8).

Figure 5–8. Single-Precision Floating-Point Format

Exponent Sign Fraction

31 24 23 22 0

Mantissa

Operations are performed with an implied binary point between bits 23 and 22.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

x = 01.f × 2e if s = 0
x = 10.f × 2e if s = 1
x = 0 if e = –128

Floating-Point Formats

 5-8

You must use the following reserved values to represent 0 in the single-precision
floating-point format:

e = – 128
s = 0
f = 0

The following examples illustrate the range and precision of the single-precision
floating-point format:

Most positive: x = (2 – 2–23) × 2127 = 3.4028234 × 1038

Least positive: x = 1 × 2–127 = 5.8774717 × 10–39

Least negative: x = (–1–2–23) × 2–127 = – 5.8774724 × 10–39

Most negative: x = –2 × 2127 = – 3.4028236 × 1038

5.3.4 Extended-Precision Floating-Point Format

In the extended-precision format, the floating-point number is represented by
an 8-bit exponent field (e) and a 32-bit mantissa field (man) with an implied
most significant nonsign bit (see Figure 5–9).

Figure 5–9. Extended-Precision Floating-Point Format

Exponent Sign Fraction

39 32 31 30 0

Mantissa

Operations are performed with an implied binary point between bits 31 and 30.
When the implied most significant nonsign bit is made explicit, it is located to
the immediate left of the binary point. The floating-point number x is given by
the following:

x = 01.f × 2e if s = 0
x = 10.f × 2e if s = 1
x = 0 if e = –128

You must use the following reserved values to represent 0 in the extended-
precision floating-point format:

e = –128
s = 0
f = 0

Floating-Point Formats

5-9Data Formats and Floating-Point Operation

The following examples illustrate the range and precision of the extended-
precision floating-point format:

Most positive: x = (2 – 2–23) × 2127 = 3.4028234 × 1038

Least positive: x = 1 × 2–127 = 5.8774717541 × 1038

Least negative: x = (–1–2–31) × 2–127 = – 5.8774717569 × 10–39

Most negative: x = –2 × 2127 = – 3.4028236691 × 1038

5.3.5 Determining the Decimal Equivalent of a TMS320C3x Floating-Point Format

To convert a ‘C3x floating-point number to its decimal equivalent, follow these
steps:

Step 1: Convert the exponent field to its decimal representation.

The exponent field is a 2s-complement number. To convert a 2s-
complement number, look at the MSB. If it is 0, then convert the
binary number to a decimal number. If the MSB is 1, then comple-
ment the binary number, add 1 to the result, and then convert this
binary number to a decimal number.

Step 2: Convert the mantissa field to its decimal representation.

The mantissa field is represented as a sign-mantissa number with an
implied 1 and an implied binary point between the sign bit and the frac-
tion field. If the sign bit is cleared (s = 0), form the mantissa by writing
01, and appending the bits in the fraction field after the binary point.
For example, if f = 101000000002, then man = 01.101000000002:

s Fraction

0 1 0 1 0 0 0 0 0 0 0 0

Rewrite the mantissa as:

Mantissa

0 1 . 1 0 1 0 0 0 0 0 0 0 0

If the sign bit is set (s = 1), form the mantissa by writing 10 and appending the
bits in the fraction field after the binary point. For example, if f = 101000000002,
then man = 10.101000000002.

s Fraction

1 1 0 1 0 0 0 0 0 0 0 0

Floating-Point Formats

 5-10

Rewrite the mantissa as:

Mantissa

1 0 . 1 0 1 0 0 0 0 0 0 0 0

Step 3: Shift the decimal point of the mantissa according to the value of the
exponent.

If the exponent is positive, shift the binary point to the right by the value
of the exponent. If the exponent is negative, shift the binary point to
the left.

For example, if e = 210 and the man = 01.110000000002, then the
shifted mantissa becomes 0111.0000000002, which is equivalent to
7 in decimal.

If, on the other hand, e = –210 and man = 01.100000000002, then the
shifted mantissa becomes 0.01100000000002, which is equivalent
to 3/8 in decimal.

The following examples illustrate how you can obtain the equivalent
floating-point value of a number in ‘C3x floating-point format. Each
of the examples uses the single-precision floating-point format.

Example 5–1. Positive Number

 0 2 4 0 0 0 0 0 Hex value
0000 0010 0100 0000 0000 0000 0000 0000 Binary value

Exponent = 0000 0010 2 = 2
Sign = 0
Fraction = .10000 2

Value = 01.1 2 × 2 2 = 0110 2. = 6

Fraction

Implied

Sign

Floating-Point Formats

5-11Data Formats and Floating-Point Operation

Example 5–2. Negative Number

 0 1 C 0 0 0 0 0 Hex value
0000 0001 1100 0000 0000 0000 0000 0000 Binary value

Exponent = 0000 0001 2 = 1
Sign = 1
Fraction = .10000 2

Value = 10.1 2 × 2 1 = 101 2. = –3

Fraction

Implied

Sign

Example 5–3. Fractional Number

 F B 4 0 0 0 0 0 Hex value
1111 1011 0100 0000 0000 0000 0000 0000 Binary value

Exponent = 1111 1011 2 = –5
Sign = 0
Fraction = .10000 2

Value = 01.1 2 × 2 –5 = .000011 2 = 3/64

Fraction

Implied

Sign

2–5

2–6

Floating-Point Formats

 5-12

5.3.6 Conversion Between Floating-Point Formats

Floating-point operations assume several different formats for inputs and out-
puts. These formats often require conversion from one floating-point format to
another (for example, short floating-point format to extended-precision floating-
point format). Format conversions occur automatically in hardware, with no
overhead, as a part of the floating-point operations. Examples of the four con-
versions are shown in Figure 5–10 through Figure 5–13. When a floating-point
format 0 is converted to a greater-precision format, it is always converted to a
valid representation of 0 in that format. In Figure 5–10 through Figure 5–13,
s = sign bit of the exponent, y = short mantissa, and x = short exponent.

Figure 5–10. Converting from Short Floating-Point Format to Single-Precision
Floating-Point Format

Short floating-point format

Single-precision floating-point format

y y 0 0yxs s

y y yxxs

15 12 11 10 0

31 27 24 23 22 12 11 0

x

s s s x x

In this format, the exponent field is sign extended, and the 12 LSBs of the mantissa
field are filled with 0s.

Figure 5–11. Converting from Short Floating-Point Format to Extended-Precision
Floating-Point Format

Short floating-point format

Extended-precision floating-point format

y 0 0

y y y

15 12 11 10 0

39 35 32 3031 20 19 0

s s

xxs x

s s s yyx x x

The exponent field in this format is sign extended, and the 20 LSBs of the mantissa
field are filled with 0s.

Floating-Point Formats

5-13Data Formats and Floating-Point Operation

Figure 5–12. Converting from Single-Precision Floating-Point Format
to Extended-Precision Floating-Point Format

Single-precision floating-point format

Extended-precision floating-point format

0yxx

y y yxx

31 24 23 22 0

39 32 3031 0

y y 0

8 7

The 8 LSBs of the mantissa field are filled with 0s.

Figure 5–13. Converting from Extended-Precision Floating-Point Format
to Single-Precision Floating-Point Format

Extended-precision floating-point format

zyxx

39 32 3031 0

y y z

8 7

Single-precision floating-point format

y y yxx

31 24 23 22 0

The 8 LSBs of the mantissa field are truncated.

Floating-Point Conversion (IEEE Std. 754)

 5-14

5.4 Floating-Point Conversion (IEEE Std. 754)

The ‘C3x floating-point format is not compatible with the IEEE standard 754
format. The IEEE floating-point format uses sign-magnitude notation for the
mantissa, and the exponent is biased by 127. In a 32-bit word representing a
floating-point number, the first bit is the sign bit. The next eight bits correspond
to the exponent, which is expressed in an offset-by-127 format (the actual expo-
nent is e –127). The next 23 bits represent the absolute value of the mantissa
with the most significant 1 implied. The binary point follows this most significant
1. In other words, the mantissa actually has 24 bits (see Figure 5–14). There are
several special cases, summarized below.

These are the values of the represented numbers in the IEEE floating-point
format:

x = (–1)s x 2e–127 x (01.f) if 0 < e < 255

Figure 5–14. IEEE Single-Precision Std. 754 Floating-Point Format

e f

31 23 22 0

s

30

mantissa

The following five cases define the value v of a number expressed in the IEEE
format:

1) If e = 255 and f ≠ 0, then v = NaN

2) If e = 255 and f = 0, then v = (–1)s infinite

3) If 0 < e < 255, then v = (–1)s × 2e–127(1.f)

4) If e = 0 and f ≠ 0, then v = (–1)s × 2–126(0.f)

5) If e = 0 and f = 0, then v = (–1)s × 0

where:

s = sign bit

e = the exponent field

f = the fraction field

NaN = not a number

For the above five representations, e is treated as an unsigned integer. Case
1 generates NaN (not an number) and is primarily used for software signaling.
Case 4 represents a denormalized number. Case 5 represents positive and
negative 0.

Floating-Point Conversion (IEEE Std. 754)

5-15Data Formats and Floating-Point Operation

Figure 5–15. TMS320C3x Single-Precision 2s-Complement Floating-Point Format

e f

31 23 22 024

s

Note: Same format as for the ’C4x

In comparison, Figure 5–15 shows the the ‘C3x 2s-complement floating-point
format. In this format, two cases can be used to define value v of a number:

1) If e = –128 then v = 0

2) If e ≠ –128 then v = ss.f2 � 2e

where:

s = sign bit

e = the exponent field

f = the fraction field

For this representation, e is treated as a 2s-complement integer. The fraction
and sign bit form a normalized 2s-complement mantissa.

Note: Differentiating Symbols for IEEE and TMS320C3x Formats

To differentiate between the symbols that define these two formats, all IEEE
fields are subscripted with an IEEE (for example, eIEEE, sIEEE, and so forth).
Similarly, all 2s-complement fields are subscripted with 2 (that is, e2, s2, f2).

5.4.1 Converting IEEE Format to 2s-Complement TMS320C3x Floating-Point Format

The most common conversion is the IEEE-to-2s-complement format. This
conversion is done according to rules in Table 5–1.

Table 5–1. Converting IEEE Format to 2s-Complement Floating-Point Format

If these values are present Then these values equal

Description Case e IEEE sIEEE fIEEE e2 s2 f2

max neg � 1 255 1 any 7Fh 1 00 0000h

max pos � 2 255 0 any 7Fh 0 7F FFFFh

3 0< eIEEE <255 0 fIEEE eIEEE–7Fh 0 fIEEE

4 0< eIEEE <255 1 ≠0 eIEEE–7Fh 1 f IEEE+1†

5 0< eIEEE <255 1 0 eIEEE–80h 1 0

zero 6 0 any any 80h 0 00 0000h

† f IEEE = 1s complement of fIEEE

Floating-Point Conversion (IEEE Std. 754)

 5-16

Case 1 maps the IEEE positive NaNs and positive infinity to the single-preci-
sion 2s-complement most positive number. Overflow is also signaled to allow
you to check for these special cases.

Case 2 maps the IEEE negative NaNs and negative infinity to the single-
precision 2s-complement most negative number. Overflow is also signaled
to allow you to check for these special cases.

Case 3 maps the IEEE positive normalized numbers to the identical value in
the 2s-complement positive number.

Case 4 maps the IEEE negative normalized numbers with a nonzero fraction
to the identical value in the 2s-complement negative number.

Case 5 maps the IEEE negative normalized numbers with a 0 fraction to the
identical value in the 2s-complement negative number.

Case 6 maps the IEEE positive and negative denormalized numbers and positive
and negative 0s to a 2s-complement 0.

Based on these definitions of the formats, two versions of the conversion routines
were developed. One version handles the complete definition of the formats. The
other ignores some of the special cases (typically the ones that are rarely used),
but it has the benefit of executing faster than the complete conversion. For this
discussion, the two versions are referred to as the complete version and the fast
version, respectively.

Floating-Point Conversion (IEEE Std. 754)

5-17Data Formats and Floating-Point Operation

5.4.1.1 IEEE-to-TMS320C3x Floating-Point Format Conversion

Example 5–4 shows the fast conversion from IEEE to ’C3x floating-point format.
It properly handles the general case when 0 < e < 255, and also handles 0s (that
is, e = 0 and f = 0). The other special cases (denormalized, infinity, and NaN)
are not treated and, if present, will give erroneous results.

The fast version of the IEEE-to ’C3x conversion routine was originally developed
by Keith Henry of Apollo Computer, Inc. The other routines were based on this
initial input.

Example 5–4. IEEE-to-TMS320C3x Conversion (Fast Version)

* TITLE IEEE TO TMS320C3x CONVERSION (FAST VERSION)
*
*
* SUBROUTINE FMIEEE
*
* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE
* TMS320C3x FLOATING-POINT FORMAT. THE NUMBER TO
* BE CONVERTED IS IN THE LOWER 32 BITS OF R0.
* THE RESULT IS STORED IN THE UPPER 32 BITS OF R0.
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE
* FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* –––––––––––+–––––––––––––––––––––––––––––––––––––

* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*

Floating-Point Conversion (IEEE Std. 754)

 5-18

Example 5–4.IEEE-to-TMS320C3x Conversion (Fast Version) (Continued)

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*

* CYCLES: 12 (WORST CASE) WORDS: 12
*

.global FMIEEE
*

FMIEEE AND3 R0,*AR1,R1 ; Replace fraction with 0
BND NEG ; Test sign
ADDI R0,R1 ; Shift sign

; and exponent inserting 0
LDIZ *+AR1(1),R1 ; If all 0, generate C30 0
SUBI *+AR1(2),R1 ; Unbias exponent
PUSH R1
POPF R0 ; Load this as a flt. pt. number
RETS

*
NEG PUSH R1

POPF R0 ; Load this as a flt. pt. number
NEGF R0,R0 ; Negate if orig. sign is negative
RETS

Example 5–5 shows the complete conversion between IEEE and ’C3x formats.
In addition to the general case and the 0s, it handles the special cases as follows:

� If NaN (e = 255, f< >0), the number is returned intact.

� If infinity (e = 255, f = 0), the output is saturated to the most positive or nega-
tive number, respectively.

� If denormalized (e = 0, f< >0), two cases are considered. If the MSB of f is
1, the number is converted to ’C3x format. Otherwise an underflow occurs,
and the number is set to 0.

Floating-Point Conversion (IEEE Std. 754)

5-19Data Formats and Floating-Point Operation

Example 5–5. IEEE-to-TMS320C3x Conversion (Complete Version)

* TITLE IEEE TO TMS320C3x CONVERSION (COMPLETE VERSION)
*
*
* SUBROUTINE FMIEEE1
*

* FUNCTION: CONVERSION BETWEEN THE IEEE FORMAT AND THE TMS320C3x
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE LOWER 32 BITS OF R0. THE RESULT IS STORED
* IN THE UPPER 32 BITS OF R0.
*
*
* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
* (5) 0x7F800000
* (6) 0x00400000
* (7) 0x007FFFFF
* (8) 0x7F7FFFFF
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* –––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0, R1
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER SP IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*
* CYCLES: 23 (WORST CASE) WORDS: 34
*

.global FMIEEE1
*
FMIEEE1 LDI R0,R1
AND *+AR1(5),R1
BZ UNNORM ; If e = 0, number is either 0 or
* ; denormalized
XOR *+AR1(5),R1
BNZ NORMAL ; If e < 255, use regular routine

Floating-Point Conversion (IEEE Std. 754)

 5-20

Example 5–5.IEEE-to-TMS320C3x Conversion (Complete Version) (Continued)

* HANDLE NaN AND INFINITY

TSTB *+AR1(7),R0
RETSNZ ; Return if NaN
LDI R0,R0

LDFGT *+AR1(8),R0 ; If positive, infinity =
; most positive number

LDFN *+AR1(5),R0 ; If negative, infinity =
RETS ; most negative number RETS

* HANDLE 0s AND UNNORMALIZED NUMBERS

UNNORM TSTB *+AR1(6),R0 ; Is the MSB of f equal to 1?
LDFZ *+AR1(3),R0 ; If not, force the number to 0
RETSZ ; and return

XOR *+AR1(6),R0 ; If MSB of f = 1, make it 0
BND NEG1
LSH 1,R0 ; Eliminate sign bit

; & line up mantissa
SUBI *+AR1(2),R0 ; Make e = ±127
PUSH R0
POPF R0 ; Put number in floating point format
RETS

NEG1 POPF R0
NEGF R0,R0 ; If negative, negate R0
RETS

* HANDLE THE REGULAR CASES
*
NORMAL AND3 R0,*AR1,R1 ; Replace fraction with 0

BND NEG ; Test sign
ADDI R0,R1 ; Shift sign and exponent inserting 0
SUBI *+AR1(2),R1 ; Unbias exponent
PUSH R1
POPF R0 ; Load this as a flt. pt. number
RETS

NEG POPF R0 ; Load this as a flt. pt. number
NEGF R0,R0 ; Negate if original sign negative
RETS

Floating-Point Conversion (IEEE Std. 754)

5-21Data Formats and Floating-Point Operation

5.4.2 Converting 2s-Complement TMS320C3x Floating-Point Format to IEEE Format

This conversion is performed according to the following table:

Table 5–2. Converting 2s-Complement Floating-Point Format to IEEE Format

If these values are present Then these values equal

Case e2 s2 f2 eIEEE sIEEE fIEEE

1 –128 00h 0 00 0000h

2 –127 00h 0 00 0000h

3 –126≤ e2 ≤127 0 e2+7Fh 0 f2

4 –126≤ e2 ≤127 1 ≠0 e2+7Fh 0 f 2+1†

5 –126≤ e2 ≤127 1 0 e2+80h 1 00 0000h

6 127 1 0 FFh 1 00 0000h

† f2 = 2s-complement of f2 .

Case 1 maps a 2s-complement 0 to a positive IEEE 0.

Case 2 maps the 2s-complement numbers that are too small to be repre-
sented as normalized IEEE numbers to a positive IEEE 0.

Case 3 maps the positive 2s-complement numbers that are not covered by
case 2 into the identically valued IEEE number.

Case 4 maps the negative 2s-complement numbers with a nonzero fraction
that are not covered in case 2 into the identically valued IEEE number.

Case 5 maps all the negative 2s-complement numbers with a 0 fraction, except
for the most negative 2s-complement number and those that are not covered
in case 2, into the identically valued IEEE number.

Case 6 maps the most negative 2s-complement number to the IEEE negative
infinity.

Floating-Point Conversion (IEEE Std. 754)

 5-22

5.4.2.1 TMS320C3x-to-IEEE Floating-Point Format Conversion

The vast majority of the numbers represented by the ’C3x floating-point format
are covered by the general IEEE format and the representation of 0s. The only
special case is e = –127 in the ’C3x format; this corresponds to a denormalized
number in IEEE format. It is ignored in the fast version, while it is treated properly
in the complete version. Example 5–6 shows the fast version, and Example 5–7
shows the complete version of the ’C3x-to-IEEE conversion.

Example 5–6. TMS320C3x-to-IEEE Conversion (Fast Version)

*
* TITLE TMS320C3x TO IEEE CONVERSION (FAST VERSION)
*
*
* SUBROUTINE TOIEEE
*
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE UPPER 32 BITS OF R0. THE RESULT WILL BE IN
* THE LOWER 32 BITS OF R0.
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*
* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000
* (2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION

* ––––––––––+–––––––––––––––––––––––––––––––––––––

* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER ‘SP’ IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*

Floating-Point Conversion (IEEE Std. 754)

5-23Data Formats and Floating-Point Operation

Example 5–6.TMS320C3x-to-IEEE Conversion (Fast Version) (Continued)

* CYCLES: 14 (WORST CASE) WORDS: 15
*

.global TOIEEE
*
TOIEEE LDF R0,R0 ; Determine the sign of the number

LDFZ *+AR1(4),R0 ; If 0, load appropriate number
BND NEG ; Branch to NEG if negative (delayed)
ABSF R0 ; Take the absolute value of the number
LSH 1,R0 ; Eliminate the sign bit in R0
PUSHF R0
POP R0 ; Place number in lower 32 bits of R0
ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Add the positive sign
RETS

NEG POP R0 ; Place number in lower 32 bits
; of R0

ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Make space for the sign
ADDI *+AR1(3),R0 ; Add the negative sign
RETS

Floating-Point Conversion (IEEE Std. 754)

 5-24

Example 5–7. TMS320C3x-to-IEEE Conversion (Complete Version)

*
* TITLE TMS320C3x TO IEEE CONVERSION (COMPLETE VERSION)
*
*
* SUBROUTINE TOIEEE1
*
*
* FUNCTION: CONVERSION BETWEEN THE TMS320C3x FORMAT AND THE IEEE
* FLOATING-POINT FORMAT. THE NUMBER TO BE CONVERTED
* IS IN THE UPPER 32 BITS OF R0. THE RESULT WILL BE
* IN THE LOWER 32 BITS OF R0.
*
*

* UPON ENTERING THE ROUTINE, AR1 POINTS TO THE FOLLOWING TABLE:
*

* (0) 0xFF800000 < –– AR1
* (1) 0xFF000000

(2) 0x7F000000
* (3) 0x80000000
* (4) 0x81000000
* (5) 0x7F800000
* (6) 0x00400000
* (7) 0x007FFFFF
* (8) 0x7F7FFFFF
*

* ARGUMENT ASSIGNMENTS:

* ARGUMENT | FUNCTION
* ––––––––––+–––––––––––––––––––––––––––––––––––––
* R0 | NUMBER TO BE CONVERTED
* AR1 | POINTER TO TABLE WITH CONSTANTS
*

* REGISTERS USED AS INPUT: R0, AR1
* REGISTERS MODIFIED: R0
* REGISTER CONTAINING RESULT: R0
*

* NOTE: SINCE THE STACK POINTER ’SP’ IS USED, MAKE SURE TO
* INITIALIZE IT IN THE CALLING PROGRAM.
*
*

* CYCLES: 31 (WORST CASE) WORDS: 25
*

.global TOIEEE1

Floating-Point Conversion (IEEE Std. 754)

5-25Data Formats and Floating-Point Operation

Example 5–7.TMS320C3x-to-IEEE Conversion (Complete Version) (Continued)

*
TOIEEE1 LDF R0,R0 ; Determine the sign of the number

LDFZ *+AR1(4),R0 ; If 0, load appropriate number
BND NEG ; Branch to NEG if negative (delayed)
ABSF R0 ; Take the absolute value

; of the number
LSH 1,R0 ; Eliminate the sign bit in R0
PUSHF R0
POP R0 ; Place number in lower 32 bits of R0
ADDI *+AR1(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Add the positive sign

CONT TSTB *+AR1(5),R0
RETSNZ ; If e > 0, return
TSTB *+AR1(7),R0
RETSZ ; If e = 0 & f = 0, return
PUSH R0
POPF R0
LSH ±1,R0 ; Shift f right by one bit
PUSHF R0
POP R0
ADDI *+AR1(6),R0 ; Add 1 to the MSB of f
RETS

NEG POP R0 ; Place number in lower 32 bits of R0
BRD CONT
ADDI *+ARI(2),R0 ; Add exponent bias (127)
LSH ±1,R0 ; Make space for the sign
ADDI *+AR1(3),R0 ; Add the negative sign
RETS

Floating-Point Multiplication

 5-26

5.5 Floating-Point Multiplication

A floating-point number α can be written in floating-point format as in the following
formula, where α(man) is the mantissa and α(exp) is the exponent:

α = α(man) × 2α(exp)

The product of α and b is c, defined as:

c = α × b = α(man) × b(man) × 2(α(exp) + b (exp))

thus:

c(man) = α(man) × b(man)
c(exp) = α(exp) + b(exp)

During floating-point multiplication, source operands are in the single-precision
floating-point format. If the source operands are in short floating-point format,
they are converted to single-precision floating-point format. If the source oper-
ands are in extended-precision floating-point format, they are truncated to
single-precision format. These conversions occur automatically in hardware
with no overhead. All results of floating-point multiplications are in the extended-
precision format. These multiplications occur in a single cycle.

Figure 5–16 is a flowchart that shows the steps involved in floating-point multi-
plication. Each step is labelled with a number in parenthesis.

� In step 1, the 24-bit source operand mantissas are multiplied, producing
a 50-bit result c(man). (Input and output data are always represented as
normalized numbers.)

� In step 2, the exponents, α(exp) and b(exp), are added, yielding c(exp).

� Step 3 checks for whether c(man) in extended-precision format is equal to
0. If c(man) is 0, step 7 sets c(exp) to –128, thus yielding the representation
for 0.

� Steps 4 and 5 normalize the result.

� If a right shift of 1 is necessary, then in step 8, c(man) is right-shifted one
bit, thus adding 1 to c(exp).

� If a right shift of 2 is necessary, then in step 9, c(man) is right-shifted two
bits, thus adding 2 to c(exp). Step 6 occurs when the result is normalized.

� In step 10, c(man) is set in the extended-precision floating-point format.

� Steps 11 through 16 check for special cases of c(exp).

Floating-Point Multiplication

5-27Data Formats and Floating-Point Operation

� If c(exp) has overflowed (step 11) in the positive direction, then step 14
sets c(exp) to the most positive extended-precision format value. If c(exp)
has overflowed in the negative direction, then step 14 sets c(exp) to the
most negative extended-precision format value.

� If c(exp) has underflowed (step 12), then step 15 sets c to 0; that is,
c(man) = 0 and c(exp) = –128.

Floating-Point Multiplication

 5-28

Figure 5–16. Flowchart for Floating-Point Multiplication

α(man) b(man) α(exp) b(exp)

(1) (2)

Multiply mantissas Add exponents

c(man) = α(man) x b(man)
(50-bit result)

c(exp) = α(exp) + b(exp)

Put c(man) in extended pre-
cision floating-point format

Test for special cases of c(man)

c(man) > > 1
and

c(exp) = c(exp) + 1

c(man) > > 2
and

c(exp) = c(exp) + 2

c(exp) =–128

(4)
Right shift 1
to normalize

(5)
Right shift 2
to normalize

(3)
c(man) = 0

(6)
No shift

to normalize

Dispose of extra bits

Test for special cases of c(exp)

(12)
c(exp) underflow

(13)
c(exp) in range

(11)
c(exp) overflow

If c(man) > 0,
set c(exp) to most
positive value

If c(man) < 0,
set c(exp) to most
negative value

c(exp) = –128

c(man) = 0

Set c to final result

c = α x b

(14)

(15)

(16)

(10)

(9)(8)(7)

Floating-Point Multiplication

5-29Data Formats and Floating-Point Operation

Example 5–8 through Example 5–12 illustrate how floating-point multiplication
is performed on the ’C3x. For these examples, the implied most significant
nonsign bit is made explicit.

Example 5–8. Floating-Point Multiply (Both Mantissas = –2.0)

Let:

α = –2.0 × 2α(exp) = 10.00000000000000000000000 × 2α(exp)

b = –2.0 × 2b(exp) = 10.00000000000000000000000 × 2b(exp)

Where:

α and b are both represented in binary form according to the normalized
single-precision floating-point format.

Then:

10.00000000000000000000000 × 2α(exp)

× 10.00000000000000000000000 × 2b(exp)

0100.000 × 2 (α(exp) + b(exp))

To place this number in the proper normalized format, it is necessary to shift
the mantissa two places to the right and add 2 to the exponent. This yields:

10.00000000000000000000000 × 2α(exp)

× 10.00000000000000000000000 × 2b(exp)

0100.00 × 2 (α(exp) + b(exp))

In floating-point multiplication, the exponent of the result may overflow. This can
occur when the exponents are initially added or when the exponent is modified
during normalization.

Floating-Point Multiplication

 5-30

Example 5–9. Floating-Point Multiply (Both Mantissas = 1.5)

Let:

α = 1.5 × 2α(exp) = 01.0000000000000000000000 × 2α(exp)

b = 1.5 × 2b(exp) = 01.0000000000000000000000 × 2b(exp)

Where:

a and b are both represented in binary form according to the single-preci-
sion floating-point format.

Then:

10.00000000000000000000000 × 2α(exp)

x 10.00000000000000000000000 × 2b(exp)

01.00 × 2 (α(exp) + b(exp) + 2)

To place this number in the proper normalized format, it is necessary to shift
the mantissa one place to the right and add 1 to the exponent. This yields:

01.0000000000000000000000 × 2α(exp)

× 01.0000000000000000000000 × 2b(exp)

01. 00100 × 2 (α(exp) + b(exp) + 1)

Example 5–10. Floating-Point Multiply (Both Mantissas = 1.0)

Let:

α = 1.0 × 2α(exp) = 01.00000000000000000000000 × 2α(exp)

b = 1.0 × 2b(exp) = 01.00000000000000000000000 × 2b(exp)

Where:

a and b are both represented in binary form according to the single-preci-
sion floating-point format.

Then:

01.00000000000000000000000 × 2α(exp)

× 01.00000000000000000000000 × 2b(exp)

0001.00 y 2 (a(exp) + b(exp))

This number is in the proper normalized format. Therefore, no shift of the
mantissa or modification of the exponent is necessary.

The previous examples show cases where the product of two normalized
numbers can be normalized with a shift of 0, 1, or 2. The floating-point format
of the ‘C3x makes this possible.

Floating-Point Multiplication

5-31Data Formats and Floating-Point Operation

Example 5–11. Floating-Point Multiply Between Positive and Negative Numbers

Let:

α = 1.0 x 2α(exp) = 01.00000000000000000000000 x 2α(exp)

b = –2.0 x 2b(exp) = 10.00000000000000000000000 x 2b(exp)

Then:

01.00000000000000000000000 × 2α(exp)

x 10.00000000000000000000000 × 2b(exp)

1110.00 × 2 (α(exp) + b(exp))

The result is: c = –2.0 x 2(α(exp) + b(exp))

Example 5–12. Floating-Point Multiply by 0

All multiplications by a floating-point 0 yield a result of 0 (f = 0, s = 0, and
exp = –128).

Floating-Point Addition and Subtraction

 5-32

5.6 Floating-Point Addition and Subtraction

In floating-point addition and subtraction, two floating-point numbers α and b
can be defined as:

α = α(man) × 2 α(exp)

b = b(man) × 2 b(exp)

The sum (or difference) of α and b can be defined as:

c = α ± b
= (α(man) ± (b(man) × 2 –(α(exp)– b(exp))) × 2 α(exp), if α(exp) ≥ b(exp)
= (α(man) × 2 –(b(exp)–α(exp))) ± b(man)) × 2 b(exp), if α(exp) < b(exp)

Figure 5–17 shows the flowchart for floating-point addition. Because this flow-
chart assumes signed data, it is also appropriate for floating-point subtraction.
In this figure, it is assumed that α(exp) ≤ b(exp).

� In step 1, the source exponents, α(exp) and b(exp), are compared, and
c(exp) is set equal to the largest of the two source exponents.

� In step 2, d is set to the difference of the two exponents.

� In step 3, the mantissa with the smallest exponent, in this case α(man),
is right-shifted d bits to align the mantissas.

� In step 4, after the mantissas have been aligned, they are added.

� In steps 5 through 7, a check for a special case of c(man). If c(man) is 0
(step 5), then c(exp) is set to its most negative value (step 8) to yield the
correct representation of 0. If c(man) has overflowed c (step 6), then in
step 9 c(man) is right-shifted one bit and 1 is added to c(exp). In step 10,
the result is normalized.

� Steps 11 through 13 check for special cases of c(exp). If c(exp) has over-
flowed (step 11) in the positive direction, then step 14 sets c(exp) to the
most positive extended-precision format value. If c(exp) has overflowed
(step 11) in the negative direction, then step 14 sets c(exp) to the most
negative extended-precision format value. If c(exp) has underflowed (step
12), then step 15 sets c to 0; that is, c(man) = 0 and c(exp) = –128. If no
overflow or underflow occurred, then c is not modified.

Floating-Point Addition and Subtraction

5-33Data Formats and Floating-Point Operation

Figure 5–17. Flowchart for Floating-Point Addition

α(man) b(man) α(exp) b(exp)

(3)

(2)

Align mantissas

Subtract exponents

α(man) = α(man) > > d

Discard LSBs to keep
α(man) in extended-
precision floating-
point format d = b(exp) ± α(exp)

c(man) = c(man) > > 1
c(exp) = c(exp) + 1
Discard LSBs to keep in
extended-precision
floating-point format

Test for special cases of c(man)

c(exp) = –128

(6)

Overflow of c(man)

(7)
k = # of leading
non-significant
sign bits

(5)

c(man) = 0

Test for special cases of c(exp)

(12)
c(exp) underflow

(13)
c(exp) in range

(11)
c(exp) overflow

If c(man) > 0,
set c to most
positive value

If c(man) < 0,
set c to most
negative value

set c to 0
c(exp) = –128

c(man) = 0

Set c to final result

c = α + b

(14) (15)

(16)

(8)

(1)

Compare exponents
If α(exp) < = b(exp)

c(exp) = b(exp)
else

c(exp) = α(exp)
(Assume for simplicity
that α(exp) < = b(exp))

(4) Add mantissas

c (man) = α(man) + b(man)

c(man) < < k
c(exp) = c(exp) –k

(10)

(9)

Floating-Point Addition and Subtraction

 5-34

The following examples describe the floating-point addition and subtraction
operations. It is assumed that the data is in the extended-precision floating-
point format.

Example 5–13. Floating-Point Addition

In the case of two normalized numbers to be summed, let

α = 1.5 = 01.1000000000000000000000000000000 × 20

b = 0.5 = 01.0000000000000000000000000000000 × 2–1

It is necessary to shift b to the right by 1 so that α and b have the same exponent.
This yields:

b = 0.5 = 00.1000000000000000000000000000000 × 20

Then:

01.10000000000000000000000000000000 × 2
+00.10000000000000000000000000000000 × 20

010.00000000000000000000000000000000 × 20

As in the case of multiplication, it is necessary to shift the binary point one place
to the left and add 1 to the exponent. This yields:

01.1000000000000000000000000000000 × 20

± 00.1000000000000000000000000000000 × 20

01.0000000000000000000000000000000 × 21

Floating-Point Addition and Subtraction

5-35Data Formats and Floating-Point Operation

Example 5–14. Floating-Point Subtraction

A subtraction is performed in this example. Let:

α = 01.0000000000000000000000000000001 × 20

b = 01.0000000000000000000000000000000 × 20

The operation performed is α–b. The mantissas are already aligned because
the two numbers have the same exponent. The result is a large cancellation
of the upper bits, as shown below.

01.0000000000000000000000000000001 × 20

–01.0000000000000000000000000000000 × 20

00.0000000000000000000000000000001 × 20

The result must be normalized. In this case, a left shift of 31 is required. The
exponent of the result is modified accordingly. The result is:

01.0000000000000000000000000000001 × 20

– 01.0000000000000000000000000000000 × 20

01.0000000000000000000000000000000 × 2–31

Example 5–15. Floating-Point Addition With a 32-Bit Shift

This example illustrates a situation where a full 32-bit shift is necessary to
normalize the result. Let:

α = 01.1111111111111111111111111111111 × 2127

b = 10.0000000000000000000000000000000 × 2127

The operation to be performed is α + b.

01.1111111111111111111111111111111 × 2127

+10.0000000000000000000000000000000 × 2127

11.1111111111111111111111111111111 × 2127

Normalizing the result requires a left shift of 32 and a subtraction of 32 from
the exponent. The result is:

01.1111111111111111111111111111111 × 2127

+10.0000000000000000000000000000000 × 2127

11.1111111111111111111111111111111 × 2127

Floating-Point Addition and Subtraction

 5-36

Example 5–16. Floating-Point Addition/Subtraction With Floating-Point 0

When floating-point addition and subtraction are performed with a floating-
point 0, the following identities are satisfied:

α ± 0 = α (α ≠ 0)
0 ± 0 = 0
0 – α = –α (α ≠ 0)

Normalization Using the NORM Instruction

5-37Data Formats and Floating-Point Operation

5.7 Normalization Using the NORM Instruction

The NORM instruction normalizes an extended-precision floating-point number
that is assumed to be unnormalized (see Example 5–17). Since the number is
assumed to be unnormalized, no implied most significant nonsign bit is assumed.
The NORM instruction:

1) Locates the most significant nonsign bit of the floating-point number
2) Left shifts to normalize the number
3) Adjusts the exponent

Example 5–17. NORM Instruction

Assume that an extended-precision register contains the value:

man = 00000000000000000001000000000001, exp = 0

When the normalization is performed on a number assumed to be unnormalized,
the binary point is assumed to be:

man = 0.0000000000000000001000000000001, exp = 0

This number is then sign-extended one bit so that the mantissa contains 33 bits:

man = 00.0000000000000000001000000000001, exp = 0

The intermediate result after the most significant nonsign bit is located and the
shift performed is:

man = 01.0000000000010000000000000000000, exp = –19

The final 32-bit value output after removing the redundant bit is:

man = 00000000000010000000000000000000, exp = –19

The NORM instruction is useful for counting the number of leading 0s or leading
1s in a 32-bit field. If the exponent is initially 0, the absolute value of the final
value of the exponent is the number of leading 1s or 0s. This instruction is also
useful for manipulating unnormalized floating-point numbers.

Given the extended-precision floating-point value a to be normalized, the
normalization, norm (), is performed as shown in Figure 5–18.

Normalization Using the NORM Instruction

 5-38

Figure 5–18. Flowchart for NORM Instruction Operation

Test for special cases of c (man)

c(exp) = –128

(1)
α (man) = 0

Test for special cases of c (exp)

(6)
c (exp)

underflow

(7)
c (exp) in

range

c (exp) = –128
No change to c (man)

Set c to final result

c = norm(α)

(8)

(9)

(3)
Sign-extended α(man) 1 bit
c (man) = α(man) < < k
c (exp) = α(exp) –k

(4)

k = # of leading
nonsignificant
sign bits

α

Remove most significant nonsign bit (5)

Leading nonsignificant sign bits
(2)

Rounding (RND Instruction)

5-39Data Formats and Floating-Point Operation

5.8 Rounding (RND Instruction)

The RND instruction rounds a number from the extended-precision floating-
point format to the single-precision floating-point format. Rounding is similar to
floating-point addition. Given the number a to be rounded, the following opera-
tion is performed first.

c = α(man) × 2α(exp) + (1 × 2α(exp)–24)

Next, a conversion from extended-precision floating-point to single-precision
floating-point format is performed. Given the extended-precision floating-point
value, the rounding, rnd(), is performed as shown in Figure 5–19.

Note:

RND, src, dst—where (src) = 0—does not set the 0 conditions flag (bit 2 in
the status register). Instead, it sets the underflow condition flag (bit 4 in the
status register). When required, check for the underflow condition instead of
the 0 condition.

Rounding (RND Instruction)

 5-40

Figure 5–19. Flowchart for Floating-Point Rounding by the RND Instruction

Test for special cases of c(man)

c (exp) = –128

c (man) = 0

Test for special cases of c (exp)

c (exp) overflow c (exp) in range

Set eight LSBs of c(man) to 0

c = rnd(α)

c (man) = c (man) < < 1
c (exp) = α (exp) + 1

α

If c (man) > 0,
set c to most positive
single-precision value

If c (man) < 0,
set c to most negative
single-precision value

Overflow of c (man)

Add α(man) and 1/2 of LSB

c(man) = α (man) + 2– 24

1 × 2
α(exp) –24

No special case

Floating-Point to Integer Conversion (FIX Instruction)

5-41Data Formats and Floating-Point Operation

5.9 Floating-Point to Integer Conversion (FIX Instruction)

Using the FIX instruction, you can convert an extended-precision floating-
point number to a single-precision integer in a single cycle. The floating-point
to integer conversion of the value x is referred to here as fix(x). The conversion
does not overflow if a, the number to be converted, is in the range:

–231 ≤ α ≤ 231 – 1

First, you must be certain that

α(exp) ≤ 30

If these bounds are not met, an overflow occurs. If an overflow occurs in the
positive direction, the output is the most positive integer. If an overflow occurs
in the negative direction, the output is the most negative integer. If α(exp) is
within the valid range, then α(man), with implied bit included, is sign-extended
and right-shifted (rs) by the amount

rs = 31 – α(exp)

This right shift (rs) shifts out those bits corresponding to the fractional part of
the mantissa. For example:

If 0 ≤ × < 1, then fix(x) = 0

If –1 ≤ × < 0, then fix(x) = –1

Figure 5–20 shows the flowchart for the floating-point-to-integer conversion.

Floating-Point to Integer Conversion (FIX Instruction)

 5-42

Figure 5–20. Flowchart for Floating-Point to Integer Conversion by FIX Instruction

Test for special cases of α(exp)

α(exp) > 30
α(exp) in range
rs = 31 – α(exp)

Overflow Shift

If α(man) > 0,
c = most positive integer

If α(man) < 0,
c = most negative integer

c = α(man) > > rs

Set c to final result

α

c = fix(α)

Integer to Floating-Point Conversion (FLOAT Instruction)

5-43Data Formats and Floating-Point Operation

5.10 Integer to Floating-Point Conversion (FLOAT Instruction)

Integer to floating-point conversion, using the FLOAT instruction, allows
single-precision integers to be converted to extended-precision floating-point
numbers. The flowchart for this conversion is shown in Figure 5–21.

Figure 5–21. Flowchart for Integer to Floating-Point Conversion by FLOAT Instruction

Test for special cases of c (man)

c (exp) = –128

c (man) = 0
Leading nonsignificant
sign bits

Set c to final result

c = float (α)

c (man) = c (man) < < k
c (exp) = 30 –k

k = # leading
nonsignificant
sign bits

α

Remove most significant nonsign bit

c (man) = α
c (exp) = 30

Fast Logarithms on a Floating-Point Device

 5-44

5.11 Fast Logarithms on a Floating-Point Device

The following TMS320C30/C40 function calculates the log base two of a number
in about half the time of conventional algorithms. Furthermore, the method can
easily be scaled for faster execution if less accuracy is desired. The method is
efficient because the algorithm uses the floating-point multipliers’ exponent/nor-
malization hardware in a unique way. The following is a proof of the algorithm.
The value of a floating point number X is given by:

X = 2^EXP_old * mant_old

Since the bit fields used to store the exponent and mantissa are actually inte-
ger, the exponent is already in log2 (log base 2) form. In fact, the exponent is
nothing more than a normalizing shift value. By converting both sides of the
first equation to a logarithm, the logarithm of the value becomes the sum of the
exponent and mantissa in log form:

log2(X) = EXP_old + log2(mant_old) (Log base two)

Since EXP is in the exponent register, no calculation is needed and the value
can be used directly as an integer. To extract the value of the exponent, PUSH,
POP, and masking operations are used. The remaining mantissa conversion
is done by first forcing the exponent bits to zero using an LDE 1.0 instruction.
This causes the exponent term 2^EXP to equal 1.0, leaving 1.0 <= Value < 2.0.
Then, by using the following identity, the logarithm of the mantissa can be ex-
tracted from the final results exponent. If the value (mant_old) is repeatedly
squared, the sequence becomes:

X_new = mant_old^N

where:

1.0 X_new < 2^N

N = 1,2,4,8,16...

Since the hardware multiplier restructures the new value (X_new) during each
squaring operation, X_new is represented by a new exponent (EXP_new) and
mantissa (mant_new):

X_new = 2^EXP_New * mant_new

By then applying familiar logarithm rules, we find that EXP_new holds the loga-
rithm of Old_mant. This is best shown by setting the previous two equations
equal to each other and taking the logarithm of both sides:

mant_old^N = 2^EXP_new * mant_new

N=1,2,4,8,16...

Fast Logarithms on a Floating-Point Device

5-45Data Formats and Floating-Point Operation

N * log2(mant_old) = EXP_new + log2(mant_new)

log2(mant_old) = EXP_new/N + log2(mant_new)/N

This last equation shows that the logarithm of mant_old is indeed related to
EXP_new. And as shown earlier, EXP_new can be separated from the new
mantissa and used as the logarithm of the original mantissa.

We also need to consider the divisor N, which is defined to be the series 1, 2,
4, 8, 16... , and EXP_new is an integer. The division by N becomes a shift for
each squaring operation. What remains is to concatenate the bits of EXP_new
to EXP_old and then repeat the process until the desired accuracy is achieved.

5.11.1 Example of Fast Logarithm on a Floating-Point Device

Consider a mantissa value of 1.5 and an exponent value of 0 (giving an expo-
nent multiplier 2^0, or 1.0). The TMS320C30/C40 extended register bit pattern
for the algorithm sequence is shown below.

Table 5–3. Squaring Operation of F0 = 1.5

Squaring Operation of F0 = 1.5

Exp S Mantissa

00000000 0 1000000000000000000000000000000 X =1.5 Exp=0

00000001 0 0010000000000000000000000000000 X^2 =2.25 Exp=1

00000010 0 0100010000000000000000000000000 X^4 =5.0625 Exp=2

00000100 0 1001101000010000000000000000000 X^8 =25.628906 Exp=4

00100100 0 0100100001101011101000001000000 X^16 =656.84083 Exp=9

00010010 0 1010010101010011111101110011111 X^32 =431.43988–E3 Exp=18

00100101 0 0101101010110110101000010101001 X^64 =186.14037–E9 Exp=37

01001010 0 1101010110010010001010101100011 X^128 =34.648238–E21 Exp=74

XXXXXXXX S MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Exp S Mantissa

Hand-calculated value of log2(1.5)

log2(1.5) = 0.58496250 = 1001010 111000000

xxxxxxx– first 7 bits (exponent)

mmm– quick 3 bits (mantissa)

If you compare the hand-calculated value and the binary representation of
log2(1.5), you find that the sequence of bits in the exponent (seven bits worth)

Fast Logarithms on a Floating-Point Device

 5-46

are equivalent to the seven MSBs of the logarithm. If the exponent could hold
all the bits needed for full accuracy, then it would be possible to continue the op-
eration for all 24 bits of the mantissa. Since there are only eight bits in the expo-
nent and the MSBs are used for negative values, only seven iterations are pos-
sible before the exponent must be off-loaded and reinitialized to zero.

By concatenating EXP_new to the previous exponent, longer strings of bits can
be built for greater accuracy. The process is then repeated until the desired accu-
racy is achieved. Also remember that the original numbers exponent, which rep-
resents the whole number part of the result, becomes the eight MSBs of the final
result.

Another technique is to look at the three MSBs of the mantissa and apply a
roundup from the fourth bit. Those same MSBs can be used as a quick exten-
sion of the exponent (logarithm). To visualize this, consider the following tabu-
lated values and graph.

1.0

0.585
0.5

0.0
1.0 1.5 2.0

Mantissa

F
ra

ct
io

n

Mant log 2(Mant)

1.000
1.250
1.500
1.7500
1.999

0.000
0.322
0.585
0.807
0.999

Figure 5–22. Tabulated Values for Mantissa

Note:

The fractional part is the same at the endpoints.

In the middle, only a slight bowing exists which can either be ignored or optionally
rounded for better accuracy. The maximum actually occurs at a mantissa value
of

1
ln(2.0)

or 1.442695. The value of log2(mant) at that point is 0.52876637, giving a maxi-
mum error of 0.086071.

Fast Logarithms on a Floating-Point Device

5-47Data Formats and Floating-Point Operation

When finished, the bits representing the finished logarithm are in a fixed-point
notation and need to be scaled. This is done by using the FLOAT instruction fol-
lowed by a multiplication by a constant scaling factor. If the final result needs to
be in any other base, the scaling factor is simply adjusted for that base.

5.11.2 Points to Consider

The round-off accuracy of the first three squaring operations affect the final
result if >21 mantissa bits are desired. A RND instruction placed after the first
three MPYF R0,R0 instructions remedy this, but adds to the cycle count.

When the input value approaches 1.0, the result is driven close to zero and
accuracy suffers. In this case, an input range comparison and a branch to a
McLauren series expansion is used as a solution with minimal degradation in
speed. This is because the power series converges quickly for input values
close to 1.0.

If you only need to calculate a visual quality logarithm, such as in spectrum
analysis, the logarithm can often be calculated in one cycle. In this case the
mantissa is substituted directly into the fractional bits of the logarithm giving
a maximum error of 0.086 (about 3.5 bits). The one cycle arises from the need
to remove the 2’s compliment sign bit in the ’C3x’s mantissa.

Fast Logarithms on a Floating-Point Device

 5-48

Figure 5–23. Fast Logarithm for FFT Displays

** *
* FAST Logarithm for FFT displays *
* >>>> NEED ONLY ADD ONE INSTRUCTION IN MANY CASES <<<< *
**

 || || ;
MPYF REAL,REAL,R0 ; calculate the magnitude
MYPF IMAG,IMAG,R1 ; Note: sign bit is zero
ADDF R1,R0 ;
ASH –1,R0 ; <–One instruction logarithm!
STR R0,OUT ; scaled externally in DAC
 || || ;

**
* _log_E.asm DEVICE: TMS320C30 *
**

.global_log_E
_log_E:POP AR1 ; return address –> AR1

POPF R0 ; X –> R0
LDF R0,R1 ; use R1 to accumulate answer
LDI 2,RC ; repeat 3x
RPTB loop ;
ASH 7,R1 ;
LDE 1.0,R0 ; EXP = 0
MPYF R0,R0 ; mant^2
MPYF R0,R0 ; mant^4
MPYF R0,R0 ; mant^8
MPYF R0,R0 ; mant^16
MPYF R0,R0 ; mant^32
MPYF R0,R0 ; mant^64
MPYF R0,R0 ; mant^128
PUSHF R1 ; PUSH EXP and Mantissa (sign is now data!)
POP R0 ; POP as ianteger (EXP+FRACTION)
BD AR1 ;
FLOAT R0 ; convert EXP+FRACTION to float
MPYF @CONST,R0 ; scale the result by 2^–24 and change base
ADDI 1,SP ; restore stack pointer
.data

CONST_ADR: .word CONST
CONST .long 0e7317219h ;;Base e hand calc w/1 lsb round

.end

6-1

Addressing Modes

The ’C3x supports five groups of powerful addressing modes. Six types of
addressing that allow data access from memory, registers, and the instruction
word can be used within the groups. This chapter describes the operation,
encoding, and implementation of the addressing modes. It also discusses the
management of system stacks, queues, and dequeues in memory.

Topic Page

6.1 Addressing Types 6-2.

6.2 Register Addressing 6-3.

6.3 Direct Addressing 6-4.

6.4 Indirect Addressing 6-5.

6.5 Immediate Addressing 6-18.

6.6 PC-Relative Addressing 6-19.

6.7 Circular Addressing 6-21.

6.8 Bit-Reversed Addressing 6-26.

6.9 Aligning Buffers With the TMS320 Floating-Point
DSP Assembly Language Tools 6-28.

6.10 System and User Stack Management 6-29.

Chapter 6

Addressing Types

 6-2

6.1 Addressing Types

You can access data from memory, registers, and the instruction word by using
five types of addressing:

� Register addressing . A CPU register contains the operand.

� Direct addressing . The data address is formed by concatenating the
eight least significant bits (LSBs) of the data-page (DP) register and the
16 LSBs of the instruction.

� Indirect addressing . An auxiliary register contains the address of the
operand.

� Immediate addressing . The operand is a 16-bit or 24-bit immediate value.

� PC-relative addressing . A 16-bit or 24-bit displacement to the program
counter (PC).

Two specialized modes are available for use in filters, FFTs, and DSP algorithms:

� Circular addressing . An auxiliary register is incremented/decremented
with regards to a circular buffer boundary.

� Bit-reverse address ing . An auxiliary register is transferred to its bit-
reversed representation that contains the address of the operand.

Register Addressing

6-3Addressing Modes

6.2 Register Addressing
In register addressing, a CPU register contains the operand, as shown in this
example:

 ABSF R1 ; R1 = |R1|

The syntax for the CPU registers, the assembler syntax, and the assigned
function for those registers are listed in Table 6–1.

Table 6–1. CPU Register Address/Assembler Syntax and Function

Register Name Machine Address Assigned Function

R0

R1

R2

R3

R4

R5

R6

R7

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

DP

IR0

IR1

BK

SP

ST

IE

IF

IOF

RS

RE

RC

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0FH

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

1Ah

1Bh

Extended-precision register 0

Extended-precision register 1

Extended-precision register 2

Extended-precision register 3

Extended-precision register 4

Extended-precision register 5

Extended-precision register 6

Extended-precision register 7

Auxiliary register 0

Auxiliary register 1

Auxiliary register 2

Auxiliary register 3

Auxiliary register 4

Auxiliary register 5

Auxiliary register 6

Auxiliary register 7

Data-page pointer

Index register 0

Index register 1

Block-size register

Active stack pointer

Status register

CPU/DMA interrupt-enable

CPU interrupt flags

I/O flags

Repeat start address

Repeat end address

Repeat counter

Direct Addressing

 6-4

6.3 Direct Addressing

In direct addressing, the data address is formed by the concatenation of the
eight LSBs of the data-page pointer (DP) with the 16 LSBs of the instruction
word (expr). This results in 256 pages (64K words per page), allowing you to
access a large address space without requiring a change of the page pointer.
The syntax and operation for direct addressing are:

Syntax: @expr

Operation: address = DP concatenated with expr

Figure 6–1 shows the formation of the data address. Example 6–1 is an instruc-
tion example with data before and after instruction execution.

Figure 6–1. Direct Addressing

0

031 16 15

0 0

0

31

address

operand

page

expr

x x . . . x x

0 . . . 0

31 8 7 0

24 2331

DP

Instruction
word

(Data-
page pointer)

Example 6–1. Direct Addressing

ADDI @0BCDEh,R7

Before Instruction After Instruction

R7 00 0000 0000 R7 00 1234 5678

DP 8A DP 8A
Data memory

8ABCDEh 1234 5678 8ABCDEh 1234 5678

Indirect Addressing

6-5Addressing Modes

6.4 Indirect Addressing

Indirect addressing specifies the address of an operand in memory through the
contents of an auxiliary register, optional displacements, and index registers as
shown in Example 6–2. Only the 24 LSBs of the auxiliary registers and index
registers are used in indirect addressing. The auxiliary register arithmetic units
(ARAUs) perform the unsigned arithmetic on these lower 24 bits. The upper
eight bits are unmodified.

Example 6–2. Auxiliary Register Indirect

An auxiliary register (ARn) contains the address of the operand to be fetched.

Operation : operand address = ARn

Assembler Syntax : *ARn

Modification Field: 11000

24 23

Address

031

xxARn

31 0

Operand

The flexibility of indirect addressing is possible because the ARAUs on the
’C3x modify auxiliary registers in parallel with operations within the main CPU.
Indirect addressing is specified by a 5-bit field in the instruction word, referred
to as the mod field (shown in Table 6–2). A displacement is either an explicit
unsigned 8-bit integer contained in the instruction word or an implicit displace-
ment of 1. Two index registers, IR0 and IR1, can also be used in indirect
addressing, enabling the use of 24-bit indirect displacement. In some cases,
an addressing scheme using circular or bit-reversed addressing is optional.
Generating addresses in circular addressing is discussed in Section 6.7 on
page 6-21; bit-reversed addressing is discussed in Section 6.8 on page 6-26.

Table 6–2 lists the various kinds of indirect addressing, along with the value
of the modification (mod) field, assembler syntax, operation, and function for
each. The succeeding 17 examples show the operation for each kind of indi-
rect addressing. Figure 6–3 on page 6-20 shows the format in the instruction
encoding.

Indirect Addressing

 6-6

Figure 6–2. Indirect Addressing Operand Encoding

LSBMSB

5 bits

mod ARn disp

3 bits 0, 5, or 8 bits

Note: Auxiliary Register

The auxiliary register (ARn) is encoded in the instruction word according to its
binary representation n (for example, AR3 is encoded as 112), not its register
machine address (shown in Table 6–1).

Indirect Addressing

6-7Addressing Modes

Table 6–2. Indirect Addressing

(a) Indirect addressing with displacement

Mod Field Syntax Operation Description

00000 *+ARn(disp) addr = ARn + disp With predisplacement add

00001 *–ARn(disp) addr = ARn – disp With predisplacement subtract

00010 *++ARn(disp) addr = ARn + disp
ARn = ARn + disp

With predisplacement add and modify

00011 *––ARn(disp) addr = ARn – disp
ARn = ARn – disp

With predisplacement subtract and modify

00100 *ARn++(disp) addr = ARn
ARn = ARn + disp

With postdisplacement add and modify

00101 *ARn––(disp) addr = ARn
ARn = ARn – disp

With postdisplacement subtract and modify

00110 *ARn++(disp)% addr = ARn
ARn = circ(ARn + disp)

With postdisplacement add and circular modify

00111 *ARn––(disp)% addr = ARn
ARn = circ(ARn – disp)

With postdisplacement subtract and circular modify

(b) Indirect addressing with index register IR0

Mod Field Syntax Operation Description

01000 *+ARn(IR0) addr = ARn + IR0 With preindex (IR0) add

01001 *–ARn(IR0) addr = ARn – IR0 With preindex (IR0) subtract

01010 *++ARn(IR0) addr = ARn + IR0
ARn = ARn + IR0

With preindex (IR0) add and modify

01011 *––ARn(IR0) addr = ARn – IR0
ARn = ARn – IR0

With preindex (IR0) subtract and modify

01100 *ARn++(IR0) addr = ARn
ARn = ARn + IR0

With postindex (IR0) add and modify

01101 *ARn––(IR0) addr= ARn
ARn = ARn – IR0

With postindex (IR0) subtract and modify

01110 *ARn++(IR0)% addr = ARn
ARn = circ(ARn + IR0)

With postindex (IR0) add and circular modify

01111 *ARn––(IR0)% addr = ARn
ARn = circ(ARn– IR0)

With postindex (IR0) subtract and circular modify

Legend: addr memory address ++ add and modify
ARn auxiliary registers AR0–AR7 –– subtract and modify
circ() address in circular addressing % where circular addressing is performed
disp displacement IRn index register IR0 or IR1

Indirect Addressing

 6-8

Table 6–2. Indirect Addressing (Continued)

(c) Indirect addressing with index register IR1

Mod Field Syntax Operation Description

10000 *+ARn(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *–ARn(IR1) addr = ARn – IR1 With preindex (IR1) subtract

10010 *++ARn(IR1) addr = ARn + IR1
ARn = ARn + IR1

With preindex (IR1) add and modify

10011 *––ARn(IR1) addr = ARn – IR1
ARn = ARn – IR1

With preindex (IR1) subtract and modify

10100 *ARn++(IR1) addr = ARn
ARn = ARn + IR1

With postindex (IR1) add and modify

10101 *ARn––(IR1) addr = ARn
ARn = ARn – IR1

With postindex (IR1) subtract and modify

10110 *ARn++(IR1)% addr = ARn
ARn = circ(ARn + IR1)

With postindex (IR1) add and circular modify

 10111 *ARn––(IR1)% addr = ARn
ARn = circ(ARn – IR1)

With postindex (IR1) subtract and circular modify

(d) Indirect addressing (special cases)

Mod Field Syntax Operation Description

11000 *ARn addr = ARn Indirect

11001 *ARn++(IR0)B addr = ARn

ARn = B(ARn + IR0)

With postindex (IR0) add

and bit-reversed modify

Legend: addr memory address circ() address in circular addressing
ARn auxiliary registers AR0–AR7 ++ add and modify by 1
B where bit-reversed addressing is performed –– subtract and modify by 1
B() bit-reversed address % where circular addressing is performed

IRn index register IR0 or IR1

Example 6–3 through Example 6–19 show the operation for each type of indirect
addressing.

Indirect Addressing

6-9Addressing Modes

Example 6–3. Indirect Addressing With Predisplacement Add

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
the displacement (disp). The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn + disp

Assembler Syntax: *+ARn(disp)

Modification Field: 00000

(+)

0

031 24 23

AddressxARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

x

Example 6–4. Indirect Addressing With Predisplacement Subtract

The address of the operand to fetch is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn – disp

Assembler Syntax : *–ARn(disp)

Modification Field: 00001

(–)

0

031 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

Indirect Addressing

 6-10

Example 6–5. Indirect Addressing With Predisplacement Add and Modify

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
the displacement (disp). The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1. After the data is
fetched, the auxiliary register is updated with the address generated.

Operation: operand address = ARn + disp
ARn = ARn + disp

Assembler Syntax: *++ARn (disp)

Modification Field: 00010

(+)

0

031 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

Example 6–6. Indirect Addressing With Predisplacement Subtract and Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn) minus the displacement (disp). The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.
After the data is fetched, the auxiliary register is updated with the address
generated.

Operation: operand address = ARn – disp
ARn = ARn – disp

Assembler Syntax: *––ARn(disp)

Modification Field: 00011

(–)

0

31 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

0

Indirect Addressing

6-11Addressing Modes

Example 6–7. Indirect Addressing With Postdisplacement Add and Modify

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the displacement (disp) is added to the auxiliary
register. The displacement is either an 8-bit unsigned integer contained in the
instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn + disp

Assembler Syntax: *ARn++(disp)

Modification Field: 00100

Integer (+)

0

031 24 23

Addressx x

31

disp 0 0

0

31

8 7

Operand

0...0

ARn

Example 6–8. Indirect Addressing With Postdisplacement Subtract and Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the auxiliary register. The displacement is either an 8-bit unsigned integer
contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = ARn – disp

Assembler Syntax : *ARn––(disp)

Modification Field: 00101

Integer (–)

0

031 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Operand

0...0

Indirect Addressing

 6-12

Example 6–9. Indirect Addressing With Postdisplacement Add and Circular Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is added to the
contents of the auxiliary register using circular addressing. This result is used
to update the auxiliary register. The displacement is either an 8-bit unsigned
integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn+disp)

Assembler Syntax: *ARn ++(disp)%

Modification Field: 00110

(+)

0

031 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

(%)

Example 6–10. Indirect Addressing With Postdisplacement Subtract and Circular Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the displacement (disp) is subtracted from
the contents of the auxiliary register using circular addressing. This result is
used to update the auxiliary register. The displacement is either an 8-bit
unsigned integer contained in the instruction word or an implied value of 1.

Operation: operand address = ARn
ARn = circ(ARn – disp)

Assembler Syntax: *ARn ––(disp)%

Modification Field: 00111

(–)

0

031 24 23

Addressx xARn

31

disp 0 0

0

31

8 7

Integer

Operand

0...0

(%)

Indirect Addressing

6-13Addressing Modes

Example 6–11. Indirect Addressing With Preindex Add

The address of the operand to fetch is the sum of an auxiliary register (ARn)
and an index register (IR0 or IR1).

Operation: operand address = ARn + IRm

Assembler Syntax : *+ARn(IRm)

Modification Field: 01000 if m = 0
10000 if m = 1

(+)

0

031 24 23

Addressx xARn

31

IRm x

0

31

Index

Operand

x

24 23

Example 6–12. Indirect Addressing With Preindex Subtract

The address of the operand to fetch is the difference of an auxiliary register
(ARn) and an index register (IR0 or IR1).

Operation: operand address = ARn – IRm

Assembler Syntax: *–ARn(IRm)

Modification Field: 01001 if m = 0
10001 if m = 1

(–)

0

031 24 23

Addressx xARn

31

IRm x

0

31

Index

Operand

x

24 23

Indirect Addressing

 6-14

Example 6–13. Indirect Addressing With Preindex Add and Modify

The address of the operand to fetch is the sum of an auxiliary register (ARn) and
an index register (IR0 or IR1). After the data is fetched, the auxiliary register is
updated with the generated address.

Operation : operand address = ARn + IRm
ARn = ARn + IRm

Assembler Syntax: *++ARn(IRm)

Modification Field : 01010 if m = 0
10010 if m = 1

(+)

0

031 24 23

Addressx xARn

31

IRm x

0

31

Index

Operand

24 23

x

Example 6–14. Indirect Addressing With Preindex Subtract and Modify

The address of the operand to fetch is the difference between an auxiliary register
(ARn) and an index register (IR0 or IR1). The resulting address becomes the new
contents of the auxiliary register.

Operation: operand address = ARn – IRm
ARn = ARn – IRm

Assembler Syntax: *––ARn(IRm)

Modification Field: 01011 if m = 0
10011 if m = 1

(–)

0

031 24 23

Addressx xARn

31

IRm x

0

31

Index

Operand

24 23

x

Indirect Addressing

6-15Addressing Modes

Example 6–15. Indirect Addressing With Postindex Add and Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added
to the auxiliary register.

Operation: operand address = ARn
ARn = ARn + IRm

Assembler Syntax: *ARn++(IRm)

Modification Field: 01100 if m = 0
10100 if m = 1

Index

(+)

0

031 24 23

Addressx xARn

31

x x

0

31

24 23

Operand

IRm

Example 6–16. Indirect Addressing With Postindex Subtract and Modify

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the index register (IR0 or IR1) is subtracted from
the auxiliary register.

Operation: operand address = ARn
ARn = ARn – IRm

Assembler Syntax: *ARn––(IRm)

Modification Field: 01101 if m = 0
10101 if m = 1

(–)

0

031 24 23

Addressx xARn

31

IRm x x

0

31

24 23

Index

Operand

Indirect Addressing

 6-16

Example 6–17. Indirect Addressing With Postindex Add and Circular Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0 or IR1) is added
to the auxiliary register. This value is evaluated using circular addressing and
replaces the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn + IRm)

Assembler Syntax: *ARn++(IRm)%

Modification Field: 01110 if m = 0
10110 if m = 1

Index (+)

0

031 24 23

Addressx xARn

31

x x

0

31

24 23

Operand

(%)

IRm

Example 6–18. Indirect Addressing With Postindex Subtract and Circular Modify

The address of the operand to fetch is the contents of an auxiliary register (ARn).
After the operand is fetched, the index register (IR0 or IR1) is subtracted from the
auxiliary register. This result is evaluated using circular addressing and replaces
the contents of the auxiliary register.

Operation: operand address = ARn
ARn = circ(ARn – IRm)

Assembler Syntax: *ARn –– (IRm)%

Modification Field: 01111 if m = 0
10111 if m = 1

(–)

0

031 24 23

Addressx xARn

31

x x

0

31

24 23

Index

Operand

(%)

IRm

Indirect Addressing

6-17Addressing Modes

Example 6–19. Indirect Addressing With Postindex Add and Bit-Reversed Modify

The address of the operand to fetch is the contents of an auxiliary register
(ARn). After the operand is fetched, the index register (IR0) is added to the
auxiliary register. This addition is performed with a reverse-carry propagation
and can be used to yield a bit-reversed (B) address. This value replaces the
contents of the auxiliary register.

Operation: operand address = ARn
ARn = B(ARn + IR0)

Assembler Syntax: *ARn++(IR0)B

Modification Field: 11001

(+)

0

031 24 23

Addressx xARn

31

x x

0

31

24 23

Index

Operand

(B)

IRm

Immediate Addressing

 6-18

6.5 Immediate Addressing

In immediate addressing, the operand is a 16-bit (short) or 24-bit (long) immediate
value contained in the 16 or 24 LSBs of the instruction word (expr). Depending
on the data types assumed for the instruction, the short-immediate operand can
be a 2s-complement integer, an unsigned integer, or a floating-point number. This
is the syntax for this mode:

Syntax: expr

Example 6–20 illustrates an instruction example with data before and after the
instruction is executed.

Example 6–20. Short-Immediate Addressing

SUBI 1,R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 FFFF FFFF

In long-immediate addressing, the operand is a 24-bit unsigned immediate
value contained in the 24 LSBs of the instruction word (expr). This is the syntax
for this mode:

Syntax: expr

Example 6–21 illustrates an instruction example with data from before and after
the instruction is executed.

Example 6–21. Long-Immediate Addressing

BR 8000h

Before Instruction After Instruction

PC 0000 PC 8000

PC-Relative Addressing

6-19Addressing Modes

6.6 PC-Relative Addressing

Program counter (PC)-relative addressing is used for branching. It adds the
contents of the 16 or 24 LSBs of the instruction word to the PC register. The
assembler takes the src (a label or address) specified by the user and generates
a displacement. If the branch is a standard branch, this displacement is equal to
[label – (instruction address+1)]. If the branch is a delayed branch, this displace-
ment is equal to [label – (instruction address+3)].

The displacement is stored as a 16-bit or 24-bit signed integer in the LSBs of
the instruction word. The displacement is added to the PC during the pipeline
decode phase. Notice that because the PC is incremented by 1 in the fetch
phase, the displacement is added to this incremented PC value.

Syntax: expr (src)

Example 6–22 illustrates an example with data from before and after the
instruction is executed.

Example 6–22. PC-Relative Addressing

BU NEWPC ; pc=1001h, NEWPC label = 1005h, displacement = 3

Before Instruction After Instruction

decode phase: execution phase:

PC 1002 PC 1005

The 24-bit addressing mode encodes the program-control instructions (for
example, BR, BRD, CALL, RPTB, and RPTBD). Depending on the instruc-
tion, the new PC value is derived by adding a 24-bit signed value in the
instruction word with the present PC value. Bit 24 determines the type of
branch (D = 0 for a standard branch or D = 1 for a delayed branch). Some of
the instructions are encoded in Figure 6–3.

PC-Relative Addressing

 6-20

Figure 6–3. Encoding for 24-Bit PC-Relative Addressing Mode

(a) BR, BRD: unconditional branches (standard and delayed)

31 25 24 23 0

0 1 1 0 0 0 0 0 Displacement

(b) CALL: unconditional subroutine call

31 24 23 0

0 1 1 0 0 0 1 0 Displacement

(c) RPTB: repeat block

31 25 24 23 0

0 1 1 0 0 1 0 0 Displacement

Circular Addressing

6-21Addressing Modes

6.7 Circular Addressing

Many DSP algorithms, such as convolution and correlation, require a circular
buffer in memory. In convolution and correlation, the circular buffer acts as a
sliding window that contains the most recent data to process. As new data is
brought in, the new data overwrites the oldest data by increasing the pointer
to the data through the buffer in counter-clockwise fashion. When the pointer
accesses the end of the buffer, the device sets the pointer to the beginning of
the buffer. For example, Figure 6–4a shows a circular buffer that holds six values.
Figure 6–4b shows how this buffer is implemented in the ’C3x memory space.
Figure 6–5 shows this buffer after writing three values. Figure 6–6 shows this
buffer after writing eight values.

Figure 6–4. Logical and Physical Representation of Circular Buffer

Start End

Logical representation Physical representation

Start

End

a) b)

Figure 6–5. Logical and Physical Representation of Circular Buffer after Writing Three Values

Start End

a) Logical representation

value0

value1

value2

value0

value2

value1

b) Physical representation

Start

End

Circular Addressing

 6-22

Figure 6–6. Logical and Physical Representation of Circular Buffer after Writing Eight Values

Start End

a) Logical representation

value6

value7

value2

value6

value2

value7

b) Physical representation

value5

value3

value4 value3

value4

value5

Start

End

To implement a circular buffer in the ’C3x, the following criteria must be satis-
fied (more than one circular buffer can be implemented on the ’C3x as long as
the size of the buffers are identical):

� Specify the size of the circular buffer (R) by storing the length of the buffer
in the block-size register (BK). The size of the buffer must be less than or
equal to 64K (16 bits).

� Align the start of the buffer to a K-bit boundary (that is, the K LSBs of the
starting address of the circular buffer must be 0) by satisfying the following
formula:

2K > R

where:

R = length of circular buffer
K = number of 0s in the LSBs of the circular buffer starting address

Example 6–23. Examples of Formula 2K > R

Length of Buffer BK Register Value Starting Address of Buffer

31 31 XXXXXXXXXXXXXXXXXXX000002

32 32 XXXXXXXXXXXXXXXXXX0000002

1024 1024 XXXXXXXXXXXXX000000000002

Circular Addressing

6-23Addressing Modes

In circular addressing, index refers to the K LSBs (from the K-bit boundary criteria)
of the auxiliary register selected, and step is the quantity being added to or
subtracted from the auxiliary register. Follow these two rules when you use cir-
cular addressing:

� The step used must be less than or equal to the block size. The step size
is treated as an unsigned integer. If an index register (IR) is used as a step
increment or decrement, it is also treated as an unsigned integer.

� The first time the circular queue is addressed, the auxiliary register must
be pointing to an element in the circular queue.

The algorithm for circular addressing is as follows:

If 0 ≤ index + step < BK: index = index + step.

Else if index + step ≥ BK: index = index + step – BK.

Else if index + step < 0: index = index + step + BK.

Figure 6–7 shows how the circular buffer is implemented and illustrates the
relationship of the quantities generated and the elements in the circular buffer.

Figure 6–7. Circular Buffer Implementation

Top of circular buffer

H . . . H 0 . . . 0

H . . . H

H . . . H

L . . . L

LSBs BK

Element 0

Element 1

Element (K LSBs of ARn)

Last element

Last element + 1

31 K K – 1 0

31 0

31 0

Effective base (EB)

Auxiliary register (AR n)

Address Data

→

→

→

MSBs of ARn

MSBs of ARn LSBs of ARn

MSBs of ARn

K K – 1

K K – 1

Example 6–24 shows circular addressing operation. Assuming that all ARs
are four bits, let AR0 = 0000 and BK = 0110 (block size of 6). Example 6–24
shows a sequence of modifications and the resulting value of AR0.
Example 6–24 also shows how the pointer steps through the circular queue
with a variety of step sizes (both incrementing and decrementing).

Circular Addressing

 6-24

Example 6–24. Circular Addressing

*AR0++(5)% ; AR0 = 0 (0 value)
*AR0++(2)% ; AR0 = 5 (1st value)
*AR0– –(3)% ; AR0 = 1 (2nd value)
*AR0++(6)% ; AR0 = 4 (3rd value)
*AR0– –% ; AR0 = 4 (4th value)
*AR0 ; AR0 = 3 (5th value)

Element 0

Element 1

Element 2

Element 3

Element 4

Element 5 (last element)

Last element + 1

0

1

2

3

4

5

6

0

2nd

5th

4th, 3rd

1st

Value Data Address

→

→

→

→

→

Circular addressing is especially useful for the implementation of FIR filters.
Figure 6–8 shows one possible data structure for FIR filters. Note that the ini-
tial value of AR0 points to h(N–1), and the initial value of AR1 points to x(0).
Circular addressing is used in the ’C3x code for the FIR filter shown in
Example 6–25.

Figure 6–8. Data Structure for FIR Filters

h(N–1)

h(N–2)

h(2)

h(1)

h(0)

x(N–1)

x(N–2)

x(2)

x(1)

x(0)

AR0

AR1

Impulse response Input samples

.

.

.

.

.

.

→

←

Circular Addressing

6-25Addressing Modes

Example 6–25. FIR Filter Code Using Circular Addressing

* Impulse Response
.sect ”Impulse_Resp”

H .float 1.0
.float 0.99
.float 0.95
.
.
.
.float 0.1

* Input Buffer
X .usect ”Input_Buf”,128

.data
HADDR .word H
XADDR .word X
N .word 128

* Initialization
*

LDP HADDR
LDI @N,BK ; Load block size.
LDI @HADDR,AR0 ; Load pointer to impulse re–

; sponse.
LDI @XADDR,AR1 ; Load pointer to bottom of

; input sample buffer.
*
TOP LDF IN,R3 ;Read input sample.

STF R3,*AR1++% ;Store with other samples,
;and point to top of buffer.

LDF 0,R0 ;Initialize R0.
LDF 0,R2 ;Initialize R2.

*
* Filter
*

RPTS N –1 ;Repeat next instruction.
MPYF3 *AR0++%,*AR1++%,R0

|| ADDF3 R0,R2,R2 ;Multiply and accumulate.
ADDF R0,R2 ;Last product accumulated.

*
STF R2,Y ;Save result.
B TOP ;Repeat.

Bit-Reversed Addressing

 6-26

6.8 Bit-Reversed Addressing

The ’C3x can implement fast Fourier transforms (FFT) with bit-reversed ad-
dressing. Whenever data in increasing sequence order is transformed by an
FFT, the resulting data is presented in bit-reversed order. To recover this data
in the correct order, certain memory locations must be swapped. By using the
bit-reversed addressing mode, swapping data is unnecessary. The data is ac-
cessed by the CPU in bit-reversed order rather than sequentially. For correct
bit-reversed access, the base address of bit-reversed access, the base ad-
dress must be located on a boundary given by the size of the FFT table. Similar
to circular addressing, the base address of bit-reversed addressing must fol-
low this criteria.

� Base address must be aligned to a K-bit boundary (that is, the K LSBs of
the starting address of the buffer/table must be 0) as follows:

2K > R

where:

R = length of table/buffer
K = number of 0s in the LSBs of the buffer/table starting address

� Size of the buffer/table must be less than or equal to 64K (16 bits)

The CPU bit-reversed operation can be illustrated by assuming an FFT table
of size 2n. When real and imaginary data are stored in separate arrays, the n
LSBs of the base address must be 0, and IR0 must be equal to 2n–1 (half of
the FFT size). When real and imaginary data are stored in consecutive
memory locations (Real0, Imaginary0, Real1, Imaginary1, Real2, Imaginary2,
etc.), the n+1 LSBs of the base address must be 0, and IR0 must be equal to
2n (FFT size).

For CPU bit-reversed addressing, one auxiliary register points to the physical
location of data. Adding IR0 (in bit-reversed addressing) to this auxiliary register
performs a reverse-carry propagation. IR0 is treated as an unsigned integer.

To illustrate bit-reversed addressing, assume 8-bit auxiliary registers. Let AR2
contain the value 0110 0000 (96). This is the base address of the data in
memory assuming a 16-entry table. Let IR0 contain the value 0000 1000 (8).
Example 6–26 shows a sequence of modifications of AR2 and the resulting
values of AR2.

Bit-Reversed Addressing

6-27Addressing Modes

Example 6–26. Bit-Reversed Addressing

*AR2++(IR0)B ; AR2= 0110 0000 (0th value)
*AR2++(IR0)B ; AR2= 0110 1000 (1st value)
*AR2++(IR0)B ; AR2= 0110 0100 (2nd value)
*AR2++(IR0)B ; AR2= 0110 1100 (3rd value)
*AR2++(IR0)B ; AR2= 0110 0010 (4th value)
*AR2++(IR0)B ; AR2= 0110 1010 (5th value)
*AR2++(IR0)B ; AR2= 0110 0110 (6th value)
*AR2 ; AR2= 0110 1110 (7th value)

Table 6–3 shows the relationship of the index steps and the four LSBs of AR2.
You can find the four LSBs by reversing the bit pattern of the steps.

Table 6–3. Index Steps and Bit-Reversed Addressing

Step Bit Pattern
Bit-Reversed

Pattern
Bit-Reversed

Step

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15

Aligning Buffers With the TMS320 Floating-Point DSP Assembly

 6-28

6.9 Aligning Buffers With the TMS320 Floating-Point DSP Assembly
Language Tools

To align buffers to a K-bit boundary, you can use the .sect or .usect assembly
directives to define a section in conjunction with the align memory allocation
parameter of the sections directive of the linker command file. For the FIR filter
of Example 6–25 with a length of 32, the linker command file is:

MEMORY
{

RAM origin = 0h, length = 1000h
}
SECTIONS
{

.text: > RAM
Impulse_Resp ALIGN(64): > RAM
Input_Buf ALIGN(64): > RAM

}

Aligning Buffers With the TMS320 Floating-Point DSP Assembly Language Tools

System and User Stack Management

6-29Addressing Modes

6.10 System and User Stack Management

The ’C3x provides a dedicated system-stack pointer (SP) for building stacks
in memory. The auxiliary registers can also be used to build a variety of more
general linear lists. This section discusses the implementation of the following
types of linear lists:

� Stack

The stack is a linear list for which all insertions and deletions are made at
one end of the list.

� Queue

The queue is a linear list for which all insertions are made at one end of the
list and all deletions are made at the other end.

� Dequeue

The dequeue is a double-ended queue linear list for which insertions and
deletions are made at either end of the list.

6.10.1 System-Stack Pointer

The system-stack pointer (SP) is a 32-bit register that contains the address of
the top of the system stack. The system stack fills from low-memory address
to high-memory address (see Figure 6–9). The SP always points to the last
element pushed onto the stack. A push performs a preincrement, and a pop
performs a postdecrement of the system-stack pointer.

The program counter is pushed onto the system stack on subroutine calls,
traps, and interrupts. It is popped from the system stack on returns. The sys-
tem stack can be pushed and popped using the PUSH, POP, PUSHF, and
POPF instructions.

Figure 6–9. System Stack Configuration

Bottom of stack

Top of stack

(Free)

Low memory

High memory

SP

.

.

.

→

System and User Stack Management

 6-30

6.10.2 Stacks

Stacks can be built from low to high memory or high to low memory. Two cases
for each type of stack are shown. Stacks can be built using the preincrement/
decrement and postincrement/decrement modes of modifying the auxiliary
registers (AR). Stack growth from high-to-low memory can be implemented in
two ways:

CASE 1: Stores to memory using *––ARn to push data onto the stack and
reads from memory using *ARn++ to pop data off the stack.

CASE 2: Stores to memory using *ARn– –to push data onto the stack and
reads from memory using * ++ARn to pop data off the stack.

Figure 6–10 illustrates these two cases. The only difference is that in case 1,
the AR always points to the top of the stack, and in case 2, the AR always points
to the next free location on the stack.

Figure 6–10. Implementations of High-to-Low Memory Stacks

Top of stack

Low memory

High memory

(Free)

Bottom of stack

ARn Top of stack

Low memory

High memory

(Free)

Bottom of stack

Case 1 Case 2

ARn
→

→

Stack growth from low-to-high memory can be implemented in two ways:

CASE 3: Stores to memory using *++ARn to push data onto the stack and
reads from memory using *ARn– –to pop data off the stack.

CASE 4: Stores to memory using *ARn++ to push data onto the stack and
reads from memory using *– –ARn to pop data off the stack.

Figure 6–11 shows these two cases. In case 3, the AR always points to the top
of the stack. In case 4, the AR always points to the next free location on the stack.

System and User Stack Management

6-31Addressing Modes

Figure 6–11.Implementations of Low-to-High Memory Stacks

Top of stack

Low memory

High memory

(Free)

Bottom of stack

ARn Top of stack

Low memory

High memory

(Free)

Bottom of stack

Case 3 Case 4

ARn

.

.

.

.

.

.

→
→

6.10.3 Queues

A queue is like a FIFO. The implementation of queues is based on the manipu-
lation of auxiliary registers. Two auxiliary registers are used: one to mark the
front of the queue from which data is popped (or dequeued) and the other to
mark the rear of the queue where data is pushed. With proper management
of the auxiliary registers, the queue can also be circular. (A queue is circular
when the rear pointer is allowed to point to the beginning of the queue memory
after it has pointed to the end of the queue memory.)

 6-32

7-1

Program Flow Control

The TMS320C3x provides a complete set of constructs that facilitate software
and hardware control of the program flow. Software control includes repeats,
branches, calls, traps, and returns. Hardware control includes reset operation,
interrupts, and power management. You can select the constructs best suited
for your particular application.

Topic Page

7.1 Repeat Modes 7-2.

7.2 Delayed Branches 7-9.

7.3 Calls, Traps, and Returns 7-11.

7.4 Interlocked Operations 7-13.

7.5 Reset Operation 7-21.

7.6 Interrupts 7-26.

7.7 DMA Interrupts 7-38.

7.8 Traps 7-47.

7.9 Power Management Modes 7-49.

Chapter 7

Repeat Modes

 7-2

7.1 Repeat Modes

The repeat modes of the ’C3x can implement zero-overhead looping. For many
algorithms, most execution time is spent in an inner kernel of code. Using the
repeat modes allows these time-critical sections of code to be executed in the
shortest possible time.

The ’C3x provides two instructions to support zero-overhead looping:

� RPTB (repeat a block of code). RPTB repeats execution of a block of code
a specified number of times.

� RPTS (repeat a single instruction). RPTS fetches a single instruction once
and then repeats its execution a number of times. Since the instruction is
fetched only once, bus traffic is minimized.

RPTB and RPTS are 4-cycle instructions. These four cycles of overhead occur
during the initial execution of the loop. All subsequent executions of the loop
have no overhead (0 cycle).

Three registers (RS, RE, and RC) control the updating of the program-counter
(PC) when it is modified in a repeat mode. Table 7–1 describes these registers.

Table 7–1. Repeat-Mode Registers

Register Function

RS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Repeat start-address register. Holds the address of the first instruction
of the block of code to be repeated.

RE Repeat end-address register. Holds the address of the last instruction
of the block of code to be repeated. RE�RS (see subsection 7.1.2).

RC Repeat-counter register. Contains 1 less than the number of times
the block remains to be repeated. For example, to execute a block
n times, load n – 1 into RC.

Correct operation of the repeat modes requires that all of the above registers
must be initialized correctly. RPTB and RPTS perform this initialization in
slightly different ways.

Repeat Modes

7-3Program Flow Control

7.1.1 Repeat-Mode Control Bits

Two bits are important to the operation of RPTB and RPTS:

� RM bit. The repeat-mode (RM) flag bit in the status register specifies
whether the processor is running in the repeat mode.

� RM = 0: Fetches are not made in repeat mode.
� RM = 1: Fetches are made in repeat mode.

� S bit . The S bit is internal to the processor and cannot be programmed,
but this bit is necessary to fully describe the operation of RPTB and RPTS.

� If RM = 1 and S = 0, RPTB is executing. Program fetches occur from
memory.

� If RM = 1 and S = 1, RPTS is executing. After the first fetch from
memory, program fetches occur from the instruction register.

7.1.2 Repeat-Mode Operation

Information in the repeat-mode registers and associated control bits controls
the modification of the PC during repeat-mode fetches. The repeat modes
compare the contents of the RE register (repeat-end-address register) with the
PC after the execution of each instruction. If they match and the repeat counter
(RC) is nonnegative, the RC is decremented; the PC is loaded with the repeat-
start-address, and the processing continues. The fetches and appropriate
status bits are modified as necessary. Note that the RC is never modified
when the RM flag is 0.

The repeat counter should be loaded with a value 1 less than the number of
times to execute the block; for example, an RC value of 4 executes the block
five times. The detailed algorithm for the update of the PC is shown in
Example 7–1.

Note: Maximum Number of Repeats

1) The maximum number of repeats occurs when RC = 8000 0000h. This
results in 8000 0001h repetitions. The minimum number of repeats occurs
when RC = 0. This results in one repetition.

2) RE must be greater than or equal to RS (RE ≥ RS). Otherwise, the code
does not repeat even though the RM bit remains set to 1.

3) By writing a 0 into the repeat counter or writing 0 into the RM bit of the
status register, you can stop the repeating of the loop before completion.

Repeat Modes

 7-4

Example 7–1. Repeat-Mode Control Algorithm

if RM == 1 ; If in repeat mode (RPTB or RPTS)
if S == 1 ; If RPTS
if first time through ; If this is the first fetch

fetch instruction from memory ; Fetch instruction from memory
else ; If not the first fetch

fetch instruction from IR ; Fetch instruction from IR
RC – 1 → RC ; Decrement RC

if RC < 0 ; If RC is negative
; Repeat single mode completed

0 → ST(RM) ; Turn off repeat-mode bit
0 → S ; Clear S
PC + 1 → PC ; Increment PC

else if S == 0 ; If RPTB
fetch instruction from memory ; Fetch instruction from memory

if PC == RE ; If this is the end of the block
RC – 1 → RC ; Decrement RC

if RC ≥ 0 ; If RC is not negative
RS → PC ; Set PC to start of block

else if RC < 0 ; If RC is negative
0 → ST(RM) ; Turn off repeat mode bits
0 → S ; Clear S
PC + 1 → PC ; Increment PC

7.1.3 RPTB Instruction

The RPTB instruction repeats a block of code a specified number of times.

The number of times to repeat the block is the RC (repeat count) register value
plus 1. Because the execution of RPTB does not load the RC, you must load this
register yourself. The RC register must be loaded before the RPTB instruction is
executed. A typical setup of the block repeat operation is shown in Example 7–2.

Example 7–2. RPTB Operation

LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute the block of code

STLOOP ; from STLOOP to ENDLOOP 16
; times

.

.

.
ENDLOOP

Repeat Modes

7-5Program Flow Control

All block repeats initiated by RPTB can be interrupted. When RPTB src
(source) instruction executes, it performs the following sequence:

1) Load the start address of the block into repeat-start-address register (RS).
This is the next address following the instruction:

RS � PC (program-counter) of RPTB + 1

2) Load the end address of the block into repeat-end-address register (RE).

� In PC-relative mode, the end address is the 24-bit src operand plus
RS:

RE � src + PC of RPTB + 1

� In register mode, the end address is the contents of the src register:

RE � src register

3) Set the status register to indicate the repeat-mode operation.

RM � 1

4) Indicate repeat-mode operation by clearing the S bit.

S � 0

Note:

You can stop the loop from repeating before its completion by writing a 0 to
the repeat counter or writing a 0 to the RM bit of the status register.

7.1.4 RPTS Instruction

An RPTS src instruction repeats the instruction following the RPTS (src + 1)
times. Repeats of a single instruction initiated by RPTS are not interruptible,
because the RPTS fetches the instruction word only once and then keeps it
in the instruction register for reuse. An interrupt in this situation would cause
the instruction word to be lost. Refetching the instruction word from the instruction
register reduces memory accesses and, in effect, acts as a one-word program
cache. If you need a single instruction that is repeatable and interruptible, you can
use the RPTB instruction.

When RPTS src is executed, the following sequence of operations occurs:

1) PC + 1 → RS
2) PC + 1 → RE
3) 1 → RM status register bit
4) 1 → S bit
5) src → RC (repeat count register)

Repeat Modes

 7-6

The RPTS instruction loads all registers and mode bits necessary for the opera-
tion of the single-instruction repeat mode. Step 1 loads the start address of the
block into RS. Step 2 loads the end address into the RE (end address of the
block). Since this is a repeat of a single instruction, the start address and the end
address are the same. Step 3 sets the status register to indicate the repeat
mode of operation. Step 4 indicates that this is the repeat single-instruction
mode of operation. Step 5 loads src into RC.

7.1.5 Repeat-Mode Restrictions

Because the block-repeat modes modify the program counter, no other
instruction can modify the program counter at the same time. Two rules apply:

Rule 1: The last instruction in the block (or the only instruction in a block of
size 1) cannot be a Bcond, BR, DBcond, CALL, CALLcond, TRAP-
cond, RETIcond, RETScond, IDLE, RPTB, or RPTS. Example 7–3
shows an incorrectly placed standard branch.

Rule 2: None of the last four instructions from the bottom of the block (or the
only instruction in a block of size 1) can be a BcondD, BRD, or
DBcondD. Example 7–4 shows an incorrectly placed delayed
branch.

If either of these rules is violated, the PC is undefined.

Example 7–3. Incorrectly Placed Standard Branch

LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute the block of code

STLOOP ; from STLOOP to ENDLOOP 16
; times

.

.

.
ENDLOOP BR OOPS ; This branch violates rule 1

Repeat Modes

7-7Program Flow Control

Example 7–4. Incorrectly Placed Delayed Branch

LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute block of code

STLOOP ; from STLOOP to ENDLOOP 16
; times

.

.

.
BRD OOPS ; This branch violates rule 2
ADDF
MPYF

ENDLOOP SUBF

7.1.6 RC Register Value After Repeat Mode Completes

For the RPTB instruction, the RC register normally decrements to 0000 0000h
unless the block size is 1; in which case, it decrements to FFFF FFFFh. However,
if the RPTB instruction using a block size of 1 has a pipeline conflict in the instruc-
tion being executed, the RC register decrements to 0000 0000h. Example 7–5
illustrates a pipeline conflict. See Chapter 8 for pipeline information.

RPTS normally decrements the RC register to FFFF FFFFh. However, if the
RPTS has a pipeline conflict on the last cycle, the RC register decrements to
0000 0000h.

Note: Number of Repetitions

In any case, the number of repetitions is always RC + 1.

Example 7–5. Pipeline Conflict in an RPTB Instruction

EDC .word 40000000h ; The program is located in 4000000Fh
LDP EDC
LDI @EDC,AR0
LDI 15,RC ; Load repeat counter with 15
RPTB ENDLOOP ; Execute block of code

ENDLOOP LDI *AR0,R0 ; The *AR0 read conflicts with
; the instruction fetching
; Then RC decrements to 0
; If cache is enabled, RC decrements
; to FFFF FFFFh

Repeat Modes

 7-8

7.1.7 Nested Block Repeats

Block repeats (RPTB) can be nested. Since the registers RS, RE, RC, and
ST control the repeat-mode status, these registers must be saved and restored
in order to nest block repeats. For example, if you write an interrupt service routine
that requires the use of RPTB, it is possible that the interrupt associated with the
routine may occur during another block repeat. The interrupt service routine can
check the RM bit to determine whether the block repeat mode is active. If this RM
is set, the interrupt routine must save ST, RS, RE, and RC, in that order. The inter-
rupt routine can then perform a block repeat. Before returning to the interrupted
routine, the interrupt routine must restore RC, RE, RS, and ST, in that order. If the
RM bit is not set, you do not need to save and restore these registers.

Note: Saving/Restoring Registers in Correct Order

The order in which the registers are saved/restored is important to guarantee
correct operation. The ST register must be restored last, after the RC, RE,
and RS registers. ST must be restored after restoring RC, because the RM
bit cannot be set to 1 if the RC register is 0 or –1. For this reason, if you
execute a POP ST instruction (with ST (RM bit) = 1) while RC = 0, the POP
instruction recovers all the ST register bits but not the RM bit that stays at 0
(repeat mode disabled). Also, RS and RE must be correctly set before you
activate the repeat mode.

The RPTS instruction can be used in a block repeat loop if the proper registers
are saved.

Because the program counter is modified at the end of the loop according to the
contents of registers RS, RE, and RC, no operation should attempt to modify
the repeat counter or the program-counter to a different value at the end of the
loop. It takes four cycles in the pipeline to save and restore these registers.
Hence, sometimes, it may be more economical to implement a nested loop by
the more traditional method of using a register as a counter and then using a
delayed branch or a decrement and branch-delayed instructions, rather than
using nested repeat blocks. Often implementing the outer loop as a counter and
the inner loop as RPTB instruction produces the fastest execution.

Delayed Branches

7-9Program Flow Control

7.2 Delayed Branches

The ’C3x offers three main types of branching: standard, delayed, and condi-
tional delayed.

Standard branches empty the pipeline before performing the branch, ensuring
correct management of the program counter and resulting in a ’C3x branch
taking four cycles. Included in this class are repeats, calls, returns, and traps.

Delayed branches on the ’C3x do not empty the pipeline, but rather execute
the next three instructions before the program counter is modified by the
branch. This results in a branch that requires only a single cycle, making the
speed of the delayed branch very close to that of the optimal block repeat
modes of the ’C3x. However, unlike block-repeat modes, delayed branches
may be used in situations other than looping. Every delayed branch has a stan-
dard branch counterpart that is used when a delayed branch cannot be used.
The delayed branches of the ’C3x are Bcond D, BRD, and DBcond D.

Conditional delayed branches use the conditions that exist at the end of the
instruction immediately preceding the delayed branch. They do not depend on
the instructions following the delayed branch. The condition flags are set by a
previous instruction only when the destination register is one of the extended-
precision registers (R0–R7) or when one of the compare instructions (CMPF,
CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed. Delayed branches
guarantee that the next three instructions will execute, regardless of other
pipeline conflicts.

When a delayed branch is fetched, it remains pending until the three subsequent
instructions are executed. The following instructions cannot be used in the three
instructions after a delayed branch (see Example 7–6):

Bcond DBcondD
BcondD IDLE

IDLE2
BR RETIcond
BRD RETScond
CALL RPTB
CALLcond RPTS
DBcond TRAPcond

Delayed branches disable interrupts until the completion of the three instruc-
tions that follow the delayed branch regardless of whether the branch is or is
not performed.

Note: Incorrect Use of Delayed Branches

If delayed branches are used incorrectly, the PC is undefined.

Delayed Branches

 7-10

Example 7–6. Incorrectly Placed Delayed Branches

B1: BD L1
NOP
NOP

B2: B L2 ; This branch is incorrectly placed.
NOP
NOP
NOP
.
.
.

For faster execution, it might still be advantageous to use a delayed branch
followed by NOP instructions by trading increased program size for faster
speed. This is shown in Example 7–7 where a NOP takes the place of the third
unused instruction after the delayed branch.

Example 7–7. Delayed Branch Execution

* TITLE DELAYED BRANCH EXECUTION
.
.
.
.
LDF* +AR1(5),R2 ; Load contents of memory to R2
BGED SKIP ; If loaded number >=0, branch

; (delayed)
LDFN R2,R1 ; If loaded number <0, load it to R1
SUBF 3.0,R1 ; Subtract 3 from R1
NOP ; Dummy operation to complete delayed

; branch
MPYF 1.5,R1 ; Continue here if loaded number <0
.
.
.

SKIP LDF R1,R3 ; Continue here if loaded number >=0

Calls, Traps, and Returns

7-11Program Flow Control

7.3 Calls, Traps, and Returns

Calls and traps provide a means of executing a subroutine or function while
providing a return to the calling routine.

The CALL, CALLcond, and TRAPcond instructions store the value of the PC
on the stack before changing the PC’s contents. The RETScond or RETIcond
instructions use the value on the stack to return execution from traps and calls.
CALL is a 4-cycle instruction, while CALLcond and TRAPcond are 5-cycle
instruction.

� The CALL instruction places the next PC value on the stack and places
the src (source) operand into the PC. The src is a 24-bit immediate value.
Figure 7–1 shows CALL response timing.

� The CALL cond instruction is similar to the CALL instruction except for two
differences:

� It executes only if a specific condition is true (the 20 conditions—
including unconditional—are listed in Table 13–12 on page 13-30).

� The src is either a PC-relative displacement or is in register-addres-
sing mode.

The condition flags are set by a previous instruction only when the destination
register is one of the extended-precision registers (R0–R7) or when one of
the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3)
is executed.

� The TRAPcond instruction also executes only if a specific condition is true
(same conditions as for the CALLcond instruction). When executing, the
following actions occur:

1) Interrupts are disabled with 0 written to bit GIE of the ST.

2) The next PC value is stored on the stack.

3) The specified vector is retrieved from the trap-vector table and is loaded
into the PC. The vector address corresponds to the trap number in the
instruction.

Using the RETIcond to return reenables interrupts by setting the bit field of
the status register.

� RETScond returns execution from any of the above three instructions by
popping the top of the stack to the PC. For RETScond to execute, the
specified condition must be true. The conditions are the same as for the
CALLcond instruction.

Calls, Traps, and Returns

 7-12

� RETIcond returns from traps or calls like the RETScond, with the addition
that RETIcond also sets the GIE bit of the status register, which enables
all interrupts whose enabling bit is set to 1. The conditions for RETIcond
are the same as for the CALLcond instruction.

Functionally, calls and traps accomplish the same task — a subfunction is
called and executed, and control is then returned to the calling function. Traps
offer two advantages over calls:

� Interrupts are automatically disabled when a trap is executed. This allows
critical code to execute without risk of being interrupted. Traps are generally
terminated with a RETIcond instruction to reenable interrupts.

� You can use traps to indirectly call functions. This is particularly benefi-
cial when a kernel of code contains the basic subfunctions to be used by
applications. In this case, you can modify the functions in the kernel and
relocate them without recompiling each application.

Figure 7–1. CALL Response Timing

Read CALL

H3

H1

ADDR

Data

Fetch CALL Fetch first
subroutine
instruction

Vector address
First instruction

address

Execute CALL
(store PC
on stack)

Decode CALL

PC Inst 1

Interlocked Operations

7-13Program Flow Control

7.4 Interlocked Operations

One of the most common parallel processing configurations is the sharing of
global memory by multiple processors. For multiple processors to access this
global memory and share data in a coherent manner, some sort of arbitration
or handshaking is necessary. This requirement for arbitration is the purpose
of the ’C3x interlocked operations.

The ’C3x provides a flexible means of multiprocessor support with five instruc-
tions, referred to as interlocked operations. Through the use of external signals,
these instructions provide powerful synchronization mechanisms. They also
guarantee the integrity of the communication and result in a high-speed opera-
tion. The interlocked-operation instruction group is listed in Table 7–2.

Table 7–2. Interlocked Operations

Mnemonic Description Operation

LDFI Load floating-point value into a register,
interlocked

Signal interlocked
src → dst

LDII Load integer into a register, interlocked Signal interlocked
src → dst

SIGI Signal, interlocked Signal interlocked
Clear interlock

STFI Store floating-point value to memory,
interlocked

Clear interlock
src → dst

STII Store integer to memory, interlocked Clear interlock
src → dst

The interlocked operations use the two external flag pins, XF0 and XF1. XF0
must be configured as an output pin; XF1 is an input pin. When configured in
this manner:

� XF0 signals an interlock operation request

� XF1 acts as an acknowledge signal for the requested interlocked operation.
In this mode, XF0 and XF1 are treated as active-low signals.

The external timing for the interlocked loads and stores is the same as for
standard loads and stores. The interlocked loads and stores may be extended
like standard accesses by using the appropriate ready signal (RDYint or
XRDYint). (RDYint and XRDYint are a combination of external ready input and
software wait states. see Chapter 9, External Memory Interface, for more
information on ready generation.)

Interlocked Operations

 7-14

The LDFI and LDII instructions perform the following actions:

1) Simultaneously set XF0 to 0 and begin a read cycle. The timing of XF0 is
similar to that of the address bus during a read cycle.

2) Execute an LDF or LDI instruction and extend the read cycle until XF1
is set to 0 and a ready (RDYint or XRDYint) is signaled. The read cycle
completes one H1/H3 cycle after the XF1 signal is detected.

3) Leave XF0 set to 0 and end the read cycle.

Note: Timing Diagrams for LDFI and LDII

The timing diagrams for LDFI and LDII shown on the data sheets depict a 0
wait state read cycle. Since the read cycle is extended for one H1/H3 cycle
after XF1 signal is detected, the data sheets show the XF1 signal sampled
one H1/H3 cycle before setting the XF0 signal low.

For the sequence of steps described here, the read cycle finishes one H1/H3
cycle after the XF1 signal is detected.

The read/write operation is identical to any other read/write cycle except for
the special use of XF0 and XF1. The src operand for LDFI and LDII is always
a direct or indirect memory address. XF0 is set to 0 only if the src is located
off chip; that is, STRB, STRB0, STRB1, MSTRB, or IOSTRB is active, or the
src is one of the on-chip peripherals. If on-chip memory is accessed, then XF0
is not asserted, and the operation executes as an LDF or LDI from internal
memory.

The STFI and STII instructions perform the following operations:

1) Simultaneously set XF0 to 1 and begin a write cycle. The timing of XF0 is
similar to that of the address bus during a write cycle.

2) Execute an STF or STI instruction and extend the write cycle until a ready
(RDYint or XRDYint) is signaled.

As in the case for LDFI and LDII, the dst of STFI and STII affects XF0. If dst
is located off chip (STRB, STRB0, STRB1, MSTRB, or IOSTRB is active) or
the dst is one of the on-chip peripherals, XF0 is set to 1. If on-chip memory is
accessed, then XF0 is not asserted and the operation executes as an STF or
STI to internal memory.

The SIGI instruction functions as follows:

1) Sets XF0 to 0
2) Idles until one H1/H3 cycle after XF1 is set to 0
3) Sets XF0 to 1 and ends the operation

Interlocked Operations

7-15Program Flow Control

Note: Timing Diagrams for SIGI

The timing diagrams for SIGI shown in the data sheets depict a zero wait
state condition. Since the device idles until one cycle after XF1 is signaled,
the data sheets show the XF1 signal sampled one H1/H3 cycle before setting
the XF0 signal low.

For the sequence of steps described here, the device idles past one H1/H3
cycle after the XF1 signal is detected.

7.4.1 Interrupting Interlocked Operations

While the LDFI, LDII, and SIGI instructions are waiting for XF1 to be set to 0,
you can interrupt them. LDFI and LDII require a ready signal (RDYint or
XRDYint) in order to be interrupted. Because interrupts are taken on bus-cycle
boundaries (see Section 7.6 on page 7-26), an interrupt may be taken any time
after a valid ready. If the interrupted LDFI or LDII consists of a multicycle load,
the load stops and an unknown value might be loaded into the register.

Interrupting an LDFI, LDII, or SIGI instruction allows you to implement
protection mechanisms against deadlock conditions by interrupting an
interlocked load that has taken too long. Upon return from the interrupt, the
next instruction is executed. The STFI and STII instructions are not
interruptible. Since the STFI and STII instructions complete when ready is
signaled, the delay until an interrupt can occur is the same as for any other
instruction.

7.4.2 Using Interlocked Operations

Note: Incorrect Use of Interlock Instructions

Do not place an STFI or STII back-to-back with an LDFI, LDII, or SIGI instruction
as follows:

STFI R1,*AR1 ;

LDFI *AR1, R2 ; Incorrect use of interlock instructions

See Section 7.4.3, Pipeline Effects of Interlocked Instructions, on page 7-19.

Interlocked operations can be used to implement a busy-waiting loop, to manipu-
late a multiprocessor counter, to implement a simple semaphore mechanism, or
to perform synchronization between two ’C3x devices. The following examples
illustrate the usefulness of the interlocked operations instructions.

Interlocked Operations

 7-16

Example 7–8 shows the implementation of a busy-waiting loop. If location
LOCK is the interlock for a critical section of code, and a nonzero means the
lock is busy, the algorithm for a busy-waiting loop can be used as shown.

Example 7–8. Busy-Waiting Loop

LDI 1,R0 ; Put 1 into R0
L1: LDII @LOCK,R1 ; Interlocked operation begun

; Contents of LOCK → R1
STII R0,@LOCK ; Put R0 (= 1) into LOCK, XF0 = 1

; Interlocked operation ended
BNZ L1 ; Keep trying until LOCK = 0

Example 7–9 shows how a location COUNT may contain a count of the number
of times a particular operation must be performed. This operation may be per-
formed by any processor in the system. If the count is 0, the processor waits
until it is nonzero before beginning processing. The example also shows the
algorithm for modifying COUNT correctly.

Example 7–9. Multiprocessor Counter Manipulation

CT: OR 4,IOF ; XF0 = 1
; Interlocked operation ended

LDII @COUNT,R1 ; Interlocked operation begun
; Contents of COUNT → R1

BZ CT ; If COUNT = 0, keep trying
SUBI 1,R1 ; Decrement R1 (= COUNT)
STII R1,@COUNT ; Update COUNT, XF0 = 1

; Interlocked operation ended

Figure 7–2 illustrates multiple ’C3x devices sharing global memory and using the
interlocked instructions as in Example 7–10, Example 7–11, and Example 7–12.

Interlocked Operations

7-17Program Flow Control

Figure 7–2. Multiple TMS320C3xs Sharing Global Memory

Global memory

Arbitration logic

’C3x #2

XF0 XF1

Local
memory

Local
memory

’C3x #1

XF0 XF1 (X)A

(X)D

CTRL

(X)A

(X)D

CTRL

Lock, count, or S

A
D

D
R

C
T

R
L

D
A

TA

Sometimes it may be necessary for several processors to access some
shared data or other common resources. The portion of code that must access
the shared data is called a critical section.

To ease the programming of critical sections, semaphores may be used.
Semaphores are variables that can take only nonnegative integer values. Two
primitive, indivisible operations are defined on semaphores (with S being a
semaphore):

V(S): S + 1 → S

P(S): P: if (S == 0), go to P

else S – 1 → S

Indivisibility of V(S) and P(S) means that when these processes access and
modify the semaphore S; they are the only processes doing so.

To enter a critical section, a P operation is performed on a common semaphore,
say S (S is initialized to 1). The first processor performing P(S) will be able to enter
its critical section. All other processors are blocked because S has become 0.
After leaving its critical section, the processor performs a V(S), thus allowing
another processor to execute P(S) successfully.

Interlocked Operations

 7-18

The ’C3x code for V(S) is shown in Example 7–10; code for P(S) is shown in
Example 7–11. Compare the code in Example 7–11 to the code in Example 7–9,
which does not use semaphores.

Example 7–10. Implementation of V(S)

V: LDII @S,R0 ; Interlocked read of S begins (XFO = 0)
; Contents of S → R0

ADDI 1,R0 ; Increment R0 (= S)
STII R0,@S ; Update S, end interlock (XF0 = 0)

Example 7–11. Implementation of P(S)

P: OR 4,IOF ; End interlock (XF0 = 1)
NOP ; Avoid potential pipeline conflicts when

; executing out of cache, on-chip memory
; or zero wait-state memory

LDII @S,R0 ; Interlocked read of S begins
; Contents of S → R0

BZ P ; If S = 0, go to P and try again
SUBI 1,R0 ; Decrement R0 (= S)
STII R0,@S ; Update S, end interlock (XF0 = 1)

The SIGI operation can synchronize, at an instruction level, multiple ’C3xs.
Consider two processors connected as shown in Figure 7–3. The code for the
two processors is shown in Example 7–12.

Figure 7–3. Zero-Logic Interconnect of TMS320C3x Devices

XF0

XF1

XF1

’C3x #1 ’C3x #2

XF0

Processor #1 runs until it executes the SIGI. It then waits until processor #2
executes a SIGI. At this point, the two processors are synchronized and continue
execution.

Interlocked Operations

7-19Program Flow Control

Example 7–12. Code to Synchronize Two TMS320C3x Devices at the Software Level

N

Code for ’C3x #2Code for ’C3x #1Time

O

(WAIT)

SIGI

SIGISynchronization occurs

7.4.3 Pipeline Effects of Interlocked Instructions

Before performing an interlocked instruction, the XF0 pin must be configured as
an output pin and the XF1 pin must be configured as an input pin through the
IOF register (see subsection 3.1.10, I/O Flag Register (IOF), on page 3-16).
After the XF0 and XF1 pins are configured, no interlocked instruction can occur
in the following two instructions.

XF0 set as an
output pin and
XF1 set as an
input pin

XF1 sampled

XF0 driven low
and XF1 sampled

XF0 pin
driven high

XF1 pin
sampled

XF0 pin
driven low

Interlocked Operations

 7-20

Example 7–13. Pipeline Delay of XF Pin Configuration

Pipeline Operation

PC Fetch Decode Read Execute

n LDI 2h, IOF

n+1 NOP LDI 2h, IOF

n+2 NOP NOP LDI 2h, IOF

n+3 LDII *AR1, R1 NOP NOP LDI 2h, IOF

n+4 LDII *AR1, R1 NOP NOP

n+5 LDII *AR1, R1 NOP

n+6 LDII *AR1, R1

STFI and STII instructions drive the XF0 pin high during its execution phase.
LDFI, LDII, and SIGI instructions sample the XF1 pin during its decode phase
while driving the XF0 pin low during its read phase. Therefore, do not use an
LDFI, LDII, or SIGI instruction immediately after an STFI or STII instruction
(see Example 7–14).

Example 7–14. Incorrect Use of Interlocked Instructions

Pipeline Operation

PC Fetch Decode Read Execute

n STFI R1, *AR1

n+1 LDFI *AR1, R2 STFI R1, *AR1

n+2 LDFI *AR1, R2 STFI R1, *AR1

n+3 LDFI *AR1, R2 STFI R1, *AR1

n+4 LDFI *AR1, R2

Reset Operation

7-21Program Flow Control

7.5 Reset Operation

The ’C3x supports a nonmaskable external reset signal (RESET), which is
used to perform system reset. This section discusses the reset operation.

At start-up, the state of the ’C3x processor is undefined. You can use the RESET
signal to place the processor in a known state. This signal must be asserted low
for ten or more H1 clock cycles to guarantee a system reset. H1 is an output
clock signal generated by the ’C3x. (Check the datasheet for your device for the
specific signal descriptions and electrical characteristics.)

Reset affects the other pins on the device in either a synchronous or asynchro-
nous manner. The synchronous reset is gated by the ’C3x’s internal clocks. The
asynchronous reset directly affects the pins and is faster than the synchronous
reset. Table 7–3 shows the state of the ’C3x’s pins after RESET = 0. Each pin is
described according to whether the pin is reset synchronously or asynchronously.

Table 7–3. TMS320C3x Pin Operation at Reset

Device

Signal Operation at Reset ‘C30 ‘C31 ‘C32

Primary Bus Interface Signals

D31–D0 Synchronous reset; placed in high-impedance state � � �

A23–A0 Synchronous reset; placed in high-impedance state � � �

R/W Synchronous reset; deasserted by going to a high level � � �

IOSTRB Synchronous reset; deasserted by going to a high level � �

STRB0_B3/A–1 Synchronous reset; deasserted by going to a high level �

STRB0_B2/A–2 Synchronous reset; deasserted by going to a high level �

STRB0_B1 Synchronous reset; deasserted by going to a high level �

STRB0_B0 Synchronous reset; deasserted by going to a high level �

STRB1_B3/A–1 Synchronous reset; deasserted by going to a high level �

STRB1_B2/A–2 Synchronous reset; deasserted by going to a high level �

STRB1_B1 Synchronous reset; deasserted by going to a high level �

STRB1_B0 Synchronous reset; deasserted by going to a high level �

STRB Synchronous reset; deasserted by going to a high level � �

RDY Reset has no effect � � �

HOLD Reset has no effect � � �

Reset Operation

 7-22

Table 7–3. TMS320C3x Pin Operation at Reset (Continued)

Device

Signal ‘C32‘C31‘C30Operation at Reset

HOLDA Reset has no effect � � �

PRGW Reset has no effect �

Expansion Bus Interface

XD31–XD0 Synchronous reset; placed in high-impedance state �

XA12–XA0 Synchronous reset; placed in high-impedance state �

XR/W Synchronous reset; placed in high-impedance state �

MSTRB Synchronous reset; deasserted by going to a high level �

XRDY Reset has no effect �

Control Signals

RESET Reset input pin � � �

INT3–INT0 Reset has no effect � � �

IACK Synchronous reset; deasserted by going to a high level � � �

MC/MP or MCBL/MP Reset has no effect � � �

SHZ Reset has no effect � � �

XF1–XF0 Asynchronous reset; placed in high-impedance state � � �

Serial Port 0 Signals

CLKX0 Asynchronous reset; placed in high-impedance state � � �

DX0 Asynchronous reset; placed in high-impedance state � � �

FSX0 Asynchronous reset; placed in high-impedance state � � �

CLKR0 Asynchronous reset; placed in high-impedance state � � �

DR0 Asynchronous reset; placed in high-impedance state � � �

FSR0 Asynchronous reset; placed in high-impedance state � � �

Serial Port 1 Signals

CLKX1 Asynchronous reset; placed in high-impedance state �

DX1 Asynchronous reset; placed in high-impedance state �

FSX1 Asynchronous reset; placed in high-impedance state �

CLKR1 Asynchronous reset; placed in high-impedance state �

Reset Operation

7-23Program Flow Control

Table 7–3. TMS320C3x Pin Operation at Reset (Continued)

Device

Signal ‘C32‘C31‘C30Operation at Reset

DR1 Asynchronous reset; placed in high-impedance state �

FSR1 Asynchronous reset; placed in high-impedance state �

Timer0 Signal

TCLK0 Asynchronous reset; placed in high-impedance state � � �

Timer1 Signal

TCLK1 Asynchronous reset; placed in high-impedance state � � �

Supply and Oscillator Signals

VDD Reset has no effect � � �

IODVDD Reset has no effect �

ADVDD Reset has no effect �

PDVDD Reset has no effect �

DDVDD Reset has no effect �

MDVDD Reset has no effect �

VSS Reset has no effect � � �

DVSS Reset has no effect � �

CVSS Reset has no effect � �

IVSS Reset has no effect � �

VBBP Reset has no effect � �

VSUBS Reset has no effect � � �

X1 Reset has no effect � �

X2/CLKIN Reset has no effect � � �

H1 Synchronous reset; will go to its initial state when RESET
makes a 1 to 0 transition

� � �

H3 Synchronous reset; will go to its initial state when RESET
makes a 1 to 0 transition

� � �

Reset Operation

 7-24

Table 7–3. TMS320C3x Pin Operation at Reset (Continued)

Device

Signal ‘C32‘C31‘C30Operation at Reset

Emulation, Test, and Reserved

EMU0 Undefined � � �

EMU1 Undefined � � �

EMU2 Undefined � � �

EMU3 Undefined � � �

EMU4 Undefined �

EMU5 Undefined �

EMU6 Undefined �

RSV0 Undefined �

RSV1 Undefined �

RSV2 Undefined �

RSV3 Undefined �

RSV4 Undefined �

RSV5 Undefined �

RSV6 Undefined �

RSV7 Undefined �

RSV8 Undefined �

RSV9 Undefined �

RSV10 Undefined �

Reset Operation

7-25Program Flow Control

At system reset, the following additional operations are performed:

� The peripherals are reset. This is a synchronous operation. Peripheral reset
is described in Chapter 12, Peripherals.

� The external bus control registers are reset. The reset values of the control
registers are described in Chapter 9, ’C30 and ’C31 External-Memory
Interface.

� The following CPU registers are loaded with 0:

� ST (CPU status register), except in the ’C32, the PRGW status bit field
is loaded with the status of the PRGW pin

� IE (CPU/DMA interrupt-enable flags)
� IF (CPU interrupt flags)
� IOF (I/O flags)

� The reset vector is read from memory location 0h. On the ’C32, this is a
32-bit data read. Once read, this value is loaded into the PC. This vector
contains the start address of the system reset routine.

� At this point, code location is dictated by the PC.

Multiple ’C3x devices, driven by the same system clock, may be reset and
synchronized. When the 1 to 0 transition of RESET occurs, the processor is
placed on a well-defined internal phase, and all of the ’C3x devices come up
on the same internal phase and all internal memory locations.

Unless otherwise specified, all registers are undefined after reset.

Interrupts

 7-26

7.6 Interrupts

The ’C3x supports multiple internal and external interrupts, which can be used for
a variety of applications. Internal interrupts are generated by the DMA controller,
timers, and serial ports. Four external maskable interrupt pins include INT0 –
INT3. Interrupts are automatically prioritized allowing interrupts to occur simulta-
neously and serviced in a predefined order. This section discusses the operation
of these interrupts.

Additional information regarding internal interrupts can be found in Sec-
tion 12.3.7, DMA and Interrupts, on page 12-64; Section 12.1.8, Timer Inter-
rupts on page 12-13; and Section 12.2.11, Serial-Port Interrupt Sources, on
page 12-34.

7.6.1 TMS320C30 and TMS320C31 Interrupt Vector Table

Table 7–4 and Table 7–5 contain the interrupt vectors. In the microprocessor
mode of the ’C30 and the ’C31 (Table 7–4) and the microcomputer mode of
the ’C31 (Table 7–5), the interrupt vectors contain the addresses of interrupt
service routines that should start executing when an interrupt occurs. On the
other hand, in the microcomputer/boot-loader mode of the ’C31, the interrupt
vector contains a branch instruction to the start of the interrupt service routine.

Interrupts

7-27Program Flow Control

Table 7–4. Reset, Interrupt, and Trap-Vector Locations for the TMS320C30/
TMS320C31 Microprocessor Mode

Address Name Function

00h RESET External reset signal input

01h INT0 External interrupt on the INT0 pin

02h INT1 External interrupt on the INT1 pin

03h INT2 External interrupt on the INT2 pin

04h INT3 External interrupt on the INT3 pin

05h XINT0 Internal interrupt generated when serial port
0 transmit buffer is empty

06h RINT0 Internal interrupt generated when serial port
0 transmit buffer is full

07h XINT1† Internal interrupt generated when serial port
1 transmit buffer is empty

08h RINT1† Internal interrupt generated when serial port
1 transmit buffer is full

09h TINT0 Internal interrupt generated by timer0

0Ah TINT1 Internal interrupt generated by timer1

0Bh DINT Internal interrupt generated by DMA controller

0Ch Reserved

• •

• •

• •

1Fh Reserved

20h TRAP 0 Internal interrupt generated by TRAP 0
instruction

•

•

•

3Bh TRAP 27 Internal interrupt generated by TRAP 27
instruction

3Ch TRAP 28 (reserved)

3Dh TRAP 29 (reserved)

3Eh TRAP 30 (reserved)

3Fh TRAP 31 (reserved)

† Reserved on ’C31

Interrupts

 7-28

Table 7–5. Reset, Interrupt, and Trap-Branch Locations for the TMS320C31
Microcomputer Boot Mode

Address Name Function

809FC1 INT0 External reset signal input

809FC2 INT1 External interrupt on the INT0 pin

809FC3 INT2 External interrupt on the INT1 pin

809FC4 INT3 External interrupt on the INT2 pin

809FC5 XINT0 External interrupt on the INT3 pin

809FC6 RINT0 Internal interrupt generated when
serial port 0 transmit buffer is
empty

809FC7 XINT1 (Reserved)

809FC8 RINT1 (Reserved)

809FC9 TINT0 Internal interrupt generated by
timer0

809FCA TINT1 Internal interrupt generated by
timer1

809FCB DINT Internal interrupt generated by DMA
controller

809FCC–809FDF Reserved

809FE0 TRAP0 Internal interrupt generated by
TRAP 0 instruction

809FE1 TRAP1 Internal interrupt generated by
TRAP 1 instruction

• •

• •

• •

809FFB TRAP27 Internal interrupt generated by
TRAP 27 instruction

809FFC–809FFF Reserved

Interrupts

7-29Program Flow Control

7.6.2 TMS320C32 Interrupt Vector Table

Similarly to the rest of the ’C3x device family, the ’C32’s reset vector location
remains at address 0. On the other hand, the interrupt and trap vectors are
relocatable. This is achieved by a new bit field in the CPU interrupt flag register
called the interrupt-trap table pointer (ITTP), shown in Figure 3–11 on page
3-15. The ITTP bit field dictates the starting location (base) of the interrupt-
trap-vector table. This base address is formed by left-shifting the value of the
ITTP bit field by eight bits. This shifted value is called the effective base address
and is referenced as EA[ITTP], as shown in Figure 7–4. Therefore, the location
of an interrupt or trap vector is given by the addition of the effective base address
formed by the ITTP bit field (EA[ITTP]) and the offset of the interrupt or trap
vector in the interrupt-trap-vector table, as shown in Table 7–6. For example,
if the ITTP contains the value 100h, the serial-port transmit interrupt vector will
be located at 10005h. Note that the vectors stored in the interrupt-trap-vector
table are the addresses of the start of the respective interrupt and trap routines.
Furthermore, the interrupt-trap-vector table must lie on a 256-word boundary,
since the eight LSBs of the effective base address of the interrupt-trap-vector
table are 0.

Figure 7–4. Effective Base Address of the Interrupt-Trap-Vector Table

Bits 31–16 of the CPU interrupt flag register 00000000

7 0823

EA[ITTP] =

Interrupts

 7-30

Table 7–6. Interrupt and Trap-Vector Locations for the TMS320C32

Address Name Function

EA[ITTP] + 00h Reserved

EA[ITTP] + 01h INT0 External interrupt on the INT0 pin

EA[ITTP] + 02h INT1 External interrupt on the INT1 pin

EA[ITTP] + 03h INT2 External interrupt on the INT2 pin

EA[ITTP] + 04h INT3 External interrupt on the INT3 pin

EA[ITTP] + 05h XINT0 Internal interrupt generated when serial port 0 transmit buffer
is empty

EA[ITTP] + 06h RINT0 Internal interrupt generated when serial port 0 transmit buffer
is full

EA[ITTP] + 07h Reserved

EA[ITTP] + 08h Reserved

EA[ITTP] + 09h TINT0 Internal interrupt generated by timer0

EA[ITTP] + 0Ah TINT1 Internal interrupt generated by timer1

EA[ITTP] + 0Bh DINT0 Internal interrupt generated by DMA channel 0

EA[ITTP] + 0Ch DINT1 Internal interrupt generated by DMA channel 1

EA[ITTP] + 0Dh Reserved

EA[ITTP] + 1Fh Reserved

EA[ITTP] + 20h TRAP 0 Internal interrupt generated by TRAP 0 instruction

•

•

•

EA[ITTP] + 3Bh TRAP 27 Internal interrupt generated by TRAP 27 instruction

EA[ITTP] + 3Ch TRAP 28 (reserved)

EA[ITTP] + 3Dh TRAP 29 (reserved)

EA[ITTP] + 3Eh TRAP 30 (reserved)

EA[ITTP] + 3Fh TRAP 31 (reserved)

Interrupts

7-31Program Flow Control

7.6.3 Interrupt Prioritization

When two interrupts occur in the same clock cycle or when two previously
received interrupts are waiting to be serviced, one interrupt is serviced before
the other. The CPU handles this prioritization by servicing the interrupt with the
least priority. The priority of interrupts is handled by the CPU according to the
interrupt vector table. Priority is set according to position in the table—those with
displacements closest to the base address of the table are higher in priority.
Table 7–7 shows the priorities assigned to the reset and interrupt vectors.

Table 7–7. Reset and Interrupt Vector Priorities

Reset or
Interrupt

Vector
Location Priority Function

RESET 0h 0 External reset signal input on the RESET pin

INT0 1h 1 External interrupt on the INT0 pin

INT1 2h 2 External interrupt on the INT1 pin

INT2 3h 3 External interrupt on the INT2 pin

INT3 4h 4 External interrupt on the INT3 pin

XINT0 5h 5 Internal interrupt generated when serial-port 0 transmit buffer is empty

RINT0 6h 6 Internal interrupt generated when serial-port 0 receive buffer is full

XINT1† 7h 7 Internal interrupt generated when serial-port 1 transmit buffer is empty

RINT1† 8h 8 Internal interrupt generated when serial-port 1 receive buffer is full

TINT0 9h 9 Internal interrupt generated by timer0

TINT1 0Ah 10 Internal interrupt generated by timer1

DINT/
DINT0

0Bh 11 Internal interrupt generated by DMA channel 0

DINT1‡ 0Ch 12 Internal interrupt generated by DMA channel 1

† Reserved on ’C31 and ’C32
‡ Present on ’C32 only

Interrupts

 7-32

7.6.4 CPU Interrupt Control Bits

Three CPU registers contain bits that control interrupt operation:

� Status (ST) register

The CPU global interrupt-enable bit (GIE) located in the CPU status register
(ST) controls all maskable CPU interrupts. When this bit is set to 1, the CPU
responds to an enabled interrupt. When this bit is cleared to 0, all CPU inter-
rupts are disabled. see Section 3.1.7 on page 3-5 for more information.

� CPU/DMA interrupt-enable (IE) register

This register individually enables/disables CPU, DMA external, serial port,
and timer interrupts. See Section 3.1.8 on page 3-9 for more information.

� CPU interrupt flag (IF) register

This register contains interrupt flag bits that indicate the corresponding
interrupt is set. See Section 3.1.9 on page 3-11 for more information.

7.6.5 Interrupt Flag Register Behavior

When an external interrupt occurs, the corresponding bit of the IF register is set
to 1. When the CPU or DMA controller processes this interrupt, the corresponding
interrupt flag bit is cleared by the internal interrupt acknowledge signal. However,
for level-triggered interrupts, if INTn is still low when the interrupt acknowledge
signal occurs, the interrupt flag bit is cleared for only one cycle and then set again,
because INTn is still low. Depending on when the IF register is read, it is also
possible that this bit may be 0 even though INTn is 0. When the ’C3x is reset,
0 is written to the interrupt flag register, clearing all pending interrupts.

The interrupt flag register bits can be read from and written to under software
control. Writing a 1 to an IF register bit sets the associated interrupt flag to 1.
Similarly, writing a 0 resets the corresponding interrupt flag to 0. In this way, all
interrupts may be triggered and/or cleared through software. Since the interrupt
flags may be read, the interrupt pins may be polled in software when an inter-
rupt-driven interface is not required.

Internal interrupts operate in a similar manner. In the IF register, the bit corre-
sponding to an internal interrupt can be read from and written to through software.
Writing a 1 sets the interrupt latch; writing a 0 clears it. All internal interrupts are
one H1/H3 cycle in length. If any previous bit value of the IF register needs to be
preserved, a modification to IF register should be performed with logic operations
(AND, OR, etc.) directly to IF.

Interrupts

7-33Program Flow Control

Figure 7–5. IF Register Modification

Correct Incorrect

LDI @MASK, R0 LDI IF, R1

AND R0, IF AND @MASK, R1

LDI R1, IF

Note: IF Register Load Priority

If a load of the IF register occurs simultaneously with a set or reset of a flag
by an interrupt pulse, the loading of the flag has higher priority and overwrites
the IF register value.

7.6.6 Interrupt Processing

The ’C3x allows the CPU and DMA coprocessor to respond to and process
interrupts in parallel. Figure 7–6 on page 7-34 shows interrupt processing
flow; for the exact sequence, see Table 7–8 on page 7-36.

For a CPU interrupt to occur, at least two conditions must be met:

� All interrupts must be enabled globally by setting the GIE bit to 0 in the status
register.

� The interrupt must be enabled by setting the corresponding bit in the
IF register.

In the CPU interrupt processing cycle (left side of Figure 7–6), the corresponding
interrupt flag in the IF register is cleared, and interrupts are globally disabled
(GIE = 0). The CPU completes all fetched instructions. The current PC is pushed
to the top of the stack. The interrupt vector is then fetched and loaded into the
PC, and the CPU starts executing the first instruction in the interrupt service
routine (ISR).

Interrupts

 7-34

Figure 7–6. CPU Interrupt Processing

DMA proceeds according
 to SYNC bits

If enabled,
interrupt is

a DMA interrupt

Clear interrupt flag

DMA continues

CPU starts executing ISR routine

Complete all fetched instructions

PC ← interrupt vector

PC → *(++SP)

Clear interrupt flag

Disable interrupts
GIE← 0

If enabled,
interrupt is

a CPU interrupt

Is an enabled
interrupt set

?

No

Yes

Note: CPU and DMA Interrupts

CPU interrupts are acknowledged (responded to by the CPU) on instruction
fetch boundaries only. If instruction fetches are halted because of pipeline
conflicts or execution of RPTS loops, CPU interrupts are not acknowledged
until the next instruction fetch.

Interrupts

7-35Program Flow Control

If you wish to make the interrupt service routine interruptible, you can set the
GIE bit to 1 after entering the ISR.

The interrupt acknowledge (IACK) instruction can be used to signal externally that
an interrupt has been serviced. If external memory is specified in the operand,
IACK drives the IACK pin and performs a dummy read. The read is performed
from the address specified by the IACK instruction operand. IACK is typically
placed in the early portion of an ISR. However, depending on your application,
it may be better to place it at the end of the ISR or not at all.

Note the following:

� Interrupts are disabled during an RPTS and during a delayed branch (until
the three instructions following a delayed branch are completed). Interrupts
are held until after the branch.

� When an interrupt occurs, instructions currently in the decode and read
phases continue regular execution, unlike an instruction in the fetch
phase:

� If the interrupt occurs in the first cycle of the fetch of an instruction, the
fetched instruction is discarded (not executed), and the address of
that instruction is pushed to the top of the system stack.

� If the interrupt occurs after first cycle of the fetch (in the case of a multi-
cycle fetch due to wait states), that instruction is executed, and the
address of the next instruction to be fetched is pushed to the top of
the system stack.

7.6.7 CPU Interrupt Latency

CPU interrupt latency, defined as the time from the acknowledgement of the
interrupt to the execution of the first ISR instruction, is at least eight cycles. This
is explained in Table 7–8 on page 7-36, where the interrupt is treated as an
instruction. It assumed that all of the instructions are single-cycle instructions.

Interrupts

 7-36

Table 7–8. Interrupt Latency

Cycle Description Fetch Decode Read Execute

1 Recognize interrupt in single-cycle fetched
(prog a + 1) instruction

prog a + 1 prog a prog a–1 prog a–2

2 Clear GIE bit. Clear interrupt flag — interrupt prog a prog a–1

3 Read the interrupt vector table — — interrupt prog a

4 Store return address to stack — — — interrupt

5 Pipeline begins to fill with ISR instruction isr1 — — —

6 Pipeline continues to fill with ISR instruction isr2 isr1 — —

7 Pipeline continues to fill with ISR instruction isr3 isr2 isr1 —

8 Execute first instruction of interrupt service routine isr4 isr3 isr2 isr1

7.6.8 External Interrupts

The four external maskable interrupt pins INT0–INT3 are enabled at the IF reg-
ister (Section 3.1.9, CPU Interrupt Flag (IF) Register, on page 3-11) and are syn-
chronized internally. They are sampled on the falling edge of H1 and passed
through a series of H1/H3 latches internally. These latches require the interrupt
signal to be held low for at least one H1/H3 clock cycle to be recognized by the
‘C3x. Once synchronized, the interrupt input sets the corresponding interrupt
flag register (IF) bit if the interrupt is active.

Figure 7–7 shows a functional diagram of the logic used to implement external
interrupt inputs.

Interrupts

7-37Program Flow Control

Figure 7–7. Interrupt Logic Functional Diagram

INTn To
control
section

Internal interrupt
set signal

Interrupt
flag (n)

Internal
interrupt

processor

Internal interrupt
clear/acknowledge

signal
EINTn(DMA)

EINTn(CPU)

H1 H3 H1

D

CLK

D

CLK

D

CLK

Set

RESET

GIE(CPU)

Q Q Q
Q

These interrupts are prioritized by the selection of one over the other if both
come on the same clock cycle (INT0 the highest, INT1 next, etc.). When an
interrupt is taken, the status register ST(GIE) bit is reset to 0, disabling any other
incoming interrupt. This prevents any other interrupt (INT0 – INT3) from assuming
program control until the ST(GIE) bit is set back to 1. On a return from an interrupt
routine, the RETI and RETIcond instructions set the ST(GIE) bit to 1.

On the ‘C30 and ‘C31, external interrupts are level triggered. On the ‘C32,
external interrupts are edge or level triggered, depending on the INT config
bit field of the status register.

For an edge-triggered interrupt to be detected by the ’C32 the external pin
must transition from 1 to 0. And then, it needs to be held low for at least one
H1/H3 cycle (but it could be held low longer).

For a level-triggered interrupt to be detected by the ’C3x, the external pin must
be held low for between one and two cycles (1� low-pulse width�2). If the
interrupt is held low for more than two cycles, more than one interrupt might
be recognized. There is no need to provide an edge in this case.

DMA Interrupts

 7-38

7.7 DMA Interrupts

Interrupts can also trigger DMA read and write operations. This is called
DMA synchronization. The DMA interrupt processing cycle is similar to that of
the CPU. After the pertinent interrupt flag is cleared, the DMA coprocessor
proceeds according to the status of the SYNC bits in the DMA coprocessor
global-control register.

If the interrupt in the CPU/DMA interrupt-enable (IE) register is enabled, the
interrupt controller automatically latches the interrupt and saves it for future
DMA use. The interrupt controller latches the interrupt, clears the flag in the IF
register, and informs the data that an interrupt has occurred. The DMA then pro-
ceeds with the transfer according to the previously configured CPU/DMA prior-
ity. Even if the DMA has not been started, the interrupt latch occurs, and the flag
is cleared, except when the start bits in the DMA control register have the reset
value 002 in START bits. DMA reset clears the interrupt internal latch.

7.7.1 DMA Interrupt Control Bits

Two registers contain bits used to control DMA interrupt operation:

� CPU/DMA interrupt-enable register (IE). All DMA interrupts are controlled
by the most significant 16 bits in the IE register and by the SYNC bits of
the DMA channel control registers (see Section 12.3.3, DMA Registers,
on page 12-51). The DMA interrupts are not dependent upon ST(GIE) and
are local to the DMA.

� The DMA channel control register. Each DMA coprocessor channel uses
a channel control register to determine its mode of operation. This register
is shown in Section 12.3.3.

The IE is broken into several subfields that determine which interrupts can be
used to control the synchronization for each DMA channel. For example, the bits
in each of these fields allow you to select whether a DMA channel is synchro-
nized to a port, a timer, or an external interrupt pin. Note that the ’C32 has two
DMA channels while the ’C30 and ’C31 have a single DMA channel.

See Section 3.1.8, CPU/DMA Interrupt-Enable Register (IE), on page 3-9, for
a description of the IE.

DMA Interrupts

7-39Program Flow Control

7.7.2 DMA Interrupt Processing

Figure 7–8 shows the general flow of interrupt processing by the DMA
coprocessor.

Figure 7–8. DMA Interrupt Processing

DMA proceeds according
 to DMA control register

SYNC bits

Is an enabled
interrupt set

?

If enabled in the IE
register, the interrupt Is

a DMA interrupt

Clear interrupt flag

DMA continues

No

Yes

For more information about DMA interrupts, see Section 12.3.7, DMA Interrupts
on page 12-64.

DMA Interrupts

 7-40

7.7.3 CPU/DMA Interaction

If the DMA is not using interrupts for synchronization of transfers, it is not
affected by the processing of the CPU interrupts. Detected interrupts are
responded to by the CPU and DMA on instruction fetch boundaries only.
Since instruction fetches are halted due to pipeline conflicts or when executing
instructions in an RPTS loop, interrupts are not responded to until instruction
fetching continues. It is therefore possible to interrupt the CPU and DMA simul-
taneously with the same or different interrupts and, in effect, synchronize their
activities. For example, it may be necessary to cause a high-priority DMA
transfer that avoids bus conflicts with the CPU (that is, a transfer that makes
the DMA higher priority than the CPU). This may be accomplished by using
an interrupt that causes the CPU to trap to an interrupt routine that contains
an IDLE instruction. Then, if the same interrupt is used to synchronize DMA
transfers, the DMA transfer counter can be used to generate an interrupt and
thus return control to the CPU following the DMA transfer.

Since the DMA and CPU share the same set of interrupt flags, the DMA may
clear an interrupt flag before the CPU can respond to it. For example, if the
CPU interrupts are disabled, the DMA can respond to interrupts and thus clear
the associated interrupt flags. Figure 7–9 shows the sequence of events in the
interrupt processing for both the CPU and DMA controllers.

Figure 7–9. Parallel CPU and DMA Interrupt Processing

Does
GIE=1 and

is the interrupt
enabled in the

IE register?

Process the CPU interrupt
as shown in Figure 7–6.

Process the DMA interrupt
as shown in Figure 7–8.

No

Yes

Interrupt

Is the
interrupt enabled

in the IE
register?

No

Yes

DMA coprocessorCPU

DMA Interrupts

7-41Program Flow Control

7.7.4 TMS320C3x Interrupt Considerations

Give careful consideration to ’C3x interrupts, especially if you make modifications
to the status register when the global interrupt-enable (GIE) bit is set. This can
result in the GIE bit being erroneously set or reset as described in the following
paragraphs.

The GIE bit field of the status register is set to 0 (reset) by an interrupt. If a load
of the status register occurs simultaneously with a CPU interrupt pulse trying
to reset GIE, GIE will be reset.

Also, resetting GIE by an interrupt or TRAP instruction can cause a processing
error if any code, following within two cycles of the interrupt recognition, attempts
to read or modify the status register. For example, if the status register is being
pushed onto the stack, it will be stored incorrectly if an interrupt was acknowledged
two cycles before the store instruction.

When an interrupt signal is recognized, the ’C3x continues executing the
instructions already in the read and decode phases in the pipeline. However,
because the interrupt is acknowledged, the GIE bit is reset to 0, and the store
instruction already in the pipeline will store the wrong status register value.

For example, if the program is like this:

...
NOP

interrupt recognized ––>LDI @V_ADDR,AR1
MPYI *AR1, R0
PUSH ST
...
POP ST
...

the PUSH ST instruction will save the ST contents in memory, which includes
GIE = 0. Since the device is expected to have GIE = 1, the POP ST instruction
will put the wrong status register value into the ST (see Table 7–9).

DMA Interrupts

 7-42

Table 7–9. Pipeline Operation with PUSH ST

Cycle Description Fetch Decode Read Execute

1 NOP

2 LDI NOP

3 MPYI LDI NOP

4 Read location V_ADDR PUSH MPYI LDI NOP

5 Load AR1; recognize interrupt – PUSH MPYI LDI

6 Clear GIE bit; clear interrupt flag; read SP Interrupt PUSH MPYI

7 Read interrupt vector table; save ST in stack Interrupt PUSH

8 Store return address on stack Interrupt

The following example shows setting the GIE bit by a load instruction that is
immediately followed by an interrupt:

... ; GIE = 1
LDI 02000h, ST ; GIE = 0

interrupt recognized ––>MPYI *AR1, R0 ;
ADD *AR0, R1

In this example, the load of the status register or interrupt-flag register overwrites
the reset of the GIE bit by the interrupt (see Table 7–10).

Table 7–10. Pipeline Operation with Load Followed by Interrupt

Cycle Description Fetch Decode Read Execute

1 LDI

2 Interrupt recognized – LDI

3 Interrupt resets GIE bit, clears interrupt flag,
reads SP

interrupt LDI

4 GIE set by load instruction; interrupt vector table
read and ST saved on stack

interrupt LDI

5 Store return address on stack interrupt

6 Fetch first instruction of ISR with GIE = 1 ISR

A similar situation may occur if the GIE bit = 1 and an instruction executes that
is intended to modify the other status bits and leave the GIE bit set. In the above
example, this erroneous setting would occur if the interrupt were recognized two
cycles before the POP ST instruction. In that case, the interrupt would clear the
GIE bit, but the execution of the POP instruction would set the GIE bit. Since the
interrupt has been recognized, the interrupt service routine will be entered with
interrupts enabled, rather than disabled as expected.

DMA Interrupts

7-43Program Flow Control

One solution is to use an instruction that is uninterruptible such as RPTS as
follows to set the GIE:

RPTS 0
AND 2000h, ST ; Set GIE=1

Use the following to reset the GIE:

RPTS 0
AND 0DFFFh, ST ; Set GIE=0

Another alternative incorporates the following code fragment, which protects
against modifying or saving the status register by disabling interrupts through
the interrupt-enable register:

PUSH IE ; Save IE register • Added instructions to
LDI 0, IE ; Clear IE register avoid pipeline problems
NOP ; • 2 NOPs or useful instructions
NOP ;
AND 0DFFFh, ST ; Set GIE = 0 • Instruction that reads or
POP IE ; writes to ST register.

; Added instruction
; to avoid pipeline
; problems.

In summary, the next three instructions immediately following an instruction
that clears the GIE bit might be interrupted. Also, the next three instructions
immediately following an instruction that sets the GIE bit might not be interrupted
even if there is a pending interrupt (see Example 7–15). Similarly, the next three
instructions immediately following an instruction that clears an interrupt-enable
mask might be interrupted. Furthermore, the next three instructions immediately
following an instruction that sets an interrupt flag might be executed before the
interrupt occurs.

Example 7–15. Pending Interrupt

LDI 0h, ST ; set GIE = 0
LDI 1h, R1
LDI 2h, R2
MPYI *AR1, R0 ; interrupts still enabled
ADDI *AR1,R1 ; interrupts disabled here

DMA Interrupts

 7-44

7.7.5 TMS320C30 Interrupt Considerations

The ’C30 silicon revisions earlier than 4.0 have two unique exceptions to the
interrupt operation. This does not apply to ’C30 silicon revision 4.0 or greater,
any ’C31 silicon, or any ’C32 silicon.

On ’C30 silicon revisions earlier than 4.0:

� The status register global interrupt-enable (GIE) bit may be erroneously
reset to 0 (disabled setting) if all of the following conditions are true:

� A conditional trap instruction (TRAPcond) has been fetched

� The condition for the trap is false.

� A pipeline conflict has occurred, resulting in a delay in the decode or
read phase of the instruction.

During the decode phase of a conditional trap, interrupts are temporarily
disabled to ensure that the trap executes before a subsequent interrupt. If a
pipeline conflict occurs and causes a delay in execution of the conditional
trap, the interrupt disabled condition may become the last known condition of
the GIE bit. If the trap condition is false, interrupts are permanently disabled
until the GIE bit is intentionally set. The condition is not present when the trap
condition is true, because normal operation of the instruction causes the GIE
to be reset, and standard coding practice sets the GIE to 1 before the trap
routine is exited. Several instruction sequences that cause pipeline conflicts
have been found:

� LDI mem,SP

TRAPcond n

� LDI mem,SP

NOP

TRAPcond n

� STI SP,mem

TRAPcond n

� STI Rx,*ARy

LDI *ARx,Ry

||LDI *ARz,Rw

TRAPcond n

Other similar conditions may also cause a delay in the execution. The
following solution is recommended to avoid or rectify the problem:

DMA Interrupts

7-45Program Flow Control

Insert two NOP instructions immediately before the TRAPcond instruction.
One NOP is insufficient in some cases, as illustrated in the second bulleted
item, above. This eliminates the opportunity for any pipeline conflicts in the
immediately preceding instructions and enables the conditional trap
instruction to execute without delays.

� Asynchronous accesses to the interrupt flag register (IF) can cause the
’C30 silicon revision prior to 4.0 to fail to recognize and service an inter-
rupt. This may occur when an interrupt is generated and is ready to be
latched into the IF register on the same cycle that the IF is being written
to by the CPU. Note that logic operations (AND, OR, XOR) may write to
the IF register.

The logic of ’C30 silicon revision earlier than 4.0 currently gives the CPU
write priority; consequently, the asserted interrupt might be lost. This is
true if the asserted interrupt was generated internally (for example, a direct
memory access (DMA) interrupt). This situation arises as a result of a deci-
sion to poll certain interrupts or a desire to clear pending interrupts due to a
long pulse width. In the case of a long pulse width, the interrupt may be
generated after the CPU responds to the interrupt and attempts to auto-
matically clear it by the interrupt vector process.

The recommended solution is to avoid using the interrupt polling technique,
and to design the external interrupt inputs to have pulse widths between
1 and 2 instruction cycles. The alternative to strict polling is to periodically
enable and disable the interrupts that would be polled, allowing the normal
interrupt vectoring to take place; this automatically clears the interrupt flag
without affecting other interrupts. If you must clear a pending interrupt, you
should use a memory location to indicate that the interrupt is invalid. The
interrupt service routine can read that location, clear it (if the pending inter-
rupt is invalid), and return immediately. The following code fragments
show how to handle a dummy interrupt due to a long interrupt pulse:

DMA Interrupts

 7-46

ISR_n: PUSH ST ;
PUSH DP ; Save registers
PUSH R0 ;
LDI 0, DP ; Clear Data-page Pointer
LDI @DUMMY_INT, R0 ; If DUMMY_INT is 0 or positive,
BNN ISR_n_START ; go to ISR_n_START
STI DP, @DUMMY_INT ; Set DUMMY_INT = 0
POP R0 ;
POP DP ;
POP ST ; Housekeeping, return from interrupt
RETI ;

ISR_n_START: .
. ; Normal interrupt service routine
. ; Code goes here
LDI INT_Fn, R0 ;
AND IF, R0 ; If ones in IF reg match
BNZ ISR_n_END ; INT_Fn, exit ISR
LDI 0, DP ; Otherwise clear
LDI 0FFFFh, R0 ; DP and set
STI R0, @DUMMY_INT ; DUMMY_INT negative & exit

ISR_n_END:
POP R0 ;
POP DP ; Exit ISR
POP ST ;
RETI ;

Traps

7-47Program Flow Control

7.8 Traps

A trap is the equivalent of a software-triggered interrupt. In the ’C3x, traps and
interrupts are treated identically, except in the way in which they are triggered.

7.8.1 Initialization of Traps and Interrupts

Traps and interrupts are triggered differently in the ’C3x:

� Traps are always triggered by a software mechanism, by the TRAPcond
(conditional trap) instructions.

� Interrupts are always triggered by hardware events (for example, by exter-
nal interrupts, DMA interrupts, or serial-port interrupts).

The GIE bit in the ST register and the mask bits in the IE do not apply to traps.

7.8.2 Operation of Traps

Figure 7–10 shows the general flow of traps which is similar to interrupts.

Figure 7–10. Flow of Traps

Trap executed
(TRAPcond)

(1)

(2)

(3)

Trap or interrupt service routine

Return executed
(RETIcond)

GIE 0

GIE 1

Traps

 7-48

The RETIcond instruction manipulates the status flags as shown in block (3)
in Figure 7–10. RETIcond provides a return from a trap or interrupt.

The ’C3x supports 32 different traps. When a TRAPcond n instruction is
executed, the ’C3x jumps to the address stored in the memory location pointed
to by the corresponding trap-vector table pointer. The location of the trap-vector
table is shown in Table 7–4 on page 7-27 (’C30/’C31 microprocessor mode),
Table 7–5 (’C31 microcomputer boot mode) on page 7-28, and Table 7–6 on
page 7-30 for the ’C32.

Power Management Modes

7-49Program Flow Control

7.9 Power Management Modes

The following ’C3x devices have been enhanced by the addition of two power-
down modes: IDLE2 and LOPOWER:

� ’C30 silicon version 7.0 or greater
� ’LC31
� ’C31 silicon revision 5.0 or greater
� ’C32

7.9.1 IDLE2 Power-Down Mode

The H1 instruction clock is held high until one of the four external interrupts is
asserted. In IDLE2 mode, the ’C3x devices supporting these modes behave as
follows:

� No instructions are executed.

� The CPU, peripherals, and internal memory retain their previous states.

� The external bus output pins are idle:

� The address lines remain in their previous states.

� The data lines are in the high-impedance state.

� The output control signals are in their inactive state.

� If a multicycle read or write does not preceed the IDLE2 opcode, that
access will be forzen onto the bus until IDLE2 is exited. This can be
advantageous for low power applications since the bus is frozen in an
active state. That is, the device pins are not floating, and therefore do
not require pullup or pulldowns.

� When the device is in the functional (nonemulation) mode, the clocks stop
with H1 high and H3 low (see Figure 7–11).

� The devices remain in IDLE2 until one of the four external interrupts
(INT3–INT0) is asserted for at least one H1 cycle. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. When
the clocks restart, they may be in the opposite phase (that is, H1 may be
high if H3 was high before the clocks were stopped; H3 may be low if H1
was previously low). The H1 and H3 clocks remain 180 degrees out of
phase with each other (see Figure 7–12).

� During IDLE2 operations, the CPU recognizes one of the four external
interrupts if it is asserted for more than one H1 cycle. To avoid generating
multiple false interrupts in level-triggered mode, the interrupt must be
asserted for fewer than three H1 cycles.

Power Management Modes

 7-50

� The interrupt service routine (ISR) must have been set up before placing
the device in IDLE2 mode, because the instruction following the IDLE2
instruction is not executed until the RETI (return from interrupt) instruction
is executed.

� When the device is in emulation mode, the H1 and H3 clocks continue to
run normally and the CPU operates as if an IDLE instruction was
executed. The clocks continue to run for correct operation of the emulator.

Delayed Branch

For correct device operation, the three instructions following a
delayed branch should not include either IDLE or IDLE2 instructions.

Figure 7–11.IDLE2 Timing

Idle 2 execution

Data

ADDR

H1

H3

CLKIN

Power Management Modes

7-51Program Flow Control

Figure 7–12. Interrupt Response Timing After IDLE2 Operation

1st addressVector address

Data

ADDR

INT0 Flag
INT3 to

INT0
INT3 to

H1

H3

Fetch first
instruction of

service routing

Interrupt vector
read

Clocks driven

CLKIN

7.9.2 LOPOWER

In the LOPOWER (low-power) mode, the CPU continues to execute instructions,
and the DMA can continue to perform transfers, but at a reduced clock rate of
CLKIN frequency divided by 16.

A ’C31 with a CLKIN frequency of 32 MHz performs identically to a 2 MHz ’C31
with an instruction cycle time of 1,000 ns.

During the read phase of the . . . The ’C31 and ’C32 . . .

LOPOWER instruction (Figure 7–13) Slow to 1/16 of full-speed operation.

MAXSPEED instruction (Figure 7–14) Resume full-speed operation.

Power Management Modes

 7-52

Figure 7–13. LOPOWER Timing

32 CLKIN

H1

H3

CLKIN
LOPOWER read

Figure 7–14. MAXSPEED Timing

H1

H3

CLKIN

MAXSPEED read

32 CLKIN

8-1Pipeline Operation

Pipeline Operation

Two characteristics of the’C3x that contribute to its high performance are:

� Pipelining
� Concurrent I/O and CPU operation

The following four functional units control ’C3x operation:

� Fetch
� Decode
� Read
� Execute

Pipelining is the overlapping or parallel operations of the fetch, decode, read,
and execute levels of a basic instruction.

The DMA controller decreases pipeline interference and enhances the CPU’s
computational throughput by performing input/output operations.

Topic Page

8.1 Pipeline Structure 8-2.

8.2 Pipeline Conflicts 8-4.

8.3 Resolving Register Conflicts 8-19.

8.4 Memory Access for Maximum Performance 8-22.

8.5 Clocking Memory Accesses 8-24.

Chapter 8

Perfect
overlap

Pipeline Structure

 8-2

8.1 Pipeline Structure

The following list describes the four major units of the ‘C3x pipeline structure and
their functions:

Fetch unit (F) Fetches the instruction words from memory
and updates the program counter (PC).

Decode unit (D) Decodes the instruction word and performs
address generation. Also, the decode unit controls
modification of the ARn registers in the indirect
addressing mode and of the stack pointer when
PUSH to/POP from the stack occurs.

Read unit (R) If required, reads the operands from memory.

Execute unit (E) If required, reads the operands from the register
file, performs the necessary operation, and writes
results to the register file. If required, results of
previous operations are written to memory.

All instruction executions perform these four basic functions: fetch, decode, read,
and execute. Figure 8–1 illustrates these four levels of the pipeline structure. The
levels are indexed according to instruction and execution cycle. In the figure, per-
fect overlap in the pipeline, where all four units operate in parallel, occurs at cycle
(m). Levels about to be executed are at m +1, and those just previously executed
are at m–1. The ‘C3x pipeline controller supports a high-speed processing rate
of one execution per cycle. It also manages pipeline conflicts so that they are
transparent to you. You do not need to take any special precautions to ensure
correct operation.

Figure 8–1. TMS320C3x Pipeline Structure

CYCLE Fetch Decode Read Execute

m–3 W — — —

m–2 X W — —

m–1 Y X W —

m Z Y X W

m+1 — Z Y X

m+2 — — Z Y

m+3 — — — Z

Note: W, X, Y, Z = Instruction representations

Pipeline Structure

8-3Pipeline Operation

For ‘C30 and ‘C31, priorities from highest to lowest have been assigned to
each of the functional units of the pipeline and to the DMA controller as follows:

� Execute (highest)
� Read
� Decode
� Fetch
� DMA (lowest)

Despite the DMA controller’s low priority, you can minimize or even eliminate
conflicts with the CPU through suitable data structuring because the DMA con-
troller has its own data and address buses.

In the ‘C32, the DMA has configurable priorities. Therefore, priorities from
highest to lowest have been assigned to each of the functioned units of the
pipeline and to the DMA controller as follows:

� DMA (if configured with highest priority)
� Execute
� Read
� Decode
� Fetch
� DMA (if configured with lowest priority)

A pipeline conflict occurs when an instruction is being processed, and is ready
to pass to the next higher pipeline level while that level is not ready to accept
a new input. In this case, the lower priority unit waits until the higher priority unit
completes executing the current function.

Pipeline Conflicts

 8-4

8.2 Pipeline Conflicts

Pipeline conflicts in the ’C3x can be grouped into the following categories:

Branch conflicts Branch conflicts involve most of those instructions or
operations that read and/or modify the PC.

Register conflicts Register conflicts involve delays that can occur when
reading from, or writing to, registers that are used for
address generation.

Memory conflicts Memory conflicts occur when the internal units of the
’C3x compete for memory resources.

Each of these three types, including examples, is discussed in the following
subsections. In these examples, when data is refetched or an operation is
repeated, the symbol representing the stage of the pipeline is appended with
a number. For example, if a fetch is performed again, the instruction mnemonic
is repeated. When an access is detained for multiple cycles because the unit
is not ready, the symbol RDY indicates that a unit is not ready and RDY indi-
cates that a unit is ready. If the particular unit does not perform a function, the
nop label is placed in that stage of the pipeline.

8.2.1 Branch Conflicts

The first class of pipeline conflicts occurs with standard (nondelayed)
branches, that is, BR, Bcond, DBcond, CALL, IDLE, RPTB, RPTS, RETIcond,
RETScond, interrupts, and reset. Conflicts arise with these instructions and
operations because, during their execution, the pipeline is used only for the
completion of the operation; other information fetched into the pipeline is dis-
carded or refetched, or the pipeline is inactive. This is referred to as flushing
the pipeline. Flushing the pipeline is necessary in these cases to ensure that
portions of succeeding instructions do not inadvertently get partially executed.
TRAP cond and CALLcond are classified differently from the other types of
branches and are considered later.

Example 8–1 shows the code and pipeline operation for a standard branch.

Note: Dummy Fetch

In this example, one dummy fetch (an MPYF instruction) is performed before
the branch is decoded. After the branch address is available, a new fetch (an
OR instruction) is performed.

3 PC

Fetch held for
new PC value

Pipeline Conflicts

8-5Pipeline Operation

Example 8–1. Standard Branch

BR THREE ; Unconditional branch
MPYF ; Not executed
ADD ; Not executed
SUBF ; Not executed
AND ; Not executed

.

.

.
THREE OR ; Fetched after BR is taken

STI
.
.
.

Pipeline Operation

PC Fetch Decode Read Execute

n BR — — —

n+1 MPYF BR — —

n+1 (nop) (nop) BR —

n+1 (nop) (nop) (nop) BR

3 OR (nop) (nop) (nop)

STI OR (nop) (nop)

Note:

Both RPTS and RPTB flush the pipeline, allowing the RS, RE, and RC registers
to be loaded at the proper time. If these registers are loaded without the use of
RPTS or RPTB, no flushing of the pipeline occurs. Thus, RS, RE, and RC can
be used as general-purpose 32-bit registers without pipeline conflicts. When
RPTB is nested because of nested interrupts, it may be necessary to load and
store these registers directly while using the repeat modes. Since up to four
instructions can be fetched before entering the repeat mode, you should follow
loads by a branch to flush the pipeline. If the RC is changing when an instruc-
tion is loading it, the direct load takes priority over the modification made by
the repeat mode logic.

Delayed branches are implemented to ensure the fetching of the next three
instructions. The delayed branches include BRD, BcondD, and DBcondD.
Example 8–2 shows the code and pipeline operation for a delayed branch.

No
execute
delay

3 PC

Pipeline Conflicts

 8-6

Example 8–2. Delayed Branch

BRD THREE ; Unconditional delayed branch
MPYF ; Executed
ADD ; Executed
SUBF ; Executed
AND ; Not executed
.
.
.

THREE MPYF ; Fetched after SUBF is fetched
.
.
.

Pipeline Operation

PC Fetch Decode Read Execute

n BRD — — —

n+1 MPYF BRD — —

n+2 ADDF MPYF BRD —

n+3 SUBF ADDF MPYF BRD

3 MPYF SUBF ADDF MPYF

8.2.2 Register Conflicts

Register conflicts involve reading or writing registers used for addressing.
These conflicts occur when the pertinent register is not ready to be used. Some
conditions under which you can avoid register conflicts are discussed in Sec-
tion 8.3 on page 8-19.

The registers comprise the following three functional groups:

Group 1 This group includes auxiliary registers (AR0–AR7), index
registers (IR0, IR1), and block-size register (BK).

Group 2 This group includes the data-page pointer (DP).

Group 3 This group includes the system-stack pointer (SP).

If an instruction writes to one of these three groups, the decode unit cannot use
any register within that particular group until the write is complete, that is, until
the instruction execution is completed. In Example 8–3, an auxiliary register

Decode/address
generation held
until AR write is
completed

ARs written

Pipeline Conflicts

8-7Pipeline Operation

is loaded, and a different auxiliary register is used on the next instruction. Since
the decode stage needs the result of the write to the auxiliary register, the
decode of this second instruction is delayed two cycles. Every time the decode
is delayed, a refetch of the program word is performed; the ADDF is fetched
three times. Since these are actual refetches, they can cause not only conflicts
with the DMA controller but also cache hits and misses.

A post-/preincrement/decrement of an AR register in an instruction is not
considered a write to a register. A write is in the form of an LDF, LDI, LDII, or
DB instruction.

Example 8–3. Write to an AR Followed by an AR for Address Generation

LDI 7,AR2 ; 7 → AR2
NEXT MPYF *AR2,R0 ; Decode delayed 2 cycles

ADDF
FLOAT

Pipeline Operation

PC Fetch Decode Read Execute

n LDI — — —

n+1 MPYF LDI — —

n+2 ADDF MPYF LDI —

n+2 ADDF MPYF (nop) LDI 7,AR2

n+2 ADDF MPYF (nop) (nop)

n+3 FLOAT ADDF MPYF (nop)

The case for reads of these groups is similar to the cases for writes. If an
instruction must read a member of one of these groups, the use of that particular
group by the decode for the following instruction is delayed until the read is
complete. The registers are read at the start of the execute cycle and require only
a one-cycle delay of the following decode. For four registers (IR0, IR1, BK, or DP),
there is no delay. For all other registers, including the SP, the delay occurs.

Note that an address generation through the use of an AR register (*ARn,
*++ARn, *–ARn, etc.) in an instruction is not considered a read.

Decode/address
generation held
until AR is read

ARs read

Pipeline Conflicts

 8-8

In Example 8–4, two auxiliary registers are added together, with the result going
to an extended-precision register. The next instruction uses a different auxiliary
register as an address register.

Example 8–4. A Read of ARs Followed by ARs for Address Generation

ADDI AR0,AR1,R1 ; AR0+AR1 → R1
NEXT MPYF *++AR2,R0 ; Decode delayed one cycle

ADDF
FLOAT

Pipeline Operation

PC Fetch Decode Read Execute

n ADDI — — —

n+1 MPYF ADDI — —

n+2 ADDF MPYF ADDI —

n+2 ADDF MYPF (nop) ADDI AR0,AR1,R0

n+3 FLOAT ADDF MPYF (nop)

Note:

Loop counter auxiliary registers for the decrement and branch (DBR) instruc-
tions are regarded in the same way as they are for addressing. The operation
shown in Example 8–3 and Example 8–4 also can occur for this instruction.

8.2.3 Memory Conflicts

Memory conflicts can occur when the memory bandwidth of a physical memory
space is exceeded. For example, RAM blocks 0 and 1 and the ROM block can
support only two accesses per cycle. The external interface can support only
one access per cycle. Section 8.4, Memory Access for Maximum Performance,
on page 8-22 contains some conditions under which you can avoid memory
conflicts.

Pipeline Conflicts

8-9Pipeline Operation

Memory pipeline conflicts consist of the following four types:

Program wait A program fetch is prevented from beginning.

Program fetch Incomplete A program fetch has begun but is not yet
complete.

Execute only An instruction sequence requires three CPU
data accesses in a single cycle.

Hold everything A primary or expansion bus operation must
complete before another one can proceed.

These four types of memory conflicts are illustrated in examples and discussed
in the paragraphs that follow.

8.2.3.1 Program Wait

Two conditions can prevent the program fetch from beginning:

� The start of a CPU data access when:

� Two CPU data accesses are made to an internal RAM or ROM block,
and a program fetch from the same block is necessary.

� One of the external ports is starting a CPU data access, and a program
fetch from the same port is necessary.

� A multicycle CPU data access or DMA data access over the external bus
is needed.

Example 8–5 illustrates a program wait until a CPU data access completes.
In this case, *AR0 and *AR1 are both pointing to data in RAM block 0, and the
MPYF instruction will be fetched from RAM block 0. This results in the conflict
shown in Example 8–5. Because more than two accesses can be made to
RAM block 0 in a single cycle, the program fetch cannot begin and must wait
until the CPU data accesses are complete.

Fetch held
until data
access
completes

Data
accessed

Pipeline Conflicts

 8-10

Example 8–5. Program Wait Until CPU Data Access Completes

ADDF3 *AR0,*AR1,R0
FIX
MPYF
ADDF3
NEGB

Pipeline Operation

PC Fetch Decode Read Execute

n ADDF3 — — —

n+1 FIX ADDF3 — —

n+2 (wait) FIX ADDF3 —

n+2 MPYF (nop) FIX ADDF3

n+3 ADDF3 MPYF (nop) FIX

n+4 NEGB ADDF3 MPYF (nop)

Example 8–6 shows a program wait due to a multicycle data-data access or
a multicycle DMA access. The ADDF, MPYF, and SUBF are fetched from some
portion in memory other than the external port the DMA requires. The DMA
begins a multicycle access. The program fetch corresponding to the CALL is
made to the same external port that the DMA is using.

Either of two cases may produce this situation:

� One of the following two memory boundaries is crossed:

� From internal memory to external memory
� From one external port to another

� Code that has been cached is executed, and the instruction prior to the
ADDF is one of the following (conditional or unconditional):

� A delayed branch instruction
� A delayed decrement and branch instruction

Even though the DMA has the lowest priority on ’C30 and ’C31 or when configured
as such in the ’C32, multicycle access cannot be aborted. The program fetch must
wait until the DMA access completes.

2-cycle DMA
access

Pipeline Conflicts

8-11Pipeline Operation

Example 8–6. Program Wait Due to Multicycle Access

ADDF ; code in internal memory
MPY ; code in internal memory
SUBF ; code in internal memory
CALL ; code in external memory

Pipeline Operation

PC Fetch Decode Read Execute

n ADDF — — —

n+1 MPYF ADDF — —

n+2 SUBF MPYF ADDF —

n+3 (wait) SUBF MPYF ADDF

n+3 CALL (nop) SUBF MPYF

n+4 — CALL (nop) SUBF

8.2.3.2 Program Fetch Incomplete

A program fetch incomplete occurs when an instruction fetch takes more than
one cycle to complete because of wait states. In Example 8–7, the MPYF and
ADDF are fetched from memory that supports single-cycle accesses. The
SUBF is fetched from memory requiring one wait state. One example that
demonstrates this conflict is a fetch across a bank boundary on the primary
port. See Section 9.5 on page 9-12.

1 wait state
required

Pipeline Conflicts

 8-12

Example 8–7. Multicycle Program Memory Fetches

Pipeline Operation

PC Fetch Decode Read Execute

n MPYF — — —

n+1 ADDF MPYF — —

n+2 RDY SUBF ADDF MPYF —

n+2 RDY SUBF (nop) ADDF MPYF

n+3 ADDI SUBF (nop) ADDF

Note: PC = program counter

8.2.3.3 Execute Only

The execute-only type of memory pipeline conflict occurs when performing an
interlocked load or when a sequence of instructions requires three CPU data
accesses in a single cycle. There are two cases in which this occurs:

� An instruction performs a store and is followed by an instruction that
performs two memory reads.

� An instruction performs two stores and is followed by an instruction that
performs at least one memory read.

� An interlocked load (LDII or LDFI) instruction is performed, and XF1 = 1.

The first case is shown in Example 8–8. Since this sequence requires three
data memory accesses and only two are available, only the execute phase of
the pipeline is allowed to proceed. The dual reads required by the LDF || LDF
are delayed one cycle. In this case, a refetch of the next instruction can occur.

Write must
complete
before the
two reads can
complete

2 reads
performed

Pipeline Conflicts

8-13Pipeline Operation

Example 8–8. Single Store Followed by Two Reads

STFR 0,*AR1 ; R0 → *AR1
LDF *AR2,R1 ; *AR2 → R1 in parallel with

 LDF *AR3,R2 ; *AR3 → R2

Pipeline Operation

PC Fetch Decode Read Execute

n STF — — —

n+1 LDF LDF STF — —

n+2 W LDF LDF STF —

n+3 X W LDF LDF STF

n+4 X W LDF LDF (nop)

n+4 Y X W LDF LDF

Note: W, X, Y = Instruction representations

Read must wait
until the writes are
completed

Writes
performed

Pipeline Conflicts

 8-14

Example 8–9 shows a parallel store followed by a single load or read. Since
two parallel stores are required, the next CPU data-memory read must wait
one cycle before beginning. One program-memory refetch can occur.

Example 8–9. Parallel Store Followed by Single Read

STF R0,*AR0 ; R0 → *AR0 in parallel with
 STF R2,*AR1 ; R2 → *AR1

ADDF @SUM,R1 ; R1 + @SUM → R1
IACK
ASH

Pipeline Operation

PC Fetch Decode Read Execute

n STF STF — — —

n+1 ADDF STF STF — —

n+2 IACK ADDF STF STF —

n+3 ASH IACK ADDF STF STF

n+4 ASH IACK ADDF (nop)

n+4 — ASH IACK ADDF

The final case involves an interlocked load (LDII or LDFI) instruction and XF1 = 1.
Since the interlocked loads use the XF1 pin as an acknowledge that the read
can complete, the loads might need to extend the read cycle, as shown in
Example 8–10. A program refetch can occur.

XF1 = 1,
read must wait

XF1 = 0,
read operation
is complete

Pipeline Conflicts

8-15Pipeline Operation

Example 8–10. Interlocked Load

NOT R1,R0
LDII 300h,AR
2
ADDI *AR2,R2
CMPI R0,R2

Pipeline Operation

PC XF1 Fetch Decode Read Execute

n 1 NOT — — —

n+1 1 LDII NOT — —

n+2 1 ADDI LDII NOT —

n+3 1 CMPI ADDI LDII NOT

n+3 1 — CMPI ADDI LDII

n+4 0 — CMPI ADDI LDII

8.2.3.4 Hold Everything

Three situations result in hold-everything memory pipeline conflicts:

� A CPU data load or store cannot be performed because an external port
is busy.

� An external load takes more than one cycle.

� Conditional calls and traps, which take one more cycle than conditional
branches, are processed.

The first type of hold-everything conflict occurs when one of the external ports
is busy because an access has started, but is not complete. In Example 8–11,
the first store is a 2-cycle store. The CPU writes the data to an external port.
The port control then takes two cycles to complete the data-data write. The
LDF is a read over the same external port. Since the store is not complete, the
CPU continues to attempt LDF until the port is available.

write access
2-cycle external bus

Pipeline Conflicts

 8-16

Example 8–11. Busy External Port

STF R0,@DMA1
LDF @DMA2,R0

Pipeline Operation

PC Fetch Decode Read Execute

n STF — — —

n+1 LDF STF — —

n+2 W LDF STF —

n+2 W LDF (nop) STF

n+2 W LDF (nop) (nop)

n+3 X W LDF (nop)

n+4 Y X W LDF

Note: W, X, Y = Instruction representations

The second type of hold-everything conflict involves multicycle data reads.
The read has begun and continues until completed. In Example 8–12, the LDF
is performed from an external memory that requires several cycles to access.

2-cycle external bus
read access

Pipeline Conflicts

8-17Pipeline Operation

Example 8–12. Multicycle Data Reads

LDF @DMA,R0

Pipeline Operation

PC Fetch Decode Read Execute

n LDF — — —

n+1 I LDF — —

n+2 J I LDF —

n+3 K(dummy) I LDF —

n+3 K2 J I LDF

Note: I, J, K = Instruction representations

The final type of hold-everything conflict deals with conditional calls (CALLcond)
and traps (TRAPcond), which are different from other branch instructions.
Whereas other branch instructions are conditional loads, the conditional calls
and traps are conditional stores, which take one more cycle to complete than
conditional branches (see Example 8–13). The added cycle pushes the return
address after the call condition is evaluated.

PC store
cycle

Pipeline Conflicts

 8-18

Example 8–13. Conditional Calls and Traps

Pipeline Operation

PC Fetch Decode Read Execute

n CALLcond — — —

n+1 I CALL cond — —

n+1 (nop) (nop) CALL cond —

n+1 (nop) (nop) (nop) CALL cond

n+1 (nop) (nop) (nop) CALL cond

n+2/CALLaddr I (nop) (nop) (nop)

Note: I = Instruction representation

ARs read

Resolving Register Conflicts

8-19Pipeline Operation

8.3 Resolving Register Conflicts

If the auxiliary registers (AR7–AR0), the index registers (IR1–IR0), data-page
pointer (DP), or stack pointer (SP) are accessed for any reason other than
address generation, pipeline conflicts associated with the next memory access
can occur. The pipeline conflicts and delays are presented in Section 8.2 on
page 8-4.

Example 8–14, Example 8–15, and Example 8–16 demonstrate some common
uses of these registers that do not produce a conflict or ways that you can avoid
the conflict.

Example 8–14. Address Generation Update of an AR Followed by an AR for Address
Generation

LDF 7.0,R0 ; 7.0 → R0
MPYF *++AR0(IR1),R0
ADDF *AR2,R0
FIX
MPYF
ADDF

Pipeline Operation

PC Fetch Decode Read Execute

n LDF — — —

n+1 MYPF LDF — —

n+2 ADDF MYPF LDF —

n+3 FIX ADDF MYPF LDF

n+4 MPYF FIX ADDF MYPF

n+5 ADDF MYPF FIX ADDF

Note: W, X, Y, Z = Instruction representations

AR2 read

AR2 written

Resolving Register Conflicts

 8-20

Example 8–15. Write to an AR Followed by an AR for Address Generation Without a
Pipeline Conflict

LDI @TABLE,AR2
MPYF @VALUE,R1
ADDF R2,R1
MPYF *AR2++,R1
SUBF
STF

Pipeline Operation

PC Fetch Decode Read Execute

n LDI — — —

n+1 MYPF LDI — —

n+2 ADDF MYPF LDI —

n+3 MYPF ADDF MYPF LDI

n+4 SUBF MYPF ADDF MYPF

n+5 STF SUBF MYPF ADDF

DP read

DP written

Resolving Register Conflicts

8-21Pipeline Operation

Example 8–16. Write to DP Followed by a Direct Memory Read Without a Pipeline Conflict

LDP TABLE_ADDR
POP R0
LDF *–AR3(2),R1
LDI @TABLE_ADDR,AR0
PUSHF R6
PUSH R4

Pipeline Operation

PC Fetch Decode Read Execute

n LDP — — —

n+1 POP LDP — —

n+2 LDF POP LDP —

n+3 LDI LDF POP LDP

n+4 PUSHF LDI LDF POP

n+5 PUSH PUSHF LDI LDF

Memory Access for Maximum Performance

 8-22

8.4 Memory Access for Maximum Performance

If program fetches and data accesses are performed so that the resources
being used cannot provide the necessary bandwidth, the pipeline is stalled
until the data accesses are complete. Certain configurations of program fetch
and data accesses yield conditions under which the ’C3x can achieve
maximum throughput.

Table 8–1 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and a single data
access and still achieve maximum performance (one cycle). Four cases
achieve 1-cycle maximization.

Table 8–1. One Program Fetch and One Data Access for Maximum Performance

Case No.

Primary
Bus

Accesses
Accesses From Dual
Access Internal Memory

Expansion Bus †

or
Peripheral Accesses

1 1 1 —

2 1 — 1

3 —
2 from any combination of
internal memory

—

4 — 1 1

† The expansion bus is available only on the ’C30.

Table 8–2 shows how many accesses can be performed from the different
memory spaces when it is necessary to do a program fetch and two data
accesses and still achieve maximum performance (one cycle). Six conditions
achieve this maximization.

Memory Access for Maximum Performance

8-23Pipeline Operation

Table 8–2. One Program Fetch and Two Data Accesses for Maximum Performance

Case No.
Primary Bus
Accesses

Accesses From Dual-Access
Internal Memory

Expansion † Or
Peripheral Bus
Accesses

1 1 2 from any combination of internal memory —

2 1 program 1 data 1 data

3 1 data 1 data 1 program

4 1 data 1 program, 1 data 1 DMA

5 —
2 from same internal memory block and 1 from
a different internal memory block

—

6 — 3 from different internal memory blocks —

7 — 2 from any combination of internal memory 1

8 1 program 2 data 1 DMA

9 1 DMA 2 data 1 program

† The expansion bus is available only on the ’C30.

Clocking Memory Accesses

 8-24

8.5 Clocking Memory Accesses

This section discusses the role of internal clock phases (H1 and H3) and how
the ’C3x handles multiple-memory accesses. The previous section discusses
the interaction between sequences of instructions; this section discusses the
flow of data on an individual instruction basis.

Each major clock period of 33.3 ns is composed of two minor clock periods of
16.67 ns, labeled H3 and H1. The active clock period for H3 and H1 is the time
when that signal is high. See Figure 8–2.

Figure 8–2. Minor Clock Periods

H1

H3

Major clock period

H1
minor

clock period

H3
minor

clock period

The precise operation of memory reads and writes can be defined according
to these minor clock periods. The types of memory operations that can occur
are program fetches, data loads and stores, and DMA accesses.

8.5.1 Program Fetches

Internal program fetches are always performed during H3 unless a single data
store must occur at the same time due to another instruction in the pipeline. In that
case, the program fetch occurs during H1 and the data store occurs during H3.

External program fetches always start at the beginning of H3 with the address
being presented on the external bus. At the end of H1, the fetches are completed
with the latching of the instruction word.

8.5.2 Data Loads and Stores

Four types of instructions perform loads, memory reads, and stores:

� 2-operand instructions
� 3-operand instructions
� Multiplier/ALU operation with store instructions
� Parallel multiply and add instructions

Clocking Memory Accesses

8-25Pipeline Operation

See Chapter 6, Addressing Modes, for more information.

As discussed in Chapter 7, the number of bus cycles for external memory
accesses differs in some cases from the number of CPU execution cycles. For
external reads, the number of bus cycles and CPU execution cycles is identical.
For external writes, there are always at least two bus cycles, but unless there
is a port-access conflict, there is only one CPU execution cycle. In the following
examples, any difference in the number of bus cycles and CPU cycles is noted.

8.5.2.1 2-Operand Instruction Memory Accesses

All instructions whose bits 31–29 are 000 or 010 (see Figure 8–3) are 2-operand
instructions. In the case of a data read, bits 15–0 represent the src operand.
Internal data reads are always performed during H1. External data reads always
start at the beginning of H3 with the address presented on the external bus; they
complete with the latching of the data word at the end of H1.

In the case of a data store, bits 15–0 represent the dst operand. Internal data
stores are performed during H3. External data stores always start at the
beginning of H3 with the address and data being presented on the external bus.

Figure 8–3. 2-Operand Instruction Word

31

0 X 0 Operation dst(src)G src(dst)

24 23 16 15 8 7 0

8.5.2.2 3-Operand Instruction Memory Reads

All instructions whose bits 31–29 are 001 (see Figure 8–4) are 3-operand
instructions. The source operands, src1 and src2, come from either registers
or memory. When one or more of the source operands are from memory, these
instructions are always memory reads.

Figure 8–4. 3-Operand Instruction Word
31

0 0 1 Operation dstT

24 23 16 15 8 7 0

src1 src2

If only one of the source operands is from memory (either src1 or src2) and is
located in internal memory, the data is read during H1. If the single memory
source operand is in external memory, the read starts at the beginning of H3,
with the address presented on the external bus, and completes with the latching
of the data word at the end of H1.

Clocking Memory Accesses

 8-26

If both source operands are to be fetched from memory, then memory reads
can occur in several ways:

� If both operands are located in internal memory, the src1 read is performed
during H3 and the src2 read during H1, completing two memory reads in
a single cycle.

� If src1 is in internal memory and src2 is in external memory, the src2 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src1 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

� If src1 is in external memory and src2 is in internal memory, two cycles are
necessary to complete the two reads. In the first cycle, both operands are
addressed. Since src1 takes an entire cycle to be read and latched from
external memory, the internal operation on src2 cannot be completed until
the second cycle. Ordering the operands so that src1 is located internally
is necessary to achieve single-cycle execution.

� If src1 and src2 are both from external memory, two cycles are required to
complete the two reads. In the first cycle, the src1 access is performed and
loaded on the next H3; in the second cycle, the src2 access is performed
and loaded on that cycle’s H1.

If src2 is in external memory and src1 is in on-chip or external memory and is
immediately preceded by a single store instruction to external memory, a
dummy src2 read can occur between the execution of the store instruction and
the src2 read, regardless of which memory space is accessed (STRB, MSTRB,
or IOSTRB). The dummy read can cause an externally interfaced FIFO address
pointer to be incremented prematurely, thereby causing the loss of FIFO data.
Example 8–17 illustrates how the dummy read can occur. Example 8–18 offers
an alternative code segment that suppresses the dummy read. In the alternative
code segment, the dummy read is eliminated by swapping the order of the
source operands.

2-cycle dummy
load of src 2

R0, *AR6 until the
store is complete

actual read of
src 2 and src 1

Clocking Memory Accesses

8-27Pipeline Operation

Example 8–17. Dummy sr2 Read

STI R0,*AR6 ; AR6 points to MSTRB space
ADDI3 *AR1,*AR3,R0 ; AR3 points to on-chip RAM (src 1)

; AR1 points to MSTRB space (src 2)

H1

H3

Pipeline Operation

PC Fetch Decode Read Execute

n STI

n+1 ADDI3 STI

n+2 ADDI3 STI

n+3 — STI

n+4 — —

n+5 ADDI3 —

n+6 — —

n+7 ADDI3 —

n+8 ADDI3

Two cycles are required for the MSTRB store. Two additional cycles are required
for the dummy MSTRB read of *AR3 (because a read follows a write). One cycle
is required for an actual MSTRB read of *AR3.

2-cycle store

The read of src 2 cannot start
until the store is complete

2-cycle read of src 1 and src 2

Clocking Memory Accesses

 8-28

Example 8–18. Operand Swapping Alternative

Switch the operands of the 3-operand instruction so that the internal read is
performed first.

STI R0,*AR6 ; AR6 points to MSTRB space
ADDI3 *AR3,*AR1,R0 ; AR3 points to on-chip RAM (src 2)

; AR1 points to MSTRB space (src 1)

H1

H3

Pipeline Operation

PC Fetch Decode Read Execute

n STI

n+1 ADDI3 STI

n+2 ADDI3 STI

n+3 — STI

n+4 — —

n+5 ADDI3 —

n+6 — —

n+7 — ADDI3

n+8 ADDI3

Clocking Memory Accesses

8-29Pipeline Operation

8.5.2.3 Operations with Parallel Stores

The next class of instructions includes every instruction that has a store in parallel
with another instruction. Bits 31 and 30 for these instructions are equal to 1 1.

The instruction word format for operations that perform a multiply or ALU opera-
tion in parallel with a store is shown in Figure 8–5. If the store operation to dst2
is external or internal, it is performed during H3. Two bus cycles are required for
external stores, but only one CPU cycle is necessary to complete the write.

If the memory read operation is external, it starts at the beginning of H3 and
latches at the end of H1. If the memory read operation is internal, it is
performed during H1. Note that memory reads are performed by the CPU
during the read (R) phase of the pipeline, and stores are performed during the
execute (E) phase.

Figure 8–5. Multiply or CPU Operation With a Parallel Store
31

1 1 Operation src1d1 src4

24 23 16 15 8 7 0

P d2 src2 src3

The instruction word format for instructions that have parallel stores to memory
is shown in Figure 8–6. If both destination operands, dst1 and dst2, are located
in internal memory, dst1 is stored during H3 and dst2 during H1, thus completing
two memory stores in a single cycle.

Figure 8–6. Two Parallel Stores
31

1 1 src2 dst2

24 23 16 15 8 7 0

src1 dst1ST||ST 0 0 0

� If dst1 is in external memory and dst2 is in internal memory, the dst1 store
begins at the start of H3. The dst2 store to internal memory is performed
during H1. Two bus cycles are required for the external store, but only one
CPU cycle is necessary to complete the write. Again, two memory stores
are completed in a single cycle.

� If dst1 is in internal memory and dst2 is in external memory, an additional bus
cycle is necessary to complete the dst2 store. Only one CPU cycle is neces-
sary to complete the write, but the port access requires three bus cycles. In
the first cycle, the internal dst1 store is performed during H3, and dst2 is writ-
ten to the port during H1. During the next cycle, the dst2 store is performed
on the external bus, beginning in H3, and executes as normal through the
following cycle.

Clocking Memory Accesses

 8-30

� If dst1 and dst2 are both written to external memory, a single CPU cycle
is still all that is necessary to complete the stores. In this case, four bus
cycles are required.

1) In the first cycle, both dst1 and dst2 are written to the port, and the ex-
ternal-bus access for dst1 begins.

a) The store for dst1 is completed on the second cycle.

b) The store for dst2 begins on the third external-bus cycle.

c) The store for dst2 is completed on the fourth external-bus cycle.

8.5.2.4 Parallel Multiplies and Adds

Memory addressing for parallel multiplies and adds is similar to that for 3-operand
instructions. The parallel multiplies and adds include all instructions with bits
31–30 = 10 (see Figure 8–7).

Figure 8–7. Parallel Multiplies and Adds

31

1 0 P src4

24 23 16 15 8 7 0

src1 src3Operation d1 d2 src2

For these operations, src3 and src4 are both located in memory. If both operands
are located in internal memory, src3 is performed during H3, and src4 is per-
formed during H1, thus completing two memory reads in a single cycle.

� If src3 is in internal memory and src4 is in external memory, the src4 access
begins at the start of H3 and latches at the end of H1. At the same time, the
src3 access to internal memory is performed during H3. Again, two memory
reads are completed in a single cycle.

� If src3 is in external memory and src4 is in internal memory, two cycles
are necessary to complete the two reads. In the first cycle, the internal src4
access is performed. During the H3 of the next cycle, the src3 access is
performed.

� If src3 and src4 are both from external memory, two cycles are necessary
to complete the two reads. In the first cycle, the src3 access is performed;
in the second cycle, the src4 access is performed.

9-1

TMS320C30 and TMS320C31
External-Memory Interface

This chapter describes the ’C30 and ’C31 external-memory interface. See
Chapter 10, Enhanced External-Memory Interface, for detailed information on
the ’C32 external bus operation.

Memories and external peripheral devices are accessible through two external
interfaces on the ’C30:

� Primary bus
� Expansion bus

On the ’C31, one bus, the primary bus, is available to access external memories
and peripheral devices. You can control wait-state generation, permitting access
to slower memories and peripherals, by manipulating memory-mapped control
registers associated with the interfaces and by using an external input signal.

Topic Page

9.1 Overview 9-2.

9.2 Memory Interface Signals 9-3.

9.3 Memory Interface Control Registers 9-7.

9.4 Programmable Wait States 9-10.

9.5 Programmable Bank Switching 9-12.

9.6 External Memory Interface Timing 9-15.

Chapter 9

Overview

 9-2

9.1 Overview

The ’C30 provides two external interfaces: the primary bus and the expansion
bus. The TMS320C31 provides one external interface: the primary bus. The
primary bus consists of a 32-bit data bus, a 24-bit address bus, and a set of
control signals. The expansion bus consists of a 32-bit data bus, a 13-bit
address bus, and a set of control signals. Each interface has the following
features:

� Separate configurations controlled by memory-mapped external interface
control registers

� Hold request and acknowledge signal for putting the external memory inter-
face signals in high impedance mode and preventing the processor from
accessing the external bus

� Selectable wait state that can be controlled through software, hardware,
or combination of software and hardware

� Unified memory space for data, program, and I/O access

Memory Interface Signals

9-3TMS320C30 and TMS320C31 External-Memory Interface

9.2 Memory Interface Signals

This section describes the differences between the ’C30 and ’C31 memory
interface signals.

9.2.1 TMS320C30 Memory Interface Signals

The TMS320C30 has two sets of control signals as follows:

� Primary bus control signals: STRB, R/W, HOLD, HOLDA, RDY

Table 9–1 lists and describes the signals.

� Expansion bus control signals: MSTRB, IOSTRB, XR/W, XRDY

Table 9–2 lists and describes the expansion bus control signals.

Access is determined by an active strobe signal (STRB, MSTRB, or IOSTRB).
When a primary bus access is performed, STRB is low. The expansion bus of
the ’C30 supports two types of accesses:

� Memory access signaled by MSTRB low. The timing for an MSTRB access
is the same as that of the STRB access on the primary bus.

� External peripheral device access is signaled by IOSTRB low.

Each of the buses (primary and expansion) has an associated control register.
These registers are memory-mapped as shown in Figure 9–1.

9.2.2 TMS320C31 Memory Interface Signals

The TMS320C31 has one set of control signals:

� Primary bus control signals: STRB, R/W, HOLD, HOLDA, RDY

STRB is low when an external bus access is performed. The primary bus
control register controls its behavior (see Section 9.3).

Memory Interface Signals

 9-4

Table 9–1. Primary Bus Interface Signals

Signal Type† Description
Value

After Reset Idle Status

STRB O/Z Primary interface access strobe 1 1

R/W O/Z Specifies memory read (active high) or write
(active low) mode

1 1

HOLD I Hold external memory interface NA‡ Ignored

HOLDA O/Z Hold acknowledge for external memory interface 1 1

RDY I Indicates external primary interface is ready to
be accessed

NA‡ Ignored

A (23–0) O/Z Primary address bus. When the primary bus
address lines are not in high-impedance state
due to HOLD signal, they keep in the last exter-
nal primary bus access.

HI Address of last external
bus access

D (31–0) I/O/Z Primary data bus. These signals go to high-
impedance between write accesses.

HIZ HIZ

† I Input
O Output
Z High impedance

‡ NA means not affected.

Memory Interface Signals

9-5TMS320C30 and TMS320C31 External-Memory Interface

Table 9–2. Expansion Bus Interface Signals

Signal Type† Description
Value

After Reset Idle Status

MSTRB O/Z Expansion bus memory access strobe 1 1

IOSTRB O/Z Expansion bus peripheral-access strobe 1 1

XR/W O/Z Specifies memory (active high) or write (active
low) mode

1 1

XRDY I Indicates external expansion interface is ready
to be accessed

NA‡ Ignored

XA (12–0) O Expansion address bus. When the expansion
bus address lines are not in high-impedance
state due to HOLD signal, they keep the last
external expansion bus access.

HI Address of last external
expansion bus access

XD (31–0) I/O/Z Expansion data bus. These signals go to high-
impedance between write accesses.

HIZ HIZ

† I Input
O Output
Z High impedance

‡ NA means not affected.

Memory Interface Signals

 9-6

Figure 9–1. Memory-Mapped External Interface Control Registers

Expansion-bus control (’C30 only)808060h

808061h

808062h

808063h

808064h

808065h

808066h

808067h

808068h

808069h

80806Ah

80806Bh

80806Ch

80806Dh

80806Fh Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Primary-bus control (’C30, ’C31)

Peripheral
Address

Reserved

Memory Interface Control Registers

9-7TMS320C30 and TMS320C31 External-Memory Interface

9.3 Memory Interface Control Registers

Two memory interface control registers, the primary-bus control register and
the expansion-bus control register, are described in this section.

9.3.1 Primary-Bus Control Register

The primary bus control register is a 32-bit register that contains the control bits
for the primary bus (see Figure 9–2). Table 9–3 describes the register bits with
the bit names and functions.

Figure 9–2. Primary-Bus Control Register

2 1 0

SWWWTCNTBNKCMPxxxx

345678910111215–1331–16

HOLDSTNOHOLDHIZ

R/W R/W R/W RR/WR/W

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

Note:

After changing the bit fields of the primary-bus control register, up to three
instructions are fetched before the primary bus is reconfigured because the
configuration change is performed in the execute stage of the pipeline.

Memory Interface Control Registers

 9-8

Table 9–3. Primary-Bus Control Register Bits

Abbreviation Reset Value Name Description

HOLDST 0 Hold status bit This bit signals whether the port is being
held (HOLDST = 1) or is not being held
(HOLDST = 0). This status bit is valid
whether the port has been held through
hardware or software.

NOHOLD 0 Port hold signal NOHOLD allows or disallows the port to be
held by an external HOLD signal. When
NOHOLD = 1, the ’C3x takes over the
external bus and controls it, regardless of
serviced or pending requests by external
devices. No hold acknowledge (HOLDA) is
asserted when a HOLD signal is received. It
is asserted if an internal hold is generated
(HIZ = 1).

HIZ 0 Internal hold When set (HIZ = 1), the port is put in hold
mode. This is equivalent to the external
HOLD signal. By forcing a high-impedance
condition, the ’C3x can relinquish the exter-
nal-memory port through software. HOLDA
goes low when the port is placed in the high-
impedance state.

SWW 11 Software wait mode In conjunction with WTCNT, this 2-bit field
defines the mode of wait-state generation.
(See Table 9–5.)

WTCNT 111 Software wait mode This three-bit field specifies the number of
cycles to use when in software wait mode for
the generation of internal wait states. The
range is 0 (WTCNT = 0 0 0) to 7 (WTCNT=1
1 1) H1/H3 cycles. (See Section 9.4.)

BNKCMP 10000 Bank compare This 5-bit field specifies the number of MSBs
of the address to be used to define the bank
size. (See Table 9–6.)

Memory Interface Control Registers

9-9TMS320C30 and TMS320C31 External-Memory Interface

9.3.2 Expansion-Bus Control Register

The expansion-bus control register is a 32-bit register that contains control bits
for the expansion bus (see Figure 9–3 and Table 9–4).

Figure 9–3. Expansion-Bus Control Register

2 1 0

SWWWTCNTxx

3456711–815–1231–16

R/WR/W

xxxx xxxxxx

Notes: 1) xx = reserved bit, read as 0

2) R = read, W = write

Table 9–4. Expansion-Bus Control Register Bits

Abbreviation Reset Value Name Description

SWW 11 Software wait mode In conjunction with the WTCNT, 2-bit field
defines the mode of wait-state generation.
(See Table 9–5.)

WTCNT 111 Software wait mode This 3-bit field specifies the number of cycles
to use when in software wait mode for the
generation of internal wait state. The range is
0 (WTCNT = 0 0 0) to 7 (WTCNT = 1) H1/H3
cycles. (See Section 9.4.)

Note:

After changing the bit fields of the expansion-bus control register, up to three
instructions are fetched before the expansion bus is reconfigured because
the configuration change is performed in the execute stage of the pipeline.

Programmable Wait States

 9-10

9.4 Programmable Wait States

The ’C3x has its own internal software-configurable ready-generation capability
for each strobe. This software wait-state generator is controlled by configuring
two bit fields in the primary or expansion bus interface control registers.

Use the WTCNT field to specify the number of software wait-states to generate
and use the SWW field to select one of the following four modes of wait-state
generation:

� External RDY wait states are generated solely by the external RDY line
ignoring software wait states.

� WTCNT-generated RDYwtcnt wait states are generated solely by the soft-
ware wait-state generator ignoring external RDY signals.

� Logical-AND of RDY and RDYwtcnt wait states are generated with a logical
AND of internal and external ready signals. Both signals must occur.

� Logical-OR of RDY and RDYwtcnt wait states are generated with a logical
OR of internal and external ready signals. Either signal can generate the
ready signal.

The four modes are used to generate the internal ready signal, RDYint, that
controls accesses. As long as RDYint = 1, the current external access is
delayed. When RDYint = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the
primary bus interface is described in the following paragraphs.

RDYwtcnt is an internally-generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value
from 0 through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next
access. While the counter is nonzero, RDYwtcnt = 1. While the counter is 0,
RDYwtcnt = 0.

Table 9–5 shows the truth table for each value of SWW and the different
combinations of RDY, RDYwtcnt, and RDYint.

Note:

At reset, the ’C3x is programmed with seven wait states for each external
memory access. These wait states are inserted to ensure the system can
function with slow memories. To maximize system performance when acces-
sing external memories, you need to decrease the number of wait states.

After changing the wait states, up to three instructions are fetched before the
change in the wait state occurs.

Programmable Wait States

9-11TMS320C30 and TMS320C31 External-Memory Interface

Table 9–5. Wait-State Generation

Inputs Output

SWW Bit Field /RDYext /RDYwtcnt /RDYint Functional Description

00 0

1

x

x

0

1

Wait until external RDY is signaled

01 x

x

0

1

0

1

Wait until internal wait state generator
counts down to 0

10 0

0

1

1

0

1

0

1

0

0

0

1

Wait until first signal: external RDY or the
internal wait state generator (logical OR)

11 0

0

1

1

0

1

0

1

0

1

1

1

Wait until both external RDY is signaled
and wait state generator counts down to
0 (logical AND)

Programmable Bank Switching

 9-12

9.5 Programmable Bank Switching

Programmable bank switching allows you to switch between external memory
banks without having to insert wait states externally due to memories that require
several cycles to turn off. Bank switching is implemented on the primary bus only.

The size of a bank is determined by the number of bits specified by the BNKCMP
field of the primary bus control register. For example, if BNKCMP = 16, the 16
MSBs of the address are used to define a bank (see Figure 9–4). Since
addresses are 24 bits, the bank size is specified by the eight LSBs, yielding a
bank size of 256 words. If BNKCMP ≥ 16, only the 16 MSBs are compared. Bank
sizes from 28 = 256 to 224 = 16M are allowed. Table 9–6 summarizes the relation-
ship between BNKCMP, the address bits used to define a bank, and the resulting
bank size.

Figure 9–4. BNKCMP Example

23 8 7 0

24-bit address

Number of bits to compare Defines bank size

Table 9–6. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)

00000 None 224 = 16M
00001 23 223 = 8M
00010 23–22 222 = 4M
00011 23–21 221 = 2M
00100 23–20 220 = 1M
00101 23–19 219 = 512K
00110 23–18 218 = 256K
00111 23–17 217 = 128K
01000 23–16 216 = 64K
01001 23–15 215 = 32K
01010 23–14 214 = 16K
01011 23–13 213 = 8K
01100 23–12 212 = 4K
01101 23–11 211 = 2K
01110 23–10 210 = 1K
01111 23–9 29 = 512
10000 23–8 28 = 256
10001–11111 Reserved Undefined

Programmable Bank Switching

9-13TMS320C30 and TMS320C31 External-Memory Interface

The ’C3x has an internal register that contains the MSBs (as defined by the
BNKCMP field) of the last address used for a read or write over the primary inter-
face. At reset, the register bits are set to 0. If the MSBs of the address being used
for the current primary interface read do not match those contained in this
internal register, a read cycle is not asserted for one H1/H3 clock cycle. During
this extra clock cycle, the address bus switches over to the new address, but
STRB is inactive (high). The contents of the internal register are replaced with
the MSBs being used for the current read of the current address. If the MSBs
of the address being used for the current read match the bits in the register, a
normal read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When a read is performed from a different memory bank, an extra
cycle is inserted. This feature can be disabled by setting BNKCMP to 0. The
insertion of the extra cycle occurs only when a read is performed. The
changing of the MSBs in the internal register occurs for all reads and writes
over the primary interface.

Figure 9–5 shows the addition of an inactive cycle when switches between
banks of memory occur.

Programmable Bank Switching

 9-14

Figure 9–5. Bank-Switching Example

H3

H1

STRB

R/W

A

D

RDY

Read Read Read

Extra
cycle

Note:

After changing BNKCMP, up to three instructions are fetched before the
change in the bank size occurs.

External Memory Interface Timing

9-15TMS320C30 and TMS320C31 External-Memory Interface

9.6 External Memory Interface Timing

This section discusses functional timing of operations on the primary bus and the
expansion bus, the two independent parallel buses or the ’C3x devices.

The parallel buses implement three mutually exclusive address spaces distin-
guished through the use of three separate control signals: STRB, MSTRB, and
IOSTRB. The STRB signal controls accesses on the primary bus, and the
MSTRB and IOSTRB signals control accesses on the expansion bus. Since
the two buses are independent, you can make two accesses in parallel.

With the exception of bank switching and the external HOLD function (discussed
later in this section), timing of primary bus cycles and MSTRB expansion bus
cycles are identical and are discussed collectively. The abbreviation (M)STRB is
used in references that pertain equally to STRB and MSTRB. Similarly, (X)R/W,
(X)A, (X)D, and (X)RDY are used to symbolize the equivalent primary and expan-
sion bus signals. The IOSTRB expansion bus cycles are timed differently and are
discussed independently.

9.6.1 Primary-Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined to be from one falling edge of H1 to the next falling edge of H1. For
full-speed (zero wait-state) accesses, writes require two H1 cycles and reads
require one cycle; however, if the read follows a write, the read requires two
cycles.This applies to both the primary bus and the MSTRB expansion bus
access.

Note: Posted Write

The data written to external memory by CPU or DMA is “latched” into the bus
logic, allowing the CPU to continue with internal operation. Consequently,
writes to external memory effectively require only one cycle if no accesses to
that interface are in progress. However, if the next DMA or CPU access is to
the same external bus, the DMA or CPU waits and the write is considered a
2-cycle operation. This is normally referred to as posted-write.

The following discussions pertain to zero wait-state accesses unless otherwise
specified.

External Memory Interface Timing

 9-16

The (M)STRB signal is low for the active portion of both reads and writes. The
active portion lasts one H1 cycle. Additionally, before and after the active portion
((M)STRB low) of writes only, there is a transition cycle of H1. This transition
cycle consists of the following sequence:

1) (M)STRB is high.

2) If required, (X)R/W changes state on H1 rising.

3) If required, address changes on H1 rising if the previous H1 cycle was the
active portion of a write. If the previous H1 cycle was a read, address
changes on the next H1 falling.

Figure 9–6 illustrates a read-read-write sequence for (M)STRB active and no
wait states. The data is read as late in the cycle as possible to allow maximum
access time from address valid. Although external writes require two cycles,
internally (from the perspective of the CPU and DMA) they require only one
cycle if no accesses to that interface are in progress. In the typical timing for
all external interfaces, the (X)R/W strobe does not change until (M)STRB or
IOSTRB goes inactive.

External Memory Interface Timing

9-17TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–6. Read-Read-Write for (M)STRB = 0

H3

H1

(M)STRB

(X)R/W

(X)A

(X)D

(X)RDY

Read Read Write data

Note: (x) RDY is sampled low on rising edge of H1. Data is read next falling edge of H1.

Note: Back-to-Back Read Operations

(M)STRB remains low during back-to-back read operations.

External Memory Interface Timing

 9-18

Figure 9–7 illustrates a write-write-read sequence for (M)STRB active and no
wait states. The address and data written are held valid approximately one-half
cycle after (M)STRB changes.

Figure 9–7. Write-Write-Read for (M)STRB = 0

H3

H1

(X)A

(X)D

(X)R/W

(M)STRB

(X)RDY

Write data Write data Read

External Memory Interface Timing

9-19TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–8 illustrates a read cycle with one wait state. Since (X)RDY = 1, the
read cycle is extended. (M)STRB, (X)R/W, and (X)A are also extended one
cycle. The next time (X)RDY is sampled, it is 0.

Figure 9–8. Use of Wait States for Read for (M)STRB = 0

H3

H1

(X)A

(X)D

XR/W

(M)STRB

(X)RDY

Write data

Extra
cycle

Read

External Memory Interface Timing

 9-20

Figure 9–9 illustrates a write cycle with one wait state. Since initially (X)RDY = 1,
the write cycle is extended. (M)STRB, (X)R/W, and (X)A are extended one cycle.
The next time (X)RDY is sampled, it is 0.

Figure 9–9. Use of Wait States for Write for (M)STRB = 0

H3

H1

(X)A

(X)D

(X)RDY

(M)STRB

(X)R/W

Write data Write data

Extra
cycle

External Memory Interface Timing

9-21TMS320C30 and TMS320C31 External-Memory Interface

9.6.2 Expansion-Bus I/O Cycles

In contrast to primary bus and MSTRB cycles, IOSTRB reads and writes are
both two cycles in duration (with no wait states) and exhibit the same timing.
During these cycles, address always changes on the falling edge of H1, and
IOSTRB is low from the rising edge of the first H1 cycle to the rising edge of
the second H1 cycle. The IOSTRB signal always goes inactive (high) between
cycles, and XR/W is high for reads and low for writes.

Figure 9–10 illustrates read and write cycles when IOSTRB is active and there
are no wait states. For IOSTRB accesses, reads and writes require a minimum
of two cycles. Some off-chip peripherals might change their status bits when
read or written to. Therefore, it is important to maintain valid addresses when
communicating with these peripherals. For reads and writes when IOSTRB is
active, IOSTRB is completely framed by the address.

Figure 9–10. Read and Write for IOSTRB = 0

H3

H1

XA

XD

XR/W

IOSTRB

XRDY

Read Write data

External Memory Interface Timing

 9-22

Figure 9–11 illustrates a read with one wait state when IOSTRB is active, and
Figure 9–12 illustrates a write with one wait state when IOSTRB is active. For
each wait state added, IOSTRB, XR/W, and XA are extended one clock cycle.
Writes hold the data on the bus one additional cycle. The sampling of XRDY
is repeated each cycle.

Figure 9–11.Read With One Wait State for IOSTRB = 0

H3

H1

XA

XD

XR/W

IOSTRB

XRDY

Read

Extra
cycle

External Memory Interface Timing

9-23TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–12. Write With One Wait State for IOSTRB = 0

H3

H1

XA

XD

XR/W

IOSTRB

XRDY

Write data

Extra
cycle

External Memory Interface Timing

 9-24

Figure 9–13 through Figure 9–23 illustrate the various transitions between
memory reads and writes, and I/O writes over the expansion bus.

Figure 9–13. Memory Read and I/O Write for Expansion Bus

H3

H1

XA

XD

XR/W

IOSTRB

MSTRB

XRDY

Memory address I/O address

Read I/O write

External Memory Interface Timing

9-25TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–14. Memory Read and I/O Read for Expansion Bus

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

I/O readRead

I/O addressMemory address

External Memory Interface Timing

 9-26

Figure 9–15. Memory Write and I/O Write for Expansion Bus

H3

H1

XA

XD

XRDY

MSTRB

IOSTRB

XR/W

Memory address I/O address

I/O writeMemory write

External Memory Interface Timing

9-27TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–16. Memory Write and I/O Read for Expansion Bus

H3

H1

XA

XD

XRDY

MSTRB

IOSTRB

XR/W

Memory address I/O address

I/O readMemory write

External Memory Interface Timing

 9-28

Figure 9–17. I/O Write and Memory Write for Expansion Bus

H3

H1

XA

XD

XRDY

MSTRB

IOSTRB

XR/W

I/O address Memory address

I/O write Memory write

External Memory Interface Timing

9-29TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–18. I/O Write and Memory Read for Expansion Bus

H3

H1

XA

XD

XRDY

MSTRB

IOSTRB

XR/W

I/O address Memory address

I/O write Read

External Memory Interface Timing

 9-30

Figure 9–19. I/O Read and Memory Write for Expansion Bus

I/O address Memory address

Memory write

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

I/O read

External Memory Interface Timing

9-31TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–20. I/O Read and Memory Read for Expansion Bus

Memory addressI/O address

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

ReadI/O read

External Memory Interface Timing

 9-32

Figure 9–21. I/O Write and I/O Read for Expansion Bus

I/O write

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

I/O read

I/O address I/O address

External Memory Interface Timing

9-33TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–22. I/O Write and I/O Write for Expansion Bus

I/O writeI/O write

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

I/O addressI/O address

External Memory Interface Timing

 9-34

Figure 9–23. I/O Read and I/O Read for Expansion Bus

I/O readI/O read

XRDY

XD

XA

XR/W

IOSTRB

MSTRB

H1

H3

I/O address I/O address

External Memory Interface Timing

9-35TMS320C30 and TMS320C31 External-Memory Interface

Figure 9–24 and Figure 9–25 illustrate the signal states when a bus is inactive
(after an IOSTRB or (M)STRB access, respectively). The strobes (STRB,
MSTRB and IOSTRB) and (X)R/W) go to 1. The address is driven with last exter-
nal bus access, and the ready signal (XRDY or RDY) is ignored.

Figure 9–24. Inactive Bus States for IOSTRB

H3

H1

XA

XD

XR/W

IOSTRB

XRDY

Write data

XRDY ignored

Bus inactive

External Memory Interface Timing

 9-36

Figure 9–25. Inactive Bus States for STRB and MSTRB

H3

H1

(X)A

(X)D

(X)R/W

(M)STRB

(X)RDY

Write data

(X)RDY ignored

Bus inactive

External Memory Interface Timing

9-37TMS320C30 and TMS320C31 External-Memory Interface

9.6.3 Hold Cycles

Figure 9–26 illustrates the timing for HOLD and HOLDA. HOLD is an external
asynchronous input. There is a minimum of one cycle delay from the time when
the processor recognizes HOLD = 0 until HOLDA = 0. When HOLDA = 0, the
address, data buses, and associated strobes are placed in a high-impedance
state. All accesses occurring over an interface are completed before a hold is
acknowledged.

Figure 9–26. HOLD and HOLDA Timing

H3

H1

HOLD

HOLDA

STRB

R/W

A

D Write data

Bus
inactive

 9-38

10-1

TMS320C32 Enhanced External Memory
Interface

The ’C32 external memory interface provides greater flexibility by improving
the ’C3x core with several new features. This chapter describes these features
and enhancements in detail.

Topic Page

10.1 TMS320C32 Memory Features 10-2.

10.2 TMS320C32 Memory Overview 10-3.

10.3 Configuration 10-7.

10.4 Programmable Wait States 10-15.

10.5 Programmable Bank Switching 10-17.

10.6 32-Bit Wide Memory Interface 10-20.

10.7 16-Bit Wide Memory Interface 10-26.

10.8 8-Bit Wide Memory Interface 10-32.

10.9 External Ready Timing Improvement 10-38.

10.10 Bus Timing 10-39.

Chapter 10

TMS320C32 Memory Features

 10-2

10.1 TMS320C32 Memory Features

The ’C32 external memory interface includes the following features:

� One external pin, PRGW, configures the external-program-memory width
to 16 or 32 bits.

� Two sets of memory strobes (STRB0 and STRB1) and one IOSTRB allow
zero glue-logic interface to two banks of memory and one bank of external
peripherals.

� Separate bus control registers for each strobe-control wait-state genera-
tion, external memory width, and data-type size.

� Each memory STRB handles 8-, 16- or 32-bit external data accesses
(reads and writes) to 8-, 16-, or 32-bit-wide memory.

� Multiprocessor support through the HOLD and HOLDA signals, is valid for
all the STRBs.

TMS320C32 Memory Overview

10-3TMS320C32 Enhanced External Memory Interface

10.2 TMS320C32 Memory Overview

The following sections describe examples, control register setups, and
restrictions necessary to fully understand the operation and functionality of the
external memory interface.

10.2.1 External Memory Interface Overview

The ’C32 memory interface accesses external memory through one 24-bit
address and one 32-bit data bus that is shared by three mutually-exclusive
strobes (STRB0, STRB1, and IOSTRB). Depending on the address accessed,
the ’C32 activates one of these strobes according to the memory map shown
in Figure 4–3 on page 4-8.

STRB0 and STRB1 can access 8-, 16-, or 32-bit data from 8-, 16-, or 32-bit
wide memory. This is accomplished by four signals in each strobe:
STRBx_B3/A–1, STRBx_B2/A–2, STRBxB1, and STRBx_B0. These signals
serve as byte-enable pins to access one byte, half word, or a full word from the
external memory. The first two signals also serve as additional address pins
to perform two or four consecutive accesses in 8-bit or 16-bit-wide external
memory. The ’C32 controls the behavior of these pins through the data size
and memory width bit fields in the corresponding strobe control register, as
follows:

� Memory width (default value dependent on PRGW pin level)

� 8-bit-wide memory

� STRBx_B3/A–1 and STRBx_B2/A–2 as address pins
� STRBx_B0 as byte-enable/chip-select signal
� STRBx_B1 unused

� 16-bit-wide memory

� STRBx_B3/A–1 as address pin
� STRBx_B1 and STRBx_B0 as byte-enable signal
� STRBx_B2 unused

� 32-bit-wide memory

� STRBx_B3, STRBx_B2, STRBx_B1, and STRBx_B0 as byte-
enable signals

� Data size

� 8-bit data, physical address = logical address shift right by 2
� 16-bit data, physical address = logical address shift right by 1
� 32-bit data, physical address = logical address

TMS320C32 Memory Overview

 10-4

IOSTRB can access 32-bit data from 32-bit wide memory. It does not have the
flexibility of STRB0 and STRB1 since it is composed of a single signal:
IOSTRB. IOSTRB bus cycles are different from those of STRB0 and STRB1
and are discussed in Section 10.10. This timing difference accomodates
slower I/O peripherals.

The ’C32 memory interface parallel bus implements three mutually-exclusive
address spaces distinguished via three separate control signals as shown in
Figure 10–1. STRB0 and STRB1 support 8-, 16-, or 32-bit data access in 8-,
16-, 32-bit-wide external memory and 16-, 32-bit program access in 16-/32-bit-
wide external memory. IOSTRB address space supports 32-bit data/program ac-
cess in 32-bit-wide external memory. Internally, the ’C32 has a 32-bit architecture,
hence, the memory interface packs and unpacks the data accessed accordingly.

Figure 10–1. Memory Address Spaces

‘C32

Strobe

control

registers

32-bit

 CPU
PRGW pin

STRB0

STRB1

IOSTRB

Memory

interface

8-, 16-, 32-bit data in

8-, 16-, 32-bit-wide memory

Program in 16-, 32-bit-wide memory

8-, 16-, 32-bit data in

8-, 16-, 32-bit-wide memory

32-bit data in 32-bit-wide

memory

Program in 16-, 32-bit-wide memory

Program in 32-bit-wide memory

10.2.2 Program Memory Access

The ’C32 supports program execution from 16- or 32-bit external memory
width. The PRGW pin configures the width of the external program memory.
When this pin is pulled high, the ’C32 executes from 16-bit wide memory.
When this pin is pulled low, the ’C32 executes from 32-bit wide memory. For
16-bit wide zero wait-state memory, the ’C32 takes two instruction cycles to
fetch a single 32-bit instruction. During the first cycle the lower 16 bits of the
instruction are fetched. During the second cycle, the upper 16 bits are fetched
and concatenated with the lower 16 bits. 32-bit memory fetches are identical
to those of the ’C30 and ’C31.

TMS320C32 Memory Overview

10-5TMS320C32 Enhanced External Memory Interface

The PRGW status bit field of the CPU status (ST) register reflects the setting
of the PRGW pin. Figure 10–2 depicts all the bit fields of the CPU status (ST)
register.

Figure 10–2. Status Register
Á
Á
ÁÁÁ
ÁÁÁ

31–16ÁÁÁ
ÁÁÁ

15ÁÁÁ
ÁÁÁ

14ÁÁÁ
ÁÁÁ

13ÁÁ
ÁÁ

12ÁÁÁ
ÁÁÁ

11ÁÁ
ÁÁ

10ÁÁÁ
ÁÁÁ

9ÁÁ
ÁÁ

8ÁÁÁ
ÁÁÁ

7ÁÁÁ
ÁÁÁ

6 ÁÁ
ÁÁ

5ÁÁÁ
ÁÁÁ

4 ÁÁ
ÁÁ

3ÁÁÁ
ÁÁÁ

2ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁ
ÁÁÁ

Á
Á

xx
PRGW
status

INT
config

ÁÁÁ
ÁÁÁ
ÁÁÁ

GIE
ÁÁ
ÁÁ
ÁÁ

CC
ÁÁÁ
ÁÁÁ
ÁÁÁ

CE
ÁÁ
ÁÁ
ÁÁ

CF xx
ÁÁ
ÁÁ
ÁÁ

RM
ÁÁÁ
ÁÁÁ
ÁÁÁ

OVM
ÁÁÁ
ÁÁÁ
ÁÁÁ

LUF
ÁÁ
ÁÁ
ÁÁ

LV
ÁÁÁ
ÁÁÁ
ÁÁÁ

UF
ÁÁ
ÁÁ
ÁÁ

N
ÁÁÁ
ÁÁÁ
ÁÁÁ

Z
ÁÁÁ
ÁÁÁ
ÁÁÁ

V C
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁRÁÁÁR/WÁÁÁR/WÁÁR/WÁÁÁR/WÁÁR/WÁÁÁÁÁR/WÁÁÁR/WÁÁÁR/WÁÁR/WÁÁÁR/WÁÁR/WÁÁÁR/WÁÁÁR/WÁÁR/WÁÁ

Notes: 1) xx = reserved bit, read as 0

The status of the PRGW pin also affects the reset value of the physical memory
width bit fields of the STRB0 and STRB1 bus-control registers. The physical
memory width is set to 32-bit memory width if the PRGW pin is logic low after
the device reset. The physical memory width is set to 16-bit memory width if
the PRGW pin is logic high after the device reset (see Section 10.3 for more
information).

The cycle before and the cycle after changing the PRGW should not
perform a program fetch over the external memory interface.

10.2.3 Data Memory Access

The ’C32 can load and store 8-, 16-, or 32-bit data quantities from and into
memory. Because the CPU has a 32-bit architecture, the device internally
handles all 8-, 16-, or 32-bit data quantities as a 32-bit value. Hence, the external
memory interface handles the conversion between 8- and 16-bit data quantities
to the internal 32-bit representation. The external memory interface also
handles the storage of 32-, 16-, or 8-bit data quantities into 32-, 16-, or 8-bit wide
memories.

10.2.3.1 8-, 16-, or 32-Bit Integers Data Types

The ’C32 supports 8-, 16- or 32-bit integer data quantities. When 8- or 16-bit
integers are read from external memory, the value is loaded into the LSBs of
the register with the MSBs sign-extended or zero-filled. The polarity of the sign
ext/zero-fill bit field of the corresponding STRB control register controls the
sign extension or zero fill (see paragraphs 10.3.1.1 and 10.3.1.2). The 32-bit
integer data access is identical to that of the ’C30 and ’C31.

TMS320C32 Memory Overview

 10-6

10.2.3.2 16- or 32-Bit Floating-Point Data Types

The ’C32 supports 16- or 32-bit floating point data. For 16-bit floating-point
reads, the eight MSBs are the signed exponent and the eight LSBs are the
signed mantissa (see Section 5.3.2, ’C32 Short Floating-Point Format for
External 16-Bit Data, on page 5-6). When a 16-bit floating-point value is loaded
into a 40-bit register, the external memory interface zero fills the least signifi-
cant 24 bits of the register. When a 16-bit floating-point value is used as a 32-bit
on-chip input operand, the external memory interface zero fills the 16 LSBs of
the 32-bit input operand. The 32-bit floating-point data access is identical to
that of the ’C30 and ’C31.

Configuration

10-7TMS320C32 Enhanced External Memory Interface

10.3 Configuration

To access 8-, 16-, or 32-bit data (types) from 8-, 16-, or 32-bit wide memory, the
memory interface of the ’C32 device uses either strobe STRB0 or STRB1 with
four pins each. These pins serve as byte-enable and/or additional-address pins.
In conjunction with a shifted version of the internal address presented to the exter-
nal address, the ’C32 can select a single byte from one external memory location
or combine up to four bytes from contiguous memory locations. The behavior of
these pins is controlled by the external memory width and the data type size. The
selected data size also determines the amount of internal-to-physical address
shift. You can assign these values to the ’C32 memory interface through bit fields
in the bus control registers.

10.3.1 External Interface Control Registers

The following sections describe the bus control registers used to manipulate
the byte addressability features of the ’C32. Figure 10–3 shows the external
interface control memory map.

Figure 10–3. Memory-Mapped External Interface Control Registers

ÁÁÁÁ
ÁÁÁÁ

AddressÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Register Á
ÁÁÁÁÁ

ÁÁÁÁ
808060h IOSTRB control Á

ÁÁÁÁÁ
ÁÁÁÁ

808061h Reserved Á
ÁÁÁÁÁ

ÁÁÁÁ
808062h Reserved Á

ÁÁÁÁÁ
ÁÁÁÁ

808063h Reserved Á
Á

ÁÁÁÁ
ÁÁÁÁ808064h STRB0 control ÁÁÁÁÁ
ÁÁÁÁ808065h Reserved

Á
ÁÁÁÁÁ

ÁÁÁÁ808066h Reserved
Á
ÁÁÁÁÁ

ÁÁÁÁ808067h Reserved
Á
ÁÁÁÁÁ

ÁÁÁÁ
808068h STRB1 control

Á
ÁÁÁÁÁ

ÁÁÁÁ
808069h Reserved

Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

.

.

.

Á
Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
80806Fh Reserved Á

Á
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

Configuration

 10-8

10.3.1.1 STRB0 Control Register

The STRB0 control register (Figure 10–4) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped to
STRB0. The following table lists the register bits with the bit names and functions.
At the system reset, 0F10F8h is written to the STRB0 control register if the PRGW
pin is logic low and 0710F8h is written to the STRB0 control register if the PRGW
pin is logic high.

Figure 10–4. STRB0 Control Register

Á
Á
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ31 28

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ 27 24 23

ÁÁÁ
ÁÁÁ22
ÁÁÁ
ÁÁÁ21
ÁÁÁÁ
ÁÁÁÁ20

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ19 18

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ17 16

ÁÁ
ÁÁÁ

Á
Á

xx
STRB
switch

STRB
config

Sign ext/
zero fill

Physical memory
width

Data type size

ÁÁ
ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R/W ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W ÁÁÁ
ÁÁÁ

R/WÁÁÁ
ÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R/WÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W ÁÁ
ÁÁ

Á
Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

15 13ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

12 11 8ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

7 5ÁÁÁÁÁ
ÁÁÁÁÁ

4 3ÁÁÁ
ÁÁÁ

2ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

0 Á
ÁÁ

Á
xx ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
 BNKCMP ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
WTCNT ÁÁÁÁÁ

ÁÁÁÁÁ
SWW ÁÁÁ

ÁÁÁ
HIZÁÁÁÁ
ÁÁÁÁ

NOHOLDÁÁÁÁ
ÁÁÁÁ

HOLDSTÁ
ÁÁ

Á
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

R/W ÁÁÁÁÁ
ÁÁÁÁÁ

R/W ÁÁÁ
ÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R Á
Á

Notes: 1) R = read, W = write

2) xx = reserved, read as 0

10.3.1.2 STRB1 Control Register

The STRB1 control register (Figure 10–5) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped
to STRB1. Figure 10–5 shows the register bits with their names and functions.
At system reset, 0F10F8h is written to the STRB1 control register if the PRGW
pin is logic low and 0710F8h is written to the STRB1 control register if the
PRGW pin is logic high.

Figure 10–5. STRB1 Control Register
Á
Á
ÁÁÁÁÁ
ÁÁÁÁÁ31 24

ÁÁÁ
ÁÁÁ23 21
ÁÁÁÁ
ÁÁÁÁ20

ÁÁÁÁ
ÁÁÁÁ19 18

ÁÁÁÁ
ÁÁÁÁ17 16

ÁÁÁÁ
ÁÁÁÁ15 13

ÁÁÁÁ
ÁÁÁÁ12 8

ÁÁÁÁ
ÁÁÁÁ7 5

ÁÁÁ
ÁÁÁ4 3
ÁÁÁÁ
ÁÁÁÁ2 0

Á
ÁÁ

Á
Á
Á

xx xx
Sign ext/
zero fill

Physical
memory

width

Data-
type
size

xx

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BNKCMP

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

WTCNT

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

SWW xx

Á
Á
Á
ÁÁ

Á
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁ
ÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

R/W ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

R/W ÁÁÁÁ
ÁÁÁÁ

R/W ÁÁÁ
ÁÁÁ

R/WÁÁÁÁ
ÁÁÁÁ

Á
ÁNotes: 1) R = read, W = write

2) xx = reserved, read as 0

Configuration

10-9TMS320C32 Enhanced External Memory Interface

The instruction immediately preceding a change in the data-size or
memory-width bit fields should not perform a multicycle store. Do
not follow a change in the data-size or memory-width bit fields with
a store instruction. Also, do not perform a load in the next two
instructions following a change in the data-size or memory-width
bit fields

10.3.1.3 IOSTRB Control Register

The IOSTRB control register (Figure 10–6) is a 32-bit register that contains the
control bits for the portion of the external bus memory space that is mapped to
IOSTRB. Unlike the STRB0 and STRB1, there is no byte-enable signal for the
IOSTRB. The data access through the IOSTRB is always 32-bit. The following
table lists the register bits with the bit names and functions. At the system reset,
0F8h is written to the IOSTRB control register. The IOSTRB timing is identical
to the ‘C30 IOSTRB timing.

Figure 10–6. IOSTRB Control Register
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ31 16

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ15 12

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ11 8

ÁÁÁÁÁ
ÁÁÁÁÁ7 5

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ4 3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ2 0

Á
ÁÁÁ

ÁÁ xx xx xx WTCNT SWW xx
Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁR/W

ÁÁÁÁÁÁ
ÁÁÁÁÁÁR/W

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Á
Á

Notes: 1) R = read, W = write

2) xx = reserved, read as 0

Note:

After changing the bit fields of the IOSTRB control register, up to three
instructions are fetched before the IOSTRB bus is reconfigured.

Configuration

 10-10

Table 10–1 describes the bits in the STRBO, STRB1, and the IOSTRB control

registers.

Table 10–1. STRB0, STRB1, and IOSTRB Control Register Bits

Abbreviation
Reset
Value Name Description

HOLDST 0 Hold status bit This bit signals whether the port is being held (HOLDST = 1),
or is not being held (HOLDST = 1). This status bit is valid
whether the port has been held through hardware or soft-
ware. (STRB0 control register only)

NOHOLD 0 Port hold signal NOHOLD allows or disallows the port to be held by an exter-
nal HOLD signal. When NOHOLD = 1, the ’C3x takes over
the external bus and controls it, regardless of serviced or
pending requests by external devices. No hold acknowledge
(HOLDA) is asserted when a HOLD is received. However, it
is asserted if an internal hold is generated (HIZ = 1). (STRB0
control register only)

HIZ 0 Internal hold When set (HIZ = 1), the port is put in hold mode. This is
equivalent to the external HOLD signal. By forcing the high-
impedance condition, the ’C3x can relinquish the external
memory port through software. HOLDA goes low when the
port is placed in the high impendance state. (STRB0 control
register only)

SWW 11 Software wait mode In conjunction with WTCNT, this 2-bit field defines the mode
of wait-state generation.

WTCNT 111 Software wait mode This 3-bit field specifies the number of cycles to use when
in the software wait mode for the generation of internal wait
state. The range is 0 (WTCNT = 0 0 0) to 7 (WTCNT = 111)
H1/H3 cycles.

BNKCMP 10000 Bank compare This 5-bit field specifies the number of MSBs of the address to
be used to define the bank size. (STRB0 and STRB1 control
registers only)

Data type size 11 (STRB0 and STRB1
control registers only)

Indicates the size of the data type written in memory.

Bit 17 Bit 16 Data Type Size

0 0 8 bit

0 1 16 bit

1 0 Reserved

1 1 32 bit

Configuration

10-11TMS320C32 Enhanced External Memory Interface

Table 10–1. STRB0, STRB1, and IOSTRB Control Register Bits (Continued)

Abbreviation DescriptionName
Reset
Value

Physical
memory width

01
or
11

(STRB0 and STRB1
control registers only)

Indicates the size of the physical memory connected to the
device. The “reset” value depends on the status of the
PRGW pin. If the PRGW pin is logic low, the memory width
is configured to 32 bits (= 112). If the PRGW pin is logic high,
the physical memory width is configured to 16 bits (= 012).
This field can have the following values:

Bit 17 Bit 16 Data Type Size

0 0 8 bit

0 1 16 bit (reset value if PRGW = 1)

1 0 Reserved

1 1 32 bit (reset value if PRGW = 0)

Setting the physical memory width field of the STRB0 or
STRB1 control registers changes the functionality of the
STRB0 or STRB1 signals.

� When the physical memory width field is configured to 32
bits, the corresponding STRBx_B0–STRBx_B3 signals
are configured as byte-enable pins (see Figure 10–10
on page 10-20).

� When the physical memory width field is configured to
16 bits, the corresponding STRBx_B3/A–1 signal is
configured as an address pin while the STRBx_B0 and
STRBx_B1 signals are configured as byte-enable pins
(see Figure 10–14 on page 10-26).

� When the physical memory width field is configured to
8 bits, the STRBx_B3/A–3 and STRBx_B2/A–2 signals
are configured as byte-enable pins (see Figure 10–18
on page 10-32).

Once an STRBx_Bx signal is configured as an address pin,
it is active for any external memory access (STRB0, STRB1,
IOSTRB, or external fetch).

Configuration

 10-12

Table 10–1. STRB0, STRB1, and IOSTRB Control Register Bits (Continued)

Abbreviation DescriptionName
Reset
Value

Sign ext/
zero-fill

0 (STRB0 and STRB1
control registers only)

Selects the method of converting 8- and 16-bit integer data
into 32-bit integer data when transferring data from external
memory to an internal register or memory location. This field
can have the following values:

Bit 20 Physical Memory Width

0 8- or 16-bit integer reads are sign-extended to
 32 bits (reset value).

1 The MSBs of 8- or 16-bit integer reads are zero-
filled to make the number 32 bits.

STRB config 0 STRB configuration Activates the STRB0 Bx signals when accessing data from
STRB0 or STRB1 memory spaces. This mode is useful
when accessing a single external memory bank that stores
two different data types, each mapped to a different STRB.
This field can have the following values.

Bit 21 Physical Memory Width

0 STRB0_Bx signals are active for locations
0h–7FFFFFh and 880000h–8FFFFFh.
STRB1_Bx signals are active for locations
900000h–FFFFFFh (reset value).

1 STRB0_Bx signals are active for locations
0h–7FFFFFh, 880000h–8FFFFFh and
900000h–FFFFFFh. STRB1_Bx signals are
active for locations 900000h–FFFFFFh.

A functional representation of this configuration is shown in
Figure 10–7 on page 10-13.

STRB switch 0 (STRB0 control regis-
ter only)

Defines whether a single cycle is inserted between back-to-
back reads when crossing STRB0 or STRB1 to STRB1 to
STRB0 boundaries (switching STRBs). The extra cycle
toggles the strobe signal during back-to-back reads. Other-
wise, the strobe remains low during back-to-back reads.
This field has the following values:

Bit 22 Physical Memory Width

0 Does not insert a single cycle between back-
to-back reads that switch from STRB0 to
STRB1 or vice-versa (reset value).

1 Inserts a single cycle between back-to-back
reads that switch from STRB0 to STRB1 or
vice-versa (reset value).

Configuration

10-13TMS320C32 Enhanced External Memory Interface

Figure 10–7. STRB Configuration

STRB0_Bx

STRB1_Bx

STRB0_Bx

STRB config

STRB1_Bx

10.3.2 Using Physical Memory Width and Data-Type Size Fields

Consider a ’C32 connected to two banks of external memory. In this configura-
tion, one bank is mapped to STRB0 while the other bank is mapped to STRB1.
The STRB0 bank of memory is 32 bits wide and stores 32-bit data types. The
STRB1 bank of memory is 16 bits wide and stores 16-bit data types. You can
transfer these configurations to the ’C32 by setting the physical memory width
and data-type size fields of the respective STRB0 and STRB1 control registers.
You also must clear the STRB config bit field to 0 since the banks are separate
memories. Note that ‘C32 address pins A23A22A21...A1A0 are connected to the
STRB0 memory bank address pins A23A22A21...A1A0. But ’C32 address pins
A22A21...A1A0 A–1 are connected to the STRB1 memory-bank address pins
A23A22A21...A1A0.

Executing the following code on this device results in the data-access
sequence shown in Table 10–2.
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

1)
2)
3)
4)
5)
6)
7)
8)
9)

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

LDI
LDI
ADDI
ADDI
ADDI
LDI
LSH
LDI
ADDI

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

4000h, AR1
*AR1++, R2
*AR1++, R2
*AR1++, R2
*AR1++, R2
900h, AR2
12, AR2
*AR2++, R3
*AR2, R3

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

; AR1 = 4000h
; R2 = *4000h and AR1 = AR1 + 1
; R2 = R2 + *4001h and AR1 = AR1 + 1
; R2 = R2 + *4002h and AR1 = AR1 + 1
; R2 = R2 + *4003h and AR1 = AR1 + 1
; AR2 = 900h
; AR2 = 900000h
; R3 = *900000h and AR2 = AR2 + 1
; R3 = R3 + 900001h

Configuration

 10-14

By setting the bit fields of the STRB0 bus control register with a physical-
memory width of 32 bits and a data type size of 32 bits, the external address
referring to the STRB0 location is identical to the internal address used by the
‘C32 CPU. Alternatively, setting the bit fields of the STRB1 bus control register
with a physical memory width of 16-bit and a data-type size of 16-bit, the ad-
dress presented by the ‘C32 external pins is the internal address shifted right
by one bit with A23 driving A23 and A22. Since the STRB1 memory-bank address
pins A23A22A21...A1A0 are connected to the ‘C32 address pins A22A21...A1A0A–1,
the address seen by the STRB1 memory bank is identical to the ‘C32 CPU
internal address.

Table 10–2. Data-Access Sequence for a Memory Configuration with Two Banks

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Instruction #

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(2) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB0_B0/B1/B2/B3 ÁÁÁÁ
ÁÁÁÁ

D31–0
ÁÁÁÁ
ÁÁÁÁ

4000h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ(3)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4001h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4001h
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB0_B0/B1/B2/B3
ÁÁÁÁ
ÁÁÁÁD31–0

ÁÁÁÁ
ÁÁÁÁ4001hÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(4)
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4002h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4002h

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB0_B0/B1/B2/B3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D31–0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

4002h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(5) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4003h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4003h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB0_B0/B1/B2/B3 ÁÁÁÁ
ÁÁÁÁ

D31–0ÁÁÁÁ
ÁÁÁÁ

4003h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(8) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

900000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C80000h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB1_B0/B1 and
STRB1_B3/A–1 = 0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D15–0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

900000h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

(9) ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

900001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C80001h ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB1_B0/B1 and ÁÁÁÁ
ÁÁÁÁ

D15–0
ÁÁÁÁ
ÁÁÁÁ

900001h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

STRB1_B3/A–1 = 1
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

The ability of the ‘C32 device to select a single byte from a single external
memory location or combinations of bytes from several contiguous memory
locations dictates that the internal address seen by the CPU correspond to a
shifted version of the address presented to the external pins. The ’C32 external
memory interface handles this conversion automatically as long as you configure
the bus control register to match the external memory configuration present in
your hardware implementation.

As seen in Figure 2–8 on page 2-20, ’C32 handles nine different memory
access cases. The following sections discuss these cases in detail.

Programmable Wait States

10-15TMS320C32 Enhanced External Memory Interface

10.4 Programmable Wait States

The ’C3x has its own internal software-configurable ready-generation capability
for each strobe. This software wait-state generator is controlled by configuring
two fields in the primary or expansion bus interface control registers. Use the
WTCNT field to specify the number of software wait states to generate and use
the SWW field to select one of the following four modes of wait-state generation:

� External RDY. Wait states are generated solely by the external RDY line
ignoring software wait states.

� WTCNT-generated RDYwtcnt. Wait states generated solely by the software
wait-state generator ignoring external RDY signals.

� Logical-AND of RDY and RDYwtcnt. Wait states generated with a logical
AND of internal and external ready signals. Both signals must occur.

� Logical-OR of RDY and RDYwtcnt. Wait states are generated with a logical
OR of internal and external ready signals. Either signal can generate ready.

The four modes are used to generate the internal ready signal, RDYint, that
controls accesses. As long as RDYint = 1, the current external access is
delayed. When RDYint = 0, the current access completes. Since the use of
programmable wait states for both external interfaces is identical, only the
primary bus interface is described in the following paragraphs.

RDYwtcnt is an internally generated ready signal. When an external access is
begun, the value in WTCNT is loaded into a counter. WTCNT can be any value
from 0 through 7. The counter is decremented every H1/H3 clock cycle until
it becomes 0. Once the counter is set to 0, it remains set to 0 until the next
access. While the counter is nonzero, RDYwtcnt = 1. While the counter is 0,
RDYwtcnt = 0.

Table 10–3 shows the truth table for each value of SWW and the different
combinations of RDY, RDYwtcnt, and RDYint.

Note:

At reset, the ‘C3x is programmed with seven wait states for each external
memory access. These wait states are inserted to ensure the system can func-
tion with slow memories. To maximize system performance when accessing
external memories, you need to decrease the number of wait states.

After changing wait states, up to three instructions will be fetched before the
change in the wait-state occurs.

Programmable Wait States

 10-16

Table 10–3. Wait-State Generation

Inputs Output

SWW Bit
Field /RDYext /RDYwtcnt /RDYint Functional Description

00 0

1

x

x

0

1

Wait until external RDY is signaled

01 x

x

0

1

0

1

Wait until internal wait state generator counts
down to 0

10 0

0

1

1

0

1

0

1

0

0

0

1

Wait until first signal: external RDY or the
internal wait state generator (logical OR)

11 0

0

1

1

0

1

0

1

0

1

1

1

Wait until both external RDY is signaled and
wait state generator counts down to 0 (logical
AND)

Programmable Bank Switching

10-17TMS320C32 Enhanced External Memory Interface

10.5 Programmable Bank Switching
Programmable bank switching allows you to switch between external memory
banks without having to insert wait states externally due to memories that require
several cycles to turn off. Bank switching is implemented on STRB0 and STRB1
only.

The size of a bank is determined by the number of bits specified to be examined
on the BNKCMP field of the primary bus control register. For example, if
BNKCMP = 16, the 16 MSBs of the address are used to define a bank (see
Figure 9–4). Since addresses are 24 bits, the bank size is specified by the eight
LSBs, yielding a bank size of 256 words. If BNKCMP ≥ 16, only the 16 MSBs
are compared. Bank sizes from 28 = 256 to 224 = 16M are allowed. Table 9–6
summarizes the relationship between BNKCMP, the address bits used to define
a bank, and the resulting bank size.

Figure 10–8. BNKCMP Example

23 8 7 0

24-bit address

Number of bits to compare Defines bank size

Table 10–4. BNKCMP and Bank Size

BNKCMP MSBs Defining a Bank Bank Size (32-Bit Words)

00000 None 224 = 16M

00001 23 223 = 8M

00010 23–22 222 = 4M

00011 23–21 221 = 2M

00100 23–20 220 = 1M

00101 23–19 219 = 512K

00110 23–18 218 = 256K

00111 23–17 217 = 128K

01000 23–16 216 = 64K

01001 23–15 215 = 32K

01010 23–14 214 = 16K

01011 23–13 213 = 8K

01100 23–12 212 = 4K

01101 23–11 211 = 2K

01110 23–10 210 = 1K

01111 23–9 29 = 512

10000 23–8 28 = 256

10001–11111 Reserved Undefined

Programmable Bank Switching

 10-18

The ’C3x has an internal register that contains the MSBs (as defined by the
BNKCMP field) of the last address used for a read or write over the primary inter-
face. At reset, the register bits are set to 0. If the MSBs of the address being used
for the current primary interface read do not match those contained in this inter-
nal register, a read cycle is not asserted for one H1/H3 clock cycle. During this
extra clock cycle, the address bus switches over to the new address, but STRB
is inactive (high). The contents of the internal register are replaced with the
MSBs being used for the current read of the current address. If the MSBs of the
address being used for the current read match the bits in the register, a normal
read cycle takes place.

If repeated reads are performed from the same memory bank, no extra cycles
are inserted. When a read is performed from a different memory bank, memory
conflicts are avoided by the insertion of an extra cycle. This feature can be
disabled by setting BNKCMP to 0. The insertion of the extra cycle occurs only
when a read is performed. The changing of the MSBs in the internal register
occurs for all reads and writes over the primary interface.

Figure 9–5 shows the addition of an inactive cycle when switches between
banks of memory occur.

Figure 10–9. Bank-Switching Example

Read

H3

H1

STRB

R/W

A

D

RDY

Read

Extra
cycle

Read

Programmable Bank Switching

10-19TMS320C32 Enhanced External Memory Interface

Note:

After changing BNKCMP, up to three instructions are fetched before the
change in bank size occurs.

32-Bit-Wide Memory Interface

 10-20

10.6 32-Bit-Wide Memory Interface

The ’C32 memory interface to 32-bit-wide external memory uses STRBx_B3
through STRBx_B0 pins as strobe-byte-enable pins as shown in Figure 10–10.
In this manner, the ’C32 can read from, or write to, a single 32-, 16-, or 8-bit value
from the external 32-bit-wide memory.

Figure 10–10. TMS320C32 External Memory Interface for 32-Bit SRAMs

AXX

R/W

STRBx_B3

STRBx_B2

STRBx_B1
STRBx_B0

D(31-24)

D(23-16)

D(15-8)

D(7-0)

AXX

WE

CS

I/O(7-0)

AXX

WE

CS

I/O(7-0)

AXX

WE

CS

I/O(7-0)

AXX

WE

CS

I/O(7-0)

’C32

Case 1: 32-Bit-Wide Memory With 8-Bit Data-Type Size

When the data-type size is 8 bits, the ’C32 shifts the internal address two bits
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A23 to the external-
address pins A23, A22, and A21. The memory interface activates the STRBx_B3
through STRBx_B0 pins according to the value of the internal address bits A1

and A0 as shown in Table 10–5. Figure 10–11 shows a functional diagram of
the memory interface for 32-bit-wide memory with an 8-bit data-type size.

32-Bit-Wide Memory Interface

10-21TMS320C32 Enhanced External Memory Interface

Table 10–5. Strobe Byte-Enable for 32-Bit-Wide Memory With 8-Bit Data-Type Size

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Internal
A1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
A0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Active Strobe
Byte Enable

ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

STRBx_B0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

STRBx_B1

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

STRBx_B2

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

STRBx_B3

Figure 10–11. Functional Diagram for 8-Bit Data-Type Size and 32-Bit External-Memory
Width

A21
A20
A19
A18

A0
CS
I/O(7–0)

’C32

A 23
A 22
A 21
A 20
A 19
A 18

.

.

.
A 0

D(31–24)
D(23–16)
D(15–8)
D(7–0)

A21
A20
A19
A18

A0
CS
I/O(7–0)

A21
A20
A19
A18

A0
CS
I/O(7–0)

A21
A20
A19
A18

A0
CS
I/O(7–0)

A 23
A 22
A 21
A 20

.

.

.
A 2
A 1
A 0

11
10
01
00

Memory interface

ÎÎÎÎSTRBx_B3ÎÎÎÎ
ÎÎÎÎ

STRBx_B2

ÎÎÎÎSTRBx_B1ÎÎÎÎ
ÎÎÎÎ

STRBx_B0

.

.

.

.

.

.

.

.

.

.

.

.

32-Bit-Wide Memory Interface

 10-22

For example, reading from or writing to memory locations 904000h to
904004h involves the pins listed in Table 10–6.

Table 10–6. Example of 8-Bit Data-Type Size

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Active Strobe
Byte Enable

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

904000h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E41000h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁ
ÁÁÁÁ

D7–0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

904001h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E41000h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB1_B1 ÁÁÁÁ
ÁÁÁÁ

D15–8
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

904002h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E41000h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB1_B2
ÁÁÁÁ
ÁÁÁÁ

D23–16ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

904003h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E41000h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB1_B3
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D31–24

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

904004h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

E41001h ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁ
ÁÁÁÁ

D7–0

Case 2: 32-Bit-Wide Memory With 16-Bit Data-Type Size

When the data-type size is 16 bits, the ’C32 shifts the internal address one bit
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A23 to the external-
address pins A23 and A22. Also, the memory interface activates the STRBX-B3
through STRBx_B0 pins according to the value of the internal address bit A0

as shown in Table 10–7. Figure 10–12 shows a functional diagram of the
memory interface for 32-bit-wide memory with 16-bit data-type size.

Table 10–7. Strobe Byte-Enable for 32-Bit-Wide Memory With 16-Bit Data-Type Size

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Internal A 0 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

STRBx_B1 and STRBx_B0

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

STRBx_B3 and STRBx_B2

32-Bit-Wide Memory Interface

10-23TMS320C32 Enhanced External Memory Interface

Figure 10–12. Functional Diagram for 16-Bit Data-Type Size and 32-Bit External-Memory
 Width

A22
A21
A20
A19
.
.
.

A1
A0
CS
I/O(7-0)

’C32

A23
A22
A21
A20
A19

.

.

.
A1
A0

D(31-24)
D(23-16)
D(15-8)

D(7-0)

1

0

Memory interface

A22
A21
A20
A19
.
.
.

A1
A0
CS
I/O(7-0)

A22
A21
A20
A19
.
.
.

A1
A0
CS
I/O(7-0)

A22
A21
A20
A19

.

.

.
A1
A0
CS
I/O(7-0)

ÎÎÎÎSTRBx_B3ÎÎÎÎ
ÎÎÎÎ

STRBx_B2
ÎÎÎÎSTRBx_B1ÎÎÎÎ
ÎÎÎÎ

STRBx_B0

ÎÎÎ
ÎÎÎ

A23

ÎÎÎ
A22ÎÎÎ

ÎÎÎ
A21

ÎÎÎA20ÎÎ
ÎÎ

.

ÎÎ.ÎÎ
ÎÎ

.
ÎÎ
ÎÎ

A2

ÎÎA1ÎÎ
ÎÎ

A0’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

For example, reading or writing to memory locations 904000h to 904004h
involves the pins listed in Table 10–8.

Table 10–8. Example of 16-Bit Data-Type Size and 32-Bit-Wide External Memory

ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁActive Strobe Byte Enable

ÁÁÁÁÁ
ÁÁÁÁÁ

Accessed
Data PinsÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

904000h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C82000h
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B1 and STRB1_B0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

904001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C82000h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B3 and STRB1_B2 ÁÁÁÁÁ
ÁÁÁÁÁ

D31–16

ÁÁÁÁÁ
ÁÁÁÁÁ

904002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C82001h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B1 and STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904003h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C82001h
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B3 and STRB1_B2
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–16ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904004h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

C82002h

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B1 and STRB1_B0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0

32-Bit-Wide Memory Interface

 10-24

Case 3: 32-Bit-Wide Memory With 32-Bit Data-Type Size

When the data size is 32 bits, the ’C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory
interface copies the value of the internal address bus to the respective external-
address pins. Also, the memory interface activates STRBx_B3 through
STRBx_B0 pins during accesses. Figure 10–13 shows a functional diagram
of the memory interface for 32-bit-wide memory with 32-bit data size.

Figure 10–13. Functional Diagram for 32-Bit Data Size and 32-Bit External-Memory Width

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

’C32

A23
A22
A21
A20

.

.

.
A2
A1
A0

D(31-24)
D(23-16)

D(15-8)
D(7-0)

Memory interface

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

STRBx logic

ÎÎÎÎ
ÎÎÎÎ

STRBx_B3

ÎÎÎÎSTRBx_B2ÎÎÎÎ
ÎÎÎÎ

STRBx_B1
ÎÎÎÎSTRBx_B0

ÎÎ
ÎÎ

A23
ÎÎA22ÎÎ
ÎÎ

A21
ÎÎ
ÎÎ

A20

Î.Î
Î

.

Î.ÎÎ
ÎÎ

A2
ÎÎ
ÎÎ

A1

ÎÎA0’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

32-Bit-Wide Memory Interface

10-25TMS320C32 Enhanced External Memory Interface

For example, reading or writing to memory locations 904000h to 904004h
involves the pins listed in Table 10–9.

Table 10–9. Example of 32-Bit-Wide Memory With 32-Bit Data-Type Size

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

904000h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B0, STRB1_B1,
STRB1_B2, and STRB1_B3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

904001h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B0, STRB1_B1,
STRB1_B2, and STRB1_B3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

904002h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B0, STRB1_B1,
STRB1_B2, and STRB1_B3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904003h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

904003h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B0, STRB1_B1,
STRB1_B2, and STRB1_B3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

904004h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

904004h ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB1_B0, STRB1_B1,
STRB1_B2, and STRB1_B3

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D31–0

16-Bit-Wide Memory Interface

 10-26

10.7 16-Bit-Wide Memory Interface

The ’C32 memory interface to 16-bit-wide external memory uses STRBx_B3 pin
as an additional address pin, A–1, while using STRBx_B0 and STRBx_B1 as
strobe byte-enable pins as shown in Figure 10–14. Note that the external-
memory address pins are connected to the ’C32 address pins A22A21...A1A0A–1.
In this manner, the ’C32 can read/write a single 32-, 16-, or 8-bit value from the
external 16-bit-wide memory.

Figure 10–14. External-Memory Interface for 16-Bit SRAMs

A23
A22
A21
.
.
.
A1
A0

STRBx_B3/A–1
R/W

A23
A22

.

.

.
A2
A1
A0
WE
CS

I/O(7-0)

A23
A22

.

.

.
A2
A1
A0
WE
CS

I/O(7-0)

’C32

STRBx_B2
STRBx_B1
STRBx_B0

D(31-24)
D(23-16)

D(15-8)
D(7-0)

Case 4: 16-Bit-Wide Memory With 8-Bit Data-Type Size

When the data type size is 8 bits, the ’C32 shifts the internal address two bits
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A23 to the external-
address pins A23, A22, and A21. The memory interface also copies the value
of the internal-address A1 to the external STRBx_B3/A–1 pin. Furthermore, the
memory interface activates the STRBx_B1 and STRBx_B0 pins according to
the value of the internal address bit A0 as shown in Table 10–10. Figure 10–15
shows a functional diagram of the memory interface for 16-bit-wide memory
with 8-bit data-type size.

16-Bit-Wide Memory Interface

10-27TMS320C32 Enhanced External Memory Interface

Table 10–10. Strobe-Byte Enable Behavior for 16-Bit-Wide Memory with 8-Bit Data-Type Size

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Internal A 0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

STRBx_B0
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

STRBx_B1

Figure 10–15. Functional Diagram for 8-Bit Data-Type Size and 16-Bit External-Memory Width

A22
A21
A20
A19
.
.
.
A1
A0
CS
I/O(7-0)

A22
A21
A20
A19
.
.
.

A1
A0
CS
I/O(7-0)

’C32

A23
A22
A21
A20
A19
A18
.
.
.
A0
STRBx_B3/A–1
STRBx_B1

STRBx_B0

D(15-8)
D(7-0)

A23
A22
A21
A20

.

.

.
A2
A1
A0

1

0

Memory interface

’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

For example, reading or writing to memory locations 4000h to 4004h involves
the pins listed in Table 10–11.

16-Bit-Wide Memory Interface

 10-28

Table 10–11. Example of 8-Bit Data-Type Size and 16-Bit-Wide External Memory

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

STRB0_B3 /A–1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Accessed
Data PinsÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4000h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1000h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D7–0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4001h ÁÁÁÁÁ
ÁÁÁÁÁ
1000h ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
0 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
STRB0_B1 ÁÁÁÁ

ÁÁÁÁ
D15–8

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4002h
ÁÁÁÁÁ
ÁÁÁÁÁ
1000h

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0
ÁÁÁÁ
ÁÁÁÁ

D7–0ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4003h
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

1000h
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D15–8

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

4004h ÁÁÁÁÁ
ÁÁÁÁÁ
1001h ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁ
0 ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
STRB0_B0 ÁÁÁÁ

ÁÁÁÁ
D7–0

Case 5: 16-Bit-Wide Memory With 16-Bit Data-Type Size

When the data-type size is 16 bits, the ’C32 shifts the internal address one bit
to the right before presenting it to the external address pins. In this shift, the
memory interface copies the value of the internal-address A23 to the external-
address pins A23 and A22. Also, the memory interface copies the value of the
internal-address A1 to the external STRBx_B3/A–1 pin. Moreover, the memory
interface activates the STRBx_B1 and STRBx_B0 during accesses.
Figure 10–16 shows a functional diagram of the memory interface for 16-bit-
wide memory with 16-bit data-type size.

16-Bit-Wide Memory Interface

10-29TMS320C32 Enhanced External Memory Interface

Figure 10–16. Functional Diagram for 16-Bit Data-Type Size and 16-Bit External-Memory
Width

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

A23
A22
A21
A20
.
.
.
A2
A1
A0
CS
I/O(7-0)

’C32

.

.

.

D(15-8)
D(7-0)

A23
A22
A21
A20

.

.

.
A2
A1
A0

Memory interface

STRBx logic

ÎÎÎ
ÎÎÎ

A23

ÎÎÎA22ÎÎÎ
ÎÎÎ

A21
ÎÎÎ
ÎÎÎ

A20

ÎÎÎA19

ÎÎA1ÎÎ
ÎÎ

A0

ÎÎÎÎÎ
ÎÎÎÎÎ

STRBx_B1
ÎÎÎÎÎ
ÎÎÎÎÎ

STRBx_B0

ÎÎÎÎÎÎ
ÎÎÎÎÎÎ

STRBx_B3/A–1

’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

For example, reading or writing to memory locations 4000h to 4004h involves
the pins listed in Table 10–12.

Table 10–12. Example of 16-Bit-Wide Memory With 16-Bit Data-Type Size
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STRB0_B3 /A–1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1
ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4001h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2000h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2001h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4003h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2001h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4004h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

2002h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D15–0

16-Bit-Wide Memory Interface

 10-30

Case 6: 16-Bit-Wide Memory with 32-Bit Data-Type Size

When the data type size is 32 bits, the ’C32 does not shift the internal address
before presenting it to the external address pins. In this case, the memory
interface copies the value of the internal address bus to the respective external
address pins. The memory interface also toggles STRBx_B3/A–1 twice to
perform two 16-bit memory accesses. In the consecutive memory accesses,
the memory interface activates STRBx_B1 and STRBx_B0. In summary, the
memory interface seems to add one wait state to the 32-bit data access.
Figure 10–17 depicts a functional diagram of the memory interface for 16-bit
wide memory with 32-bit data type size.

Figure 10–17. Functional Diagram for 32-Bit Data-Type Size and 16-Bit External-Memory
Width

STRBx_B3/A–1

STRBx_B1
STRBx_B0

A24
A23
A22
A21
.
.
.
A3
A2
A1
A0
CS
I/O(7-0)

A24
A23
A22
A21
.
.
.
A3
A2
A1
A0

CS
I/O(7-0)

’C32

A23
A22
A21
A20

.

.

.
A2
A1
A0

D(15-8)
D(7-0)

A23
A22
A21
A20

.

.

.
A2
A1
A0

Memory interface

STRBx logic

’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

toggle

For example, reading or writing to memory locations 4000h to 4004h involves
the pins listed in Table 10–13.

16-Bit-Wide Memory Interface

10-31TMS320C32 Enhanced External Memory Interface

Table 10–13. Example of 16-Bit-Wide Memory With 32-Bit Data-Type Size

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STRB0_B3 /A–1

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Active Strobe Byte Enable

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁ
ÁÁÁÁÁ

4000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4000h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

4001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4001h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4001h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

4002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4002h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4002h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

4003h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4003h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4003h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

4004h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4004h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

4004h ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

STRB0_B0 and STRB0_B1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15–0

8-Bit-Wide Memory Interface

 10-32

10.8 8-Bit-Wide Memory Interface

’C32 memory interface to an 8-bit wide external memory uses STRBx_B3 and
STRBx_B2 pins as additional address pins, A–1 and A–2, respectively, while
using STRBx_B0 as strobe byte-enable pin as shown in Figure 10–18. The
external-memory address pins are connected to the ’C32’s address pins
A21A20...A1A0A–1A–2. In this manner, the ’C32 can read/write a single 32-, 16-,
or 8-bit value from the external 8-bit-wide memory.

Figure 10–18. External Memory Interface for 8-Bit SRAMs

A23
A22
A21
.
.
A1
A0

STRBx_B2/A–2
R/W

A23
.
.

A3
A2

A0
WE
CS

I/O(7-0)

’C32

STRBx_B1
STRBx_B0

D(31-24)
D(23-16)

D(15-8)
D(7-0)

STRBx_B3/A–1 A1

Case 7: 8-Bit-Wide Memory With 8-Bit Data-Type Size

Similarly to case 4, the ’C32 shifts the internal address two bits to the right
before presenting it to the external-address pins when the data type is 8-bit. As
in case 4, the memory interface copies the value of the internal-address A23 to
the external-address pins A23, A22, and A21. But in case 7, the memory interface
also copies the value of the internal-address A1 to the external STRBx_B3/A–1
pin and the value of A0 to the external STRBx_B2/A–2. Moreover, the memory
interface only activates the STRBx_B0 pin during the external memory access.
Figure 10–19 shows a functional diagram of the memory interface for 8-bit-wide
memory with an 8-bit data-type size.

8-Bit-Wide Memory Interface

10-33TMS320C32 Enhanced External Memory Interface

Figure 10–19. Functional Diagram for 8-Bit Data-Type Size and 8-Bit External-Memory
Width

A23
A22
A21
A20
.
.
.
A2

CS
I/O(7-0)

’C32

A23
A22
A21
A20
A19
A18
.
.
.
A0
STRBx_B3/A–1
STRBx_B2/A–2

STRBx_B0

D(7-0)

A23
A22
A21
A20

.

.

.
A2
A1
A0

Memory interface
’C

32
’s

 c
or

e
ad

dr
es

s
bu

s

STRBx
logic

A0
A1

For example, reading or writing to memory locations A04000h to A04004h
involves the pins listed in Table 10–14.

Table 10–14. Example of 8-Bit-Wide Memory With 8-Bit Data-Type Size

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB0_B3 /A–1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB0_B3 /A–2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Active Strobe
Byte Enable

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

E81000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

E81000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

E81000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04003h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

E81000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04004h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

E81001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

8-Bit-Wide Memory Interface

 10-34

Case 8: 8-Bit Wide Memory With 16-Bit Data-Type Size

When the data-type size is 16 bits, the ‘C32 shifts the internal address one bit
to the right before presenting it to the external-address pins. In this shift, the
memory interface copies the value of the internal-address A23 to the external-
address pins A23 and A22. Also, the memory interface copies the value of the
internal-address A0 to the external STRBx_B3/A–1 pin. Furthermore, the
memory interface toggles STRBx_B2/A–2 twice to perform two 8-bit memory
accesses. Moreover, the memory interface activates the STRBx_B0 during
accesses. In summary, the memory interface adds one wait state to the 16-bit
data access. Figure 10–20 shows a functional diagram of the memory inter-
face for 8-bit-wide memory with 16-bit data-type size.

Figure 10–20. Functional Diagram for 16-Bit Data-Type Size and 8-Bit External-Memory
Width

A24
A23
A22
A21
.
.
.

A3
A2
A1
A0
CS

I/O(7–0)

’C32

A23
A22
A21
A20
A19
.
.
.

A1
A0
STRBx_B3/A-1
STRBx_B2/A-2

STRBx_B0

D(7–0)

A23
A22
A21
A20

.

.

.
A2
A1
A0

Memory interface

toggle

’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

STRBx
logic

8-Bit-Wide Memory Interface

10-35TMS320C32 Enhanced External Memory Interface

For example, reading or writing to memory locations A04000h to A04002h
involves the pins listed in Table 10–15.

Table 10–15. Example of 8-Bit-Wide Memory With 16-Bit Data-Type Size

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB0_B3 /A–1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB0_B3 /A–2
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Active Strobe
Byte Enable

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

A04000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D02000h
D02000h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0
STRB1_B0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D7–0
D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

A04001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D02001h
D02001h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1
1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0
STRB1_B0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D7–0
D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

A04002h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D02002h
D02002h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0
STRB1_B0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

D7–0
D7–0

Case 9: 8-Bit-Wide Memory With 32-Bit Data-Type Size

When the data-type size is 32 bits, the ‘C32 does not shift the internal address
before presenting it to the external-address pins. In this case, the memory
interface copies the value of the internal-address bus to the respective external-
address pins. The memory interface also toggles STRBx_B3/A–1 and
STRBx_B2/A–2 to perform four 8-bit memory accesses. In the consecutive
memory accesses, the memory interface activates STRBx_B0. In summary,
the memory interface adds three wait states to the 32-bit data access.
Figure 10–21 shows a functional diagram of the memory interface for 8-bit-
wide memory with 32-bit data-type size.

8-Bit-Wide Memory Interface

 10-36

Figure 10–21. Functional Diagram for 32-Bit Data-Type Size and 8-Bit External-Memory
Width

A24
A23
A22

.A4

A2
A1
A0
CS

I /O(7–0)

’C32

A23
A22
A21
A20

A1

A0

STRBx_B3/A–1

STRBx_B0

D(7–0)

A23
A22
A21
A20

A2
A1
A0

Memory interface

toggle

STRBx
logic

STRBx_B2/A–2
toggle

A25

A3A1

.

.

.

.

.

.

.

.

.

’C
32

’s
 c

or
e

ad
dr

es
s

bu
s

8-Bit-Wide Memory Interface

10-37TMS320C32 Enhanced External Memory Interface

For example, reading or writing to memory locations A04000h to A04001h
involves the pins listed in Table 10–16.

Table 10–16. Example of 32-Bit Data-Type Size and 8-Bit-Wide Memory
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Internal
Address Bus

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

External
Address Pins

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB0_B3 /A–1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

STRB0_B3 /A–2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Active Strobe
Byte Enable

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Accessed
Data Pins

ÁÁÁÁÁ
ÁÁÁÁÁ

A04000h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁA04000h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSTRB1_B0

ÁÁÁÁÁ
ÁÁÁÁÁD7–0ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04000h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04000h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0
ÁÁÁÁÁ
ÁÁÁÁÁ

A04001h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁA04001h

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁSTRB1_B0

ÁÁÁÁÁ
ÁÁÁÁÁD7–0ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04001h
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

A04001h ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

STRB1_B0 ÁÁÁÁÁ
ÁÁÁÁÁ

D7–0

External Ready Timing Improvement

 10-38

10.9 External Ready Timing Improvement

The ready (RDY) timing should relate to the H1 low signal as shown in
Figure 10–22. This is equivalent to the ’C4x ready timing, which increases the
time between valid address and the sampling of RDY. This facilitates the memory
hardware interface by allowing a longer address decode-circuit response time to
generate a ready signal.

Figure 10–22. RDY Timing for Memory Read

RDY

D

A

R/W

STRBx

H1

H3

Data

Address

tsu(RDY)

Do not change the RDY signal during its setup time [tsu(RDY)].

Bus Timing

10-39TMS320C32 Enhanced External Memory Interface

10.10 Bus Timing

This section discusses functional timing of operations on the external memory
bus. Detailed timing specifications are contained in the TMS320C32 Data
Sheet. The timing of STRB0 and STRB1 bus cycles is identical and discussed
in subsection 10.10.1. The abbreviation STRBx is used in references that per-
tain equally to STRB0 and STRB1. The IOSTRB bus cycles are timed differently
and are discussed in subsection 10.10.2.

10.10.1 STRB0 and STRB1 Bus Cycles

All bus cycles comprise integral numbers of H1 clock cycles. One H1 cycle is
defined from one falling edge of H1 to the next falling edge of H1. For full speed
(zero wait-state) accesses on STRB0 and STRB1, writes take two H1 cycles
and reads take one cycle. However, if the read immediately follows a write, the
read takes two cycles. Writes to internal memory take one cycle if no other
accesses to that interface are in progress. The following discussion pertains
to zero wait-state accesses, unless otherwise specified.

The STRBx signal is low for the active portion of both reads and writes (one
H1 cycle). Additionally, before and after the active portions of writes only
(STRBx low), there is a transition of one H1 cycle. During this transition cycle
the following might occur:

� STRBx is high.

� If required, R/W changes state on the rising edge of H1.

� If required, address changes on the rising edge of H1 if the previous H1
cycle performed a write. If the previous H1 cycle performed a read,
address changes on the falling edge of H1.

Figure 10–23 illustrates a zero wait-state read-read-write sequence for STRBx
active. The data is read as late in the cycle as possible to allow for the maximum
access time from address valid. Although external writes take two cycles, writes
to internal memory take one cycle if no other accesses to that interface are in
progress. Similar to typical external interfaces, the R/W signal does not change
until STRB0 and STRB1 are deactivated.

Bus Timing

 10-40

Figure 10–23. Read-Read-Write Sequence for STRBx Active

RDY

D

A

R/W

STRBx

H1

H3

Read Read Write

Figure 10–24 shows a zero wait-state write-write-read sequence for STRBx
active. During back-to-back writes, the data is valid when STRBx changes for the
first write, but for subsequent writes the data is valid when the address changes.

Figure 10–24. Write-Write-Read Sequence for STRBx Active

RDY

D

A

R/W

STRBx

H1

H3

Write Write Read

Bus Timing

10-41TMS320C32 Enhanced External Memory Interface

Figure 10–25 shows a one wait-state read sequence and Figure 10–26 shows
the write sequence for STRBx active. On the first H1 cycle, RDY is high; therefore,
the read or write sequence is extended for one extra cycle. On the second H1
cycle, RDY is low and the read or write sequence is terminated.

Figure 10–25. One Wait-State Read Sequence for STRBx Active

STRBx

RDY

D

A

R/W

H1

H3

Extra cycle

Read

Bus Timing

 10-42

Figure 10–26. One Wait-State Write Sequence for STRBx Active

RDY

D

A

R/W

STRBx

H1

H3

Extra cycle

Write

10.10.2 IOSTRB Bus Cycles

In contrast to STRB0 and STRB1 bus cycles, IOSTRB full speed (zero wait-
state) reads and writes consume two H1 cycles. During these cycles, the
IOSTRB signal is low from the rising edge of the first H1 cycle to the rising edge
of the second H1 cycle. Also, the address changes on the falling edge of the
first H1 cycle and R/W changes state on the falling edge of H1. This provides
a valid address to peripherals that may change their status bits when read or
written while IOSTRB is active. Moreover, the IOSTRB signal is high between
IOSTRB read and write cycles.

Bus Timing

10-43TMS320C32 Enhanced External Memory Interface

Figure 10–27 illustrates a zero wait-state read and write sequence for IOSTRB
active. During writes, the data is valid when IOSTRB changes.

Figure 10–27. Zero Wait-State Read and Write Sequence for IOSTRB Active

WriteRead

IOSTRB

RDY

D

A

R/W

H1

H3

Figure 10–28 depicts a one wait-state read sequence for IOSTRB active.
Figure 10–29 shows a one wait-state write sequence for IOSTRB active. For
each wait-state added, IOSTRB, R/W, and A are extended for one extra clock
cycle. Writes hold the data on the bus for one extra clock cycle. RDY is sampled
on each extra cycle and the sequence is terminated when RDY is low.

Bus Timing

 10-44

Figure 10–28. One Wait-State Read Sequence for IOSTRB Active

IOSTRB

RDY

D

A

R/W

H1

H3

Extra cycle

Read

Figure 10–29. One Wait-State Write Sequence for IOSTRB Active

IOSTRB

RDY

D

A

R/W

H1

H3

Extra cycle

Write

Figure 10–30 and Figure 10–31 illustrate the transitions between STRBx
reads and IOSTRB writes and reads, respectively. In these transitions, the ad-
dress changes on the falling edge of the H1 cycle.

Bus Timing

10-45TMS320C32 Enhanced External Memory Interface

Figure 10–30. STRBx Read and IOSTRB Write

I/O WriteRead

STRB0,1

IOSTRB

RDY

D

A

R/W

H1

H3

Figure 10–31. STRBx Read and IOSTRB Read

I/O readRead

STRB0,1

IOSTRB

RDY

D

A

R/W

H1

H3

Bus Timing

 10-46

Figure 10–32 and Figure 10–33 illustrate the transitions between STRBx
writes and IOSTRB writes and reads, respectively. In these transitions, the
address changes on the falling edge of the H3 cycle.

Figure 10–32. STRBx Write and IOSTRB Write

Write I/O write

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

Figure 10–33. STRBx Write and IOSTRB Read

Write

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

I/O read

Bus Timing

10-47TMS320C32 Enhanced External Memory Interface

Figure 10–34 through Figure 10–37 show the transitions between IOSTRB
writes/reads and STRBx writes/reads. In these transitions, the address
changes on the rising edge of the H3 cycle.

Figure 10–34. IOSTRB Write and STRBx Write

I/O write Write

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

Bus Timing

 10-48

Figure 10–35. IOSTRB Write and STRBx Read

I/O Write Read

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

Figure 10–36. IOSTRB Read and STRBx Write

I/O read Write

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

Bus Timing

10-49TMS320C32 Enhanced External Memory Interface

Figure 10–37. IOSTRB Read and STRBx Read

ReadI/O Read

STRBx

IOSTRB

RDY

D

A

R/W

H1

H3

Figure 10–38 through Figure 10–40 illustrate the transitions between reads
and writes.

Bus Timing

 10-50

Figure 10–38. IOSTRB Write and Read

I/O write

IOSTRB

RDY

D

A

R/W

H1

H3

I/O read

Figure 10–39. IOSTRB Write and Write

I/O writeI/O write

IOSTRB

RDY

D

A

R/W

H1

H3

Bus Timing

10-51TMS320C32 Enhanced External Memory Interface

Figure 10–40. IOSTRB Read and Read

I/O ReadI/O Read

IOSTRB

RDY

D

A

R/W

H1

H3

10.10.3 Inactive Bus States

Figure 10–41 and Figure 10–42 show the signal states when a bus becomes
inactive after an IOSTRB or STRBx, respectively. The strobes (STRB0,
STRB1, IOSTRB, and R/W) are deasserted going to a high level. The address
bus preserves the last value and the ready signal (RDY) is ignored.

Figure 10–41. Inactive Bus States Following IOSTRB Bus Cycle

I/O Write

IOSTRB

RDY

D

A

R/W

H1

H3

Bus inactive RDY ignored

Bus Timing

 10-52

Figure 10–42. Inactive Bus States Following STRBx Bus Cycle

I/O write

STRBx

RDY

D

A

R/W

H1

H3

Bus inactive RDY ignored

11-1

Using the TMS320C31 and
TMS320C32 Boot Loaders

The ’C31 and ’C32 have on-chip boot loaders that can load and execute pro-
grams received from a host processor, standard memory devices (including
EPROM), or via serial port.

Topic Page

11.1 TMS320C31 Boot Loader 11-2.

11.2 TMS320C32 Boot Loader 11-14.

Chapter 11

TMS320C31 Boot Loader

 11-2

11.1 TMS320C31 Boot Loader

This section describes how to use the ’C31 microcomputer/boot loader (MCBL/
MP) function. This feature is unique to the ’C31 and ’C32, and is not available
on the ’C30 devices.

11.1.1 TMS320C31 Boot-Loader Description

The boot loader lets you load and execute programs that are received from a
host processor, inexpensive EPROMs, or other standard memory devices. The
programs to be loaded reside in one of three memory-mapped areas identified
as Boot 1, Boot 2, and Boot 3 (see the shaded areas of Figure 4–2 on page 4-6),
or they are received by means of the serial port.

The boot loader supports user-definable byte, half-word, and word-data formats,
as well as 32-bit fixed-burst loads from the ’C31 serial port. See Section 12.2,
Serial Ports, on page 12-15 for a detailed description of the serial-port operation.

The boot-loader code starts at location 0x45 in the on-chip ROM. The source
code is supplied in Appendix B.

11.1.2 TMS320C31 Boot-Loader Mode Selection

The ’C31 boot loader functions as a memory boot loader or a serial-port boot
loader. The boot-loader function is selected by resetting the processor while
driving the MCBL/MP pin high. Use interrupt pins INT3 – INT0 to select the boot-
load operation. Figure 11–1 shows the flow of this operation, which depends on
the mode selected (external memory or serial boot).

� The memory boot loader supports user-definable byte, half-word, and full-
word data formats, allowing the flexibility to load a source program from
memories having widths of 8-, 16-, or 32 bits. The source program must
reside in one of three memory locations as listed in Table 11–1.
Figure 11–2 shows the memory boot-loader flow.

� The serial-port boot loader supports 32-bit fixed-burst transfers, with
externally generated serial-port clock and frame-sync signals. The format
of the incoming data stream is similar to that of the memory boot loader,
except the source memory width and memory configuration word are
omitted. Figure 11–3 shows the serial-port boot-loader flow.

TMS320C31 Boot Loader

11-3Using the TMS320C31 and TMS320C32 Boot Loaders

Table 11–1. Boot-Loader Mode Selection

INT0 INT1 INT2 INT3 Loader Mode Memory Addresses

0 1 1 1 External memory Boot 1 address 0x001000

1 0 1 1 External memory Boot 2 address 0x400000

1 1 0 1 External memory Boot 3 address 0xFFF000

1 1 1 0 32-bit serial Serial port 0

Figure 11–1.TMS320C31 Boot-Loader Mode-Selection Flowchart

No

Yes

No

Yes

MCBL/MP = 1
Reset

Begin

Serial-port load

No

Yes

Yes

No

register
 bit INT3
 set?

register
bit INT0
 set?

register
bit INT1
 set?

register
bit INT2
 set?

Memory load
from 1000h

Memory load
from 400000h

Memory load
from FFF000h

Is

Is

Is

Is

TMS320C31 Boot Loader

 11-4

11.1.3 TMS320C31 Boot-Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 11–2 shows the structure of the source program.

1) Select the boot loader by resetting the ’C31 while driving the MCBL/MP
pin high and the corresponding INT3–INT0 pin low. The MCBL/MP must
stay high during boot loading, but can be changed anytime after boot
loading has terminated. No reset is necessary when changing the
INT3–INT0 pin, as long as the ’C31 is not accessing the overlapping
memory (0h–FFFh) during this transition (see Section 11.1.6). The
INT3–INT0 pin can be driven low anytime after deasserting the RESET
pin (driven low and then high).

2) The status of the interrupt flag (IF) register’s INT3–INT0 bit fields dictate
the boot-loading mode. The bits are polled in the order described in the
flow chart in Figure 11–1.

3) If only the IF register’s INT3 bit field is set, the boot loader configures the
serial port for 32-bit fixed-burst mode reads with an externally generated
serial-port clock and FSR. Then, it proceeds to boot load the source pro-
gram from the serial port. The transferred data-bit order supplied to the
serial port must begin with the most significant bit (MSB) and end with the
least significant bit (LSB). Figure 11–3 depicts the boot-loader serial-port
flow.

4) Otherwise, the boot loader attempts a memory boot load. Figure 11–2 shows
the boot-loader memory flow. If the IF register’s INT0 bit field is set, the
source program is loaded from memory location 1000h. If the IF register’s
INT1 bit field is set, the source program is loaded from memory location
400000h. If the IF register’s INT2 bit field is set, the source program is loaded
from memory location FFF000h.

The memory boot-load source program has a header indicating the boot
memory width and memory configuration control word. This word is copied
into the STRB control register to configure the external primary bus interface.

5) After reading the header, the boot loader copies the source-program blocks.
The source-program blocks have two entries preceding the source-program-
block data. The first entry in the source-program block indicates the size of
the block. A block size of zero signals the end of the source program code.
The second entry indicates the address where the block is to be loaded. The
boot loader cannot load the source program to any memory address below
1000h, unless the address decode logic is remapped.

6) The boot loader branches to the destination address of the first source
block loaded and begins program execution.

TMS320C31 Boot Loader

11-5Using the TMS320C31 and TMS320C32 Boot Loaders

Figure 11–2.Boot-Loader Memory-Load Flowchart

block loaded
address of first

Branch to destination

Load next block size

Block size –1

Transfer data from
source to
destination

Yes

Yes

address
Load destination

Load block size

control word
configuration
Set memory

Determine mode
8, 16, or 32

boot 3
boot 2, or

boot 1,
Branch to address

No

No

Block size = 0?

Begin program execution

Memory load

End of source
program code

(block size = 0)?

TMS320C31 Boot Loader

 11-6

Figure 11–3.Boot-Loader Serial-Port Load-Mode Flowchart

Begin program execution

Block size –1

Transfer data from
serial port to

destination address

port input
Wait for serial

Load destination
address

port input
Wait for serial-

Block size = 0?

No

Yes

block loaded
address of first

Branch to destination

Yes

No

Block size = 0?

TMS320C31 Boot Loader

11-7Using the TMS320C31 and TMS320C32 Boot Loaders

11.1.4 TMS320C31 Boot Data Stream Structure

Table 11–2 shows the data stream structure. The data stream is composed of
a header of 1 (serial-port load) or 2 (memory load) words and one or more blocks
of source data. The boot loader uses this header to determine the physical
memory width where the source program resides (memory load) and to configure
the primary bus interface before source program boot load. The blocks of
source data have two entries in addition to the raw data. The first entry in this
block indicates the size of the block. The second entry in this block indicates the
memory address where the boot loader copies this source block. Words 5
through n of the shaded entries in Table 11–2 contain the source data for the first
block.

TMS320C31 Boot Loader

 11-8

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 11–2. Source Data Stream Structure

ÁÁÁÁ
ÁÁÁÁ

Word †ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Content ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Valid Data Entries

ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory width (8, 16, or 32 bits) where source program residesÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

8h, 10h, or 20h, respectively

ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Value to set the STRB control register ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

See subsection 10.7

3 Size of first data block. The block size is the number of 32-bit
words in the data block. A 0 in this entry signifies the end of the
source data stream

0 ≤ size ≤ 224

4 Destination address to load the first block A valid ’C31 24-bit address

5 First word of first block A ’C31 valid instruction or any 32-bit
wide data value (LSB first)

.

.

.

.

.

.

.

.

.

n Last word of first block A ’C31 valid instruction or any 32-bit
wide data value

.

.

.

.

.

.

.

.

.

m Size of last data block. The block size is the number of 32-bit
words in the data block. If the next word following this block is
not 0, another block is loaded.

0 ≤ size ≤ 224

m + 1 Destination address to load the last block A valid ’C31 24-bit address

m + 2 First word of last block A ’C31 valid instruction or any 32-bit
wide data value (LSB first)

.

.

.

.

.

.

.

.

.

j Last word of last source block

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

j + 1 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Zero word. If more than one source block was read, word j
would be the last word of the last block. Each block consists
of header and data portions. The block’s header is shaded
darker than the block’s data section.

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

0h

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† Words 1 and 2 do not exist in serial-port boot load since the source program does not reside in memory.

Each source block of data can be loaded to different memory locations. Each
block specifies its own size and destination address. The last source block of
the data stream is appended with a zero word.

TMS320C31 Boot Loader

11-9Using the TMS320C31 and TMS320C32 Boot Loaders

11.1.4.1 Examples of External TMS320C31 Memory Loads

Table 11–3, Table 11–4, and Table 11–5 show memory images for byte-wide,
16-bit-wide, and 32-bit-wide configured memory (see Figure 4–2 on page 4-6).

These examples assume the following:

� An INT0 signal was detected after reset was deasserted (signifying an
external memory load from boot 1).

� The source program header resides at memory location 0x1000 and
defines the following:

� Boot memory-type EPROMs that require two wait states and SWW = 11

� A loader destination address at the beginning of the ’C31 internal
RAM block 1

� A single block of memory that is 0x1FF in length

Table 11–3. Byte-Wide Configured Memory

Address Value Comments

0x1000 0x08 Memory width = 8 bits

0x1001 0x00

0x1002 0x00

0x1003 0x00

0x1004 0x58 Memory type = SWW = 11, WCNT = 2

0x1005 0x10

0x1006 0x00

0x1007 0x00

0x1008 0xFF Program block size in words = 0x1FF

0x1009 0x01

0x100A 0x00

0x100B 0x00

0x100C 0x00 Program load starting address = 0x809C00

0x100D 0x9C

0x100E 0x80

0x100F 0x00

TMS320C31 Boot Loader

 11-10

Table 11–4. 16-Bit-Wide Configured Memory

Address Value Comments

0x1000 0x10 Memory width = 16

0x1001 0x0000

0x1002 0x1058 Memory type = SWW = 11, WCNT = 2

0x1003 0x0000

0x1004 0x1FF Program block size in words = 0x1FF

0x1005 0x0000

0x1006 0x9C00 Program load starting address = 0x809C00

0x1007 0x0080

Table 11–5. 32-Bit-Wide Configured Memory

Address Value Comments

0x1000 0x00000020 Memory width = 32

0x1001 0x00001058 Memory type = SWW = 11, WCNT = 2

0x1002 0x000001FF Program block size in words = 0x1FF

0x1003 0x00809C00 Program load starting address = 0x809C00

After reading the header, the loader transfers 0x IFF 32-bit words, beginning at
a specified destination address 0x 809C00. Code blocks require the same
byte and half-word ordering conventions. The loader can also load multiple
code blocks at different address destinations.

After loading all code blocks, the boot loader branches to the destination address
of the first block loaded and begins program execution. Consequently, the first
code lock loaded is a start-up routine to access the other loaded programs.

It is assumed that at least one block of code is loaded when the
loader is invoked. Initial loader invocation with a block size of
0x00000000 produces unpredictable results.

TMS320C31 Boot Loader

11-11Using the TMS320C31 and TMS320C32 Boot Loaders

11.1.4.2 Serial-Port Loading

Boot loads, by way of the ’C31 serial port, are selected by driving the INT3 pin
active (low) following reset. The loader automatically configures the serial port
for 32-bit fixed-burst-mode reads. It is interrupt-driven by the frame synchro-
nization receive (FSR) signal. You cannot change this mode for boot loads.
Your hardware must generate the serial-port clock and FSR externally.

As with memory loads, a header must precede the actual program to be loaded.
However, you need only supply the block size and destination address because
the loader and your hardware have predefined serial-port speed and data format
(that is, skip data words 0 and 1).

The transferred data-bit order must begin with the MSB and end with the LSB.

11.1.5 Interrupt and Trap-Vector Mapping

Unlike the microprocessor mode, the microcomputer/boot-loader (MCBL)
mode uses a dual-vectoring scheme to service interrupt and trap requests. Dual
vectoring was implemented to ensure code compatibility with future versions of
’C3x devices.

In a dual-vectoring scheme, branch instructions to an address, rather than
direct-interrupt vectoring, are used. The normal interrupt and trap vectors are
defined to vector to the last 63 locations in the on-chip RAM, starting at address
809FC1h. When the loader is invoked, the interrupt vector table is remapped
by the processor to the last 63 locations in RAM block 1 of the ’C31. These
locations are assumed to contain branch instructions to the interrupt source
routines.

Make sure that these locations are not inadvertently overwritten by
loaded program or data values.

Table 11–6 shows the MCBL/MP mode interrupt and trap instruction memory
maps.

TMS320C31 Boot Loader

 11-12

Table 11–6. TMS320C31 Interrupt and Trap Memory Maps

Address Description

809FC1 INT0

809FC2 INT1

809FC3 INT2

809FC4 INT3

809FC5 XINT0

809FC6 RINT0

809FC7 XINT1 (Reserved)

809FC8 RINT1 (Reserved)

809FC9 TINT0

809FCA TINT1

809FCB DINT0

809FCC–809FDF Reserved

809FE0 TRAP0

809FE1 TRAP1

• •

• •

• •

809FFB TRAP27

809FFC–809FFF Reserved

TMS320C31 Boot Loader

11-13Using the TMS320C31 and TMS320C32 Boot Loaders

11.1.6 TMS320C31 Boot-Loader Precautions

The boot loader builds a one-word-deep stack, starting at location 809801h.

Avoid loading code at location 809801h.

The interrupt flags are not reset by the boot-loader function. If pending interrupts
are to be avoided when interrupts are enabled, clear the IF register before
enabling interrupts.

The MCBL/MP pin must remain high during the entire boot-loader execution,
but it can be changed subsequently at any time. The ’C31 does not need to
be reset after the MCBL/MP pin is changed. During the change, the ’C31 must
not access addresses 0h–FFFh. The memory space 0h–FFFh will be mapped
to external memory three clock cycles after changing the MCBL/MP pin.

TMS320C32 Boot Loader

 11-14

11.2 TMS320C32 Boot Loader

This section describes how to use the ’C32 microcomputer/boot loader
(MCBL/MP) functions.

11.2.1 TMS320C32 Boot-Loader Description

The ’C32 boot loader is an enhanced version of that found in the ’C31. The boot
loader can load and execute programs received from a host processor through
standard memory devices (including EPROM), with and without handshake,
or through the serial port. The ’C32 boot loader supports 16- and 32-bit program
external memory widths, as well as 8-, 16-, and 32-bit data-type sizes and
external memory widths.

The programs to be loaded reside in one of three memory-mapped areas identi-
fied as Boot 1, Boot 2, and Boot 3 (see shaded areas of Figure 4–3 on page 4-6)
or they are received by means of the serial port.

The boot-loader code starts at location 0x45 in the on-chip ROM. The source
code is supplied in Appendix C.

11.2.2 TMS320C32 Boot-Loader Mode Selection

The ’C32 boot loader functions as a memory boot loader, memory boot loader
with handshake, or a serial-port boot loader. The boot-loader mode selection
is determined by the status of the INT3–INT0 pins immediately following reset.
Table 11–7 lists the boot-loader modes.

� The memory boot loader supports user-definable byte, half-word, and full-
word data formats, allowing the flexibility to load a source program from
memories having widths of 8, 16, and 32 bits with or without handshaking.
The source programs to be loaded reside in one of the three memory loca-
tions: 1000h, 810000h, and 900000h (see Table 11–7).

� The memory boot-load handshaking mode uses XF0 as a data-acknowledge
signal and XF1 as a data-ready signal.

� The serial-port boot loader supports 32-bit fixed-burst loads from the ’C32
serial port with an externally generated serial-port clock and frame sync
signals. The format is similar to that of the memory boot loader, except that
the source memory width is omitted.

TMS320C32 Boot Loader

11-15Using the TMS320C31 and TMS320C32 Boot Loaders

Table 11–7. Boot-Loader Mode Selection

ÁÁÁ
ÁÁÁ

INT0
ÁÁÁ
ÁÁÁ

INT1
ÁÁÁÁ
ÁÁÁÁ

INT2
ÁÁÁ
ÁÁÁ

INT3
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot Loader Mode
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Source Program Location
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁÁ
ÁÁÁÁ1

ÁÁÁ
ÁÁÁ1
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁExternal memory

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁBoot 1 address 1000hÁÁÁ

ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External memory
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot 2 address 810000hÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External memory
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot 3 address 900000h

ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

32-bit fixed-burst serial ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Serial Port

ÁÁÁ
ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ
ÁÁÁ

1ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External memory with handshake ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot 1 address 1000h,
XF0 and XF1 used in handshaking

ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External memory with handshake ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot 2 address 810000h,
XF0 and XF1 used in handshakingÁÁÁ

ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

0
ÁÁÁ
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External memory with handshake
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Boot 3 address 900000h,
XF0 and XF1 used in handshaking

11.2.3 TMS320C32 Boot-Loading Sequence

The following is the sequence of events that occur during the boot load of a
source program. Table 11–2 shows the structure of the source program.

1) Select the boot loader by resetting the ’C32 while driving the MCBL/MP pin
high and the corresponding INT3–INT0 pins low. The MCBL/MP must stay
high during boot loading, but can be changed anytime after boot loading has
terminated. No reset is necessary when changing the INT3–INT0 pin, as
long as the ’C32 is not accessing the overlapping memory (0h–FFFh) during
this transition. In nonhandshake mode, one of the INT3–INT0 pins can be
driven low any time after deasserting the RESET pin (driven low and then
high). While in handshake mode, two interrupt pins must be asserted before
deasserting the RESET pin.

2) The status of the IF register’s INT3–INT0 bit fields dictates the boot-loading
mode. The bits are polled in the order described in the flowchart in
Figure 11–4.

3) If only the IF register’s INT3 bit field is set, the boot loader configures the
serial port for 32-bit fixed burst mode reads with an externally generated
serial-port clock and FSR. Then, it proceeds to boot load the source pro-
gram from the serial port. A header indicating the STRB0, STRB1, and
IOSTRB control registers precedes the actual program (see Table 11–2).
These header values are loaded into the corresponding locations at the
completion of the boot-load operation. The transferred data-bit order sup-
plied to the serial port must begin with the most significant bit (MSB) and
end with the least significant bit (LSB). Figure 11–5 depicts the boot-loader
serial-port flow.

TMS320C32 Boot Loader

 11-16

4) Otherwise, the boot loader attempts a memory boot load. Figure 11–6
shows the boot-loader memory flow. If the IF register’s INT0 bit field is set,
the source program is loaded from memory location 1000h. If the IF regis-
ter’s INT1 bit field is set, the source program is loaded from memory location
810000h. If the IF register’s INT2 bit field is set, the source program is
loaded from memory location 900000h. After determining the memory loca-
tion of the source program, the boot loader checks INT3 bit field in the IF
register. If this bit is set, all data transfers are performed with synchronous
handshake. The handshake protocol uses XF0 as a data-acknowledge and
XF1 as a data-ready signals. ’C32’s XF0 is an output pin while the XF1 is
an input pin. Figure 11–7 shows the handshake data-transfer operation.

The data-transfer operation occurs as follows:

a) The ’C32 boot loader waits until the host sets XF1 low to read in the
data. While the ’C32 waits for XF1 to drop low, the IACK pin pulses
until XF1 is low. Setting XF1 low communicates to the ’C32 that the
data is valid. The IACK pulse indicates that the ’C32 is waiting for data.

b) The boot loader sets XF0 low after reading the data value. Dropping
XF0 acknowledges to the host that the data was read.

c) The host sets XF1 high to inform the ’C32 that the data is no longer valid.

d) The ’C32 terminates the transfer by setting XF0 high.

The memory boot-load source program has a header indicating the boot
memory width and the contents of the STRB0, STRB1, and IOSTRB control
registers (see Table 11–2).

5) After reading the header, the boot loader copies the source-program
blocks. The source-program blocks have three entries preceding the
source-program-block data. The first entry in the source-program block
indicates the size of the block, the second entry indicates the address where
the block is to be loaded, while the third entry contains the destination-
memory strobe including a pointer that identifies the destination-memory
strobe (STRB0, STRB1, or IOSTRB) and a value that describes the strobe
configuration for the memory width and data-type size. If the destination
memory is internal, the third entry should contain a zero. The boot loader
cannot load the source program to any memory address below 1000h,
unless the address decode logic is remapped.

6) Once all the program blocks are loaded into their respective address loca-
tions with the given data-type sizes, the boot loader sets the IOSTRB,
STRB0, and STRB1 control registers to the values read at the beginning
of the boot-load process.

7) The boot loader branches to the destination address of the first source
block loaded and begins program execution.

TMS320C32 Boot Loader

11-17Using the TMS320C31 and TMS320C32 Boot Loaders

Figure 11–4.TMS320C32 Boot-Loader Mode-Selection Flowchart

No

Yes

No

Yes

MCBL/MP = 1
Reset

Begin

Serial-port load

No

Yes

Yes

No

register bit
INT3 set?

register bit
INT1 set?

register bit
INT0 set?

register bit
INT2 set?

Memory load
from 81000h

Memory load
from 1000h

Memory load
from 900000h

Is

Is

Is

Is

TMS320C32 Boot Loader

 11-18

Figure 11–5.Boot-Loader Serial-Port Load Flowchart

According to the destination
address, set corresponding
STRB control register data-

type size field

Transfer one word from
serial port to destination

address

Branch to destination
address of first block

loaded

End of source
program code

(block size = 0)?

Serial-port load

Yes

No

Set up serial port for
32-bit fixed-burst mode

Read IOSTRB control word

Wait for serial-port Input

Wait for serial-port Input

Read STRB0 control word

Wait for serial-port Input

Read STRB1 control word

Wait for serial-port Input

Load block size

Wait for serial-port input

Set STRB0, STRB1, and
IOSTRB control registers

Load destination address

Wait for serial-port input

Read destination strobe
control word

Wait for serial-port input

Yes

No

Begin program execution

End of source
program code

(block size = 0)?

TMS320C32 Boot Loader

11-19Using the TMS320C31 and TMS320C32 Boot Loaders

Figure 11–6.Boot-Loader Memory-Load Flowchart

End of source
program code

(block size = 0)?

End of source
program code

(block size = 0)?

Set STRB0, STRB1, and
IOSTRB control registers
to the values read at the

beginning of the load

Transfer data source to
destination address

Read destination strobe
control word

Read destination address

Read STRB0 control
register

Read IOSTRB control
register

Read memory width:
8, 16, or 32 bits

Determine boot address:
Boot 1, Boot 2, or Boot 3

Read STRB1 control
register

According to the destination
address, set corresponding
STRB control register to the

previously read value

Is
IF register

bit field INT3
set
?

Memory load

Yes

No
Enable

handshake mode

Read block size

Yes

No

Yes

No

Branch to destination
address of first block

loaded

Begin program execution

TMS320C32 Boot Loader

 11-20

Figure 11–7.Handshake Data-Transfer Operation

Validdata Validdata

i ii iii iv

XF1

XF0

D31-0

IACK

11.2.4 TMS320C32 Boot Data Stream Structure

Table 11–8 shows the data stream structure. The data stream is composed of
a header of three (serial-port load) or four (memory load) words and one or
more blocks of source data. The boot loader uses this header to determine the
physical memory width where the source program resides (memory load) and
to configure the STRBs after completion of source program boot load. The
blocks of source data have three entries in addition to the raw data. The first
entry in this block indicates the size of the block. The second entry in this block
indicates the memory address where the boot loader copies this source block.
The third entry contains the destination memory strobe configuration including
memory width and data-type size. This allows the boot loader to copy and store
8-, 16-, or 32-bit data values into 8-, 16-, or 32-bit wide memory. Words 8
through n of the shaded entries in Table 11–8 contain the source data for the
first block.

TMS320C32 Boot Loader

11-21Using the TMS320C31 and TMS320C32 Boot Loaders

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 11–8. Source Data Stream Structure
ÁÁÁ
ÁÁÁ

Word †ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Content ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Valid Data Entries
ÁÁÁ
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Memory width (8, 16, or 32 bits) where source program
resides

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

8h, 10h, or 20h, respectively

ÁÁÁ
ÁÁÁ
ÁÁÁ

2
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Value to set the IOSTRB control register at end of boot loader
process

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

See Section 10.7 on page 10-26

ÁÁÁ
ÁÁÁ
ÁÁÁ

3
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Value to set the STRB0 control register at end of boot loader
process

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

See Section 10.3.1 on page 10-7

ÁÁÁ
ÁÁÁ
ÁÁÁ

4
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Value to set the STRB1 control register at end of boot loader
process

ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

See Section 10.6 on page 10-20

5 Size of the first data block. The block size is the number of
words in the data block (word length is specified by the data-
type size). A 0 in this entry signifies the end of the source
data stream.

0 ≤ size ≤ 224

6 Destination address to load the first block A valid ’C32 24-bit address

7 First block destination memory width and data-type size in
the format given in the Valid Data Entries column.

SSSSSS6xh‡

8 First word of first block A ’C32 valid instruction or any 8-,
16-, or 32-bit wide data value

.

.

.

.

.

.

.

.

.

n Last word of first block A ’C32 valid instruction or any 8-,
16-, or 32-bit wide data value

.

.

.

.

.

.

.

.

.

m Size of the last data block. The block size is the number of
words in the data block (word length is specified by the
data-type size). If the next word following this block is not 0,
another block is loaded.

0 ≤ size ≤ 224

m + 1 Destination address to load the last block A valid ’C32
24-bit address

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† Word 1 does not exist in serial-port boot load since the source program does not reside in memory.
‡ The SSSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies

the strobe as follows: 0 for IOSTRB, 4 for STRB0, and 8 for STRB1. SSSSSS6xh is cleared to 0 when loading the entire field
into internal memory.

TMS320C32 Boot Loader

 11-22

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Table 11–8. Source Data Stream Structure (Continued)
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Valid Data EntriesÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ContentÁÁ
ÁÁ

ÁÁÁÁ
ÁÁÁÁ

Word †

m + 2 Last block destination memory width and data-type size in
the format given in the Valid Data Entries column.

SSSSSS6xh‡

m + 3 First word of last block. A ’C32 valid instruction or any 8-,
16-, or 32-bit wide data value

.

.

.

.

.

.

.

.

.
j Last word of last source block

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

j + 1 ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Zero word. Note that if more than one source block was read,
word j shown above would be the last word of the last block.
Each block consists of header and data portions. The block’s
header is shaded darker than the block’s data section.

ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

0h

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

† Word 1 does not exist in serial-port boot load since the source program does not reside in memory.
‡ The SSSSSS hexadecimal digits refer to the lower 24 bits of the strobe control register. The x hexadecimal digit identifies

the strobe as follows: 0 for IOSTRB, 4 for STRB0, and 8 for STRB1. SSSSSS6xh is cleared to 0 when loading the entire field
into internal memory.

Each source block can be loaded into a different memory location. Each block
specifies its own size and destination address. The last source block of the
data stream is appended with a zero word. Because the ’C32’s STRBs can be
configured to support different external memory widths and data-type sizes,
each source block specifies its data-type size. The external memory width is
set when the boot loader reads the STRBx control register values in the source
data stream header.

To build a ’C32 boot data stream with the HEX30 utility provided with the
TMS320 floating-point code-generation tools, use the following steps:

� Compile/assemble code with –v32 switch using v4.7 or later of the
TMS320 floating-point C compiler/assembler. If the code-generation tools
are invoked with CL30 and –z switch, include –v32 switch in the linker
command file.

� Link as usual.

� Run Hex30 utility version 4.7 or later. The –v32 switch used in the compiler/
assembler will create a header in the COFF file, identifying it as a ’C32 for
the Hex30.

TMS320C32 Boot Loader

11-23Using the TMS320C31 and TMS320C32 Boot Loaders

11.2.5 Boot-Loader Hardware Interface

The hardware interface for the memory boot load uses the STRBX_B3 through
STRBX_B0 pins as strobe byte-enable pins (see Figure 11–8). The hardware
interface is independent of the boot source memory width . This interface
is identical to the 32-bit-wide memory interface described in Case 2, in Section
10.6 on page 10-20. For 16-bit memory widths, remove the two left-most
memory devices of Figure 11–8. For 8-bit memory widths, remove all but the
right-most of the memory devices of Figure 11–8.

Figure 11–8. External Memory Interface for Source Data Stream Memory Boot Load

’C32

STRBX_B3
STRBX_B2
STRBX_B1
STRBX_B0

D(31–24)
D(23–16)

D(15–8)
D(7–0)

I/O(7-0)

A23
A22
A21
A20

A2
A1
A0

. .
 .

. .
 .

A23
A22
A21
A20

A2
A1
A0

. .
 .

CS
I/O(7-0)

. .
 .

A23
A22
A21
A20

A2
A1
A0

. .
 .

CS
I/O(7-0)

. .
 .

A23
A22
A21
A20

A2
A1
A0

. .
 .

CS
I/O(7-0)

. .
 .

A23
A22
A21
A20

A2
A1
A0

. .
 .

CS

16
–b

it
w

id
e

E
P

R
O

M

32
–b

it
w

id
e

E
P

R
O

M

8–
bi

t w
id

e
E

P
R

O
M

11.2.6 TMS320C32 Boot-Loader Precautions

The interrupt flags are not reset by the boot-loader function. If pending interrupts
are to be avoided when interrupts are enabled, clear the IF register before enabling
interrupts.

The MCBL/MP pin should remain high during the entire boot-loading execution,
but it can be changed subsequently at any time. The ’C32 does not need to be
reset after the MCBL/MP pin is changed. During the change, the ’C32 should
not access addresses Oh–FFh. The memory space Oh–FFFh is mapped to
external memory three clock cycles after changing the MCBL/MP pin.

TMS320C32 Boot Loader

 11-24

The ’C32 boot loader uses the following peripheral memory-mapped registers
as a temporary stack:

� Timer0 counter register (808024h)
� Timer0 period register (808028h)
� DMA0 source address register (808004h)
� DMA0 destination address register (808006h)
� DMA0 transfer counter register (808008h)

These memory-mapped registers are not reset by the boot-loading process.
Before using these peripherals, reprogram these registers with the appropriate
values.

12-1

Peripherals

The ’C3x features two timers, a serial port (two serial ports for the ’C30), and
an on-chip direct memory access (DMA) controller (2-channel DMA controller
on the ’C32). These peripheral modules are controlled through memory-
mapped registers located on the dedicated peripheral bus.

The DMA controller performs input/output operations without interfering with
the operation of the CPU, making it possible to interface the ’C3x to slow, exter-
nal memories and peripherals, analog-to-digital converters (A/Ds), serial
ports, and so forth, without reducing the computational throughput of the CPU.
The result is improved system performance and decreased system cost.

Topic Page

12.1 Timers 12-2.

12.2 Serial Ports 12-15.

12.3 DMA Controller 12-48.

Chapter 12

Timers

 12-2

12.1 Timers

The ’C3x has two 32-bit general-purpose timer modules. Each timer has two
signaling modes and internal or external clocking. You can use the timer
modules to signal to the ’C3x or the external world at specified intervals or to
count external events. With an internal clock, the timer can signal an external
A/D converter to start a conversion, or it can interrupt the ’C3x DMA controller
to begin a data transfer. The timer interrupt is one of the internal interrupts.
With an external clock, the timer can count external events and interrupt the
CPU after a specified number of events. Each timer has an I/O pin that you can
use as an input clock to the timer, as an output clock signal, or as a general-
purpose I/O pin.

Each timer consists of a 32-bit counter, a comparator, an input clock selector,
a pulse generator, and supporting hardware (see Figure 12–1). A timer counts
the cycles of a timer input clock with the counter register. When that counter
register equals the value stored in the timer-period register, it resets the
counter to 0 and produces a transition in the timer output signal. The timer input
clock can be driven by either half the internal clock frequency of the ’C3x or
an external clock on TCLKx pin.

Figure 12–1. Timer Block Diagram

Period register (31–0)

Comparator
?

Period = counter

Counter (32-bit)

Counter register
(31–0)

Pulse generator

TSTAT

H1/2

External clock

INV

INV

Timer out

32
32

Timers

12-3Peripherals

12.1.1 Timer Pins

Each timer has one pin associated with the timer clock signal (TCLK) pin. This
pin (TCK) is used as a general-purpose I/0 signal, as a timer output, or as an
input for an external clock for a timer. Each timer has a TCLK pin: TCLK0 is
connected to timer0, TCLK1 to timer1.

12.1.2 Timer Control Registers

Three memory-mapped registers are used by each timer:

� Global-control register

The global-control register determines the operating mode of the timer,
monitors the timer status, and controls the function of the I/O pin of the timer.

� Period register

The period register specifies the timer’s signaling frequency.

� Counter register

The counter register contains the current value of the incrementing counter.
You can increment the timer on the rising edge or the falling edge of the
input clock. The counter is zeroed and can cause an internal interrupt
whenever its value equals that in the period register. The pulse generator
generates either of two types of external clock signals: pulse or clock. The
memory map for the timer modules is shown in Figure 12–2.

Timers

 12-4

Figure 12–2. Memory-Mapped Timer Locations

Timer0 global control†

Timer0 counter‡

Timer0 period‡

Timer1 global control†

Timer1 counter‡

Timer1 period‡

808020h

808034h

808024h

808028h

808030h

808038h

‡See Section 12.1.4

†See Section 12.1.3

12.1.3 Timer Global-Control Register

The timer global-control register is a 32-bit register that contains the global and
port control bits for the timer module. Figure 12–3 shows the format of the
timer global-control register. Bits 3–0 are the port control bits; bits
11–6 are the timer global-control bits. At reset, all bits are set to 0 except for
DATIN (which is set to the value read on TCLK). Table 12–1 describes the
timer global-control register bits, their names, and functions.

Figure 12–3. Timer Global-Control Register

31 16 15 12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx TSTAT INV CLKSRC C/P HLD GO xx xx DATIN DATOUT I/O FUNC

R R/W R/W R/W R/W R/W R R/W R/W R/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Timers

12-5Peripherals

Table 12–1. Timer Global-Control Register Bits Summary

Abbreviation
Reset
Value Name Description

FUNC 0 Function Controls the function of TCLK.

If FUNC = 0, TCLK is configured as a general-purpose digital I/O
port.

If FUNC = 1, TCLK is configured as a timer pin.

See section 12.1.6 Timer Operation Modes on page 12-10 for a
description of the relationship between FUNC and CLKSRC.

I/O 0 Input/output If FUNC = 0 and CLKSRC = 0, TCLK is configured as a general-
purpose I/O pin.

If I/O = 0, TCLK is configured as a general-purpose input pin.

If I/O = 1, TCLK is configured as a general-purpose output pin.

DATOUT 0 Data output Drives TCLK when the ’C3x is in I/O port mode. You can use DAT-
OUT as an input to the timer.

DATIN x† Data input Data input on TCLK or DATOUT. A write has no effect.

GO 0 Go Resets and starts the timer counter.

When GO = 1 and the timer is not held, the counter is zeroed and
begins incrementing on the next rising edge of the timer input clock.
The GO bit is cleared on the same rising edge.

GO = 0 has no effect on the timer.

HLD 0 Counter hold
signal

When this bit is 0, the counter is disabled and held in its current
state. If the timer is driving TCLK, the state of TCLK is also held.

The internal divide-by-2 counter is also held so that the counter can
continue where it left off when HLD is set to 1.

You can read and modify the timer registers while the timer is being
held. RESET has priority over HLD. The effect of writing to GO and
HOLD is shown below.

GO HLD Result

0 0 All timer operations are held. No reset is performed
(reset value).

0 1 Timer proceeds from state before write.

1 0 All timer operations are held, including zeroing of the
counter. The GO bit is not cleared until the timer is
taken out of hold.

1 1 Timer resets and starts.

† x = 0 or 1 (set to value read on TCLK)

Timers

 12-6

Table 12–1. Timer Global-Control Register Bits Summary (Continued)

Abbreviation DescriptionName
Reset
Value

C/P 0 Clock/pulse
mode control

When C/P = 1, clock mode is chosen, and the signal-
ing of the TSTAT flag and external output has a 50%
duty cycle.

When C/P = 0, the status flag and external output
will be active for one H1 cycle during each timer
period (see Figure 12–4 on page 12-8).

CLKSRC 0 Clock source This bit specifies the source of the timer clock.

When CLKSRC = 1, an internal clock with a frequen-
cy equal to one-half of the H1 frequency is used to
increment the counter. The INV bit has no effect on
the internal clock source.

When CLKSRC = 0, you can use an external signal
from the TCLK pin to increment the counter. The ex-
ternal clock is synchronized internally, thus allowing
external asynchronous clock sources that do not ex-
ceed the specified maximum allowable external
clock frequency. This is less than f(H1)/2.

See section 12.1.6, Timer Operation Modes, on
page 12-10 for a description of the relationship be-
tween FUNC and CLKSRC.

INV 0 Inverter control
bit

If an external clock source is used and INV = 1, the
external clock is inverted as it goes into the counter.

If the output of the pulse generator is routed to TCLK
and INV = 1, the output is inverted before it goes to
TCLK (see Figure 12–1 on page 12-2).

If INV = 0, no inversion is performed on the input or
output of the timer. The INV bit has no effect, regard-
less of its value, when TCLK is used in I/O port
mode.

TSTAT 0 Timer status bit This bit indicates the status of the timer. It tracks the
output of the uninverted TCLK pin. This flag sets a
CPU interrupt on a transition from 0 to 1. A write has
no effect.

† x = 0 or 1 (set to value read on TCLK)

Timers

12-7Peripherals

12.1.4 Timer-Period and Counter Registers

The 32-bit timer-period register is used to specify the frequency of the timer
signaling. The timer-counter register is a 32-bit register, which is reset to 0
whenever it increments to the value of the period register. Both registers are
set to 0 at reset.

Certain boundary conditions affect timer operation. These conditions are listed
below:

� When the period and counter registers are 0, the operation of the timer is
dependent upon the C/P mode selected. In pulse mode (C/P = 0), TSTAT
is set and remains set. In clock mode (C/P = 1), the width of the cycle is
2/f(H1), and the external clocks are ignored.

� When the counter register is not 0 and the period register = 0, the counter
counts, rolls over to 0, and behaves as described above.

� When the counter register is set to a value greater than the period register,
the counter may overflow when incremented. Once the counter reaches its
maximum 32-bit value (0FFFFFFFFh), it rolls over to 0 and continues.

Writes from the peripheral bus override register updates from the counter and
new status updates to the control register.

12.1.5 Timer Pulse Generation

The timer pulse generator (see Figure 12–1 on page 12-2) can generate several
external signals. You can invert these signals with the INV bit. The two basic
modes are pulse mode and clock mode, as shown in Figure 12–4. In both modes,
an internal clock source f (timer clock) has a frequency of f(H1)/2, and an external-
ly generated clock source f (timer clock) can have a maximum frequency of
f(H1)/2.6. In pulse mode (C/P = 0), the width of the pulse is 1/f(H1).

Timers

 12-8

Figure 12–4. Timer Timing

2/f(H1)
1/f(H1)

1/f(CLKSRC)

period register/f(CLKSRC)

period register/f(CLKSRC)

2 x period register/f(CLKSRC)

(a) TSTAT and timer output (INV = 0) when C/P = 0 (pulse mode)

(b) TSTAT and timer output (INV = 0) when C/P = 1 (clock mode)

1/f(CLKSRC)
2/f(H1)

TINT TINT TINT

TINT TINT

The timer signaling is determined by the frequency of the timer input clock and
the period register. The following equations are valid with either an internal or
an external timer clock:

f(pulse mode) = f(timer clock) / period register

f(clock mode) = f(timer clock) / (2 x period register)

Note: Period register

If the period register equals 0, see Section 12.1.4.

Example 12–1 provides some examples of the TCLKx output when the period
register is set to various values and clock or pulse mode is selected.

Timers

12-9Peripherals

Example 12–1. Timer Output Generation Examples

2H1

2H1
H1

(a) INV = 0, C/P = 0 (pulse mode)
timer period = 1
Also,

4H1
H1

(b) INV = 0, C/P = 0 (pulse mode)
timer period = 2

6H1
H1

(c) INV = 0, C/P = 0 (pulse mode)
timer period = 3

4H1

(d) INV = 0, C/P = 1 (clock mode)
timer period = 1

8H1
4H1

(e) INV = 0, C/P = 1 (clock mode)
timer period = 2

12H1
6H1

(f) INV = 0, C/P = 1 (clock mode)
timer period = 3

INV = 0, C/P = 1 (clock mode)
timer period = 0

Timers

 12-10

12.1.6 Timer Operation Modes

The timer can receive its input and send its output in several different modes,
depending upon the setting of CLKSRC, FUNC, and I/O. The four timer modes
of operation are defined in the following sections.

12.1.6.1 CLKSRC = 1 and FUNC = 0

If CLKSRC = 1 and FUNC = 0, the timer input comes from the internal clock.
The internal clock is not affected by the INV bit in the global-control register.
In this mode, TCLK is connected to the I/O port control, and you use TCLK as
a general-purpose I/O pin (see Figure 12–5).

� If I/O = 0, TCLK is configured as a general-purpose input pin whose state
you can read in DATIN. DATOUT has no effect on TCLK or DATIN. See
Figure 12–5 (a).

� If I/O = 1, TCLK is configured as a general-purpose output pin. DATOUT
is placed on TCLK and can be read in DATIN. See Figure 12–5 (b).

Figure 12–5. Timer Configuration with CLKSRC = 1 and FUNC = 0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

CLKSRC=1 (internal)
FUNC=0 (I/O pin)

I/O=0 (input)

I/O port
control

TCLK

ExternalInternal

Output

DATIN

Input Internal
clock

TSTAT

Timer

DATIN

DATOUT

Internal External

TCLK

control
I/O port

Timer

TSTAT

clock
Internal

Output
Input

(a) (b) CLKSRC = 1 (internal)
FUNC = 0 (I/O pin)

I/O = 1 (output)

Timers

12-11Peripherals

12.1.6.2 CLKSRC = 1 and FUNC = 1

If CLKSRC = 1 and FUNC = 1 (see Figure 12–6), the timer input comes from
the internal clock, and the timer output goes to TCLK. This value can be inverted
using INV, and you can read in DATIN the value output on TCLK.

Figure 12–6. Timer Configuration with CLKSRC = 1 and FUNC = 1

In
Out

Timer
Internal
clock

TCLK

TSTAT DATIN

CLKSRC = 1 (internal)
FUNC = 1 (timer pin)

Internal External

12.1.6.3 CLKSRC = 0 and FUNC = 0

If CLKSRC = 0 and FUNC = 0 (see Figure 12–7), the timer is driven according
to the status of the I/O bit.

� If I/O = 0, the timer input comes from TCLK. This value can be inverted
using INV, and you can read in DATIN the value of TCLK. See
Figure 12–7 (a).

� If I/O = 1, TCLK is an output pin. Then, TCLK and the timer are both driven
by DATOUT. All 0-to-1 transitions of DATOUT increment the counter. INV
has no effect on DATOUT. You can read in DATIN the value of DATOUT.
See Figure 12–7 (b).

Figure 12–7. Timer Configuration with CLKSRC = 0 and FUNC = 0

In
Out

Timer

I/O port
control

TCLK

TSTAT

CLKSRC = 0 (external)
FUNC = 0 (I/O pin)

I/O = 1 (output)
(b)

Internal External

In
Out

Timer

I/O port
control

TCLK

TSTAT

CLKSRC = 0 (external)
FUNC = 0 (I/O pin)

I/O = 0 (input)
(a)

Internal External

DATIN DATOUT

Timers

 12-12

12.1.6.4 CLKSRC = 0 and FUNC = 1

If CLKSRC = 0 and FUNC = 1 (see Figure 12–8), TCLK drives the timer.

� If INV = 0, all 0-to-1 transitions of TCLK increment the counter.

� If INV = 1, all 1-to-0 transitions of TCLK increment the counter. You can
read in DATIN the value of TCLK.

Figure 12–8. Timer Configuration with CLKSRC = 0 and FUNC = 1

In
Out

Timer

TCLK

TSTAT DATIN

CLKSRC = 0 (external)
FUNC = 1 (timer pin)

Internal External

12.1.7 Using TCLKx as General-Purpose I/O Pins

When FUNC = 0, TCLKx can be used as an I/O pin. Figure 12–9 and
Figure 12–10 show how the TCLKx is connected when it is configured as a
general-purpose I/O pin. In Figure 12–9, the I/O bit equals 0 and TCLK is
configured as an input pin whose value can be read in the DATIN bit. In
Figure 12–10, the I/O bit equals 1 and TCLK is configured as an output pin that
outputs the value you wrote in the DATOUT bit.

Figure 12–9. TCLK as an Input (I/O = 0)

DATOUT (NC)

DATIN

TCLK

ExternalInternal

I/O = 0
FUNC = 0

Figure 12–10. TCLK as an Output (I/O = 1)

DATOUT

Internal

DATIN

TCLK

External

I/O = 1
FUNC = 0

Timers

12-13Peripherals

12.1.8 Timer Interrupts

A timer interrupt is generated whenever the TSTAT bit of the timer control register
changes from a 0 to a 1. The frequency of timer interrupts depends on whether
the timer is set up in pulse mode or clock mode.

� In pulse mode, the interrupt frequency is determined by the following
equation:

=
period register

f(timer clock)f(interrupt)

f(interrupt)
f(timer clock) =

=
timer frequency

interrupt frequency
where:

� In clock mode, the interrupt frequency is determined by the following
equation:

where:
f(interrupt)

f(timer clock)

2 x period register
f(timer clock)

=

=

=f(interrupt)

timer frequency

interrupt frequency

The timer counter is automatically reset to 0 whenever it is equal to the value
in the timer-period register. You can use the timer interrupt for either the CPU
or the DMA. Interrupt-enable control for each timer, for either the CPU or the
DMA, is found in the CPU/DMA interrupt-enable register. Refer to Section 3.1.8,
CPU/DMA Interrupt-Enable Register (IE), on page 3-9 for more information.

When a timer interrupt occurs, a change in the state of the corresponding
TCLK pin is observed if FUNC = 1 and CLKSRC = 1 in the timer global-control
register. The exact change in the state depends on the state of the C/P bit. In
pulse mode (C/P = 0), the width of the pulse change is 1/f (H1). In clock mode
(C/P = 1), the width of the pulse change is the period register divided by the
frequency of the timer input clock.

12.1.9 Timer Initialization/Reconfiguration

The timers are controlled through memory-mapped registers located on the
dedicated peripheral bus. The general procedure for initializing and/or recon-
figuring the timers follows:

1) Halt the timer by clearing the GO/HLD bits of the timer global-control register.
To do this, write a 0 to the timer global-control register. Note that the timers
are halted on RESET.

Timers

 12-14

2) Configure the timer through the timer global-control register (with GO =
HLD = 0), the timer-counter register, and timer-period register, if necessary.

3) Start the timer by setting the GO/HLD bits of the timer global-control register.

Example 12–2 shows how to set up the ‘C3x timer to generate the maximum
clock frequency through the TCLKx pin.

Example 12–2. Maximum Frequency Timer Clock Setup

* Maximum Frequency Timer Clock Setup

*
.data

Timer0 .word 808020h ; Timer global control address
TCTRL_RST .word 301h
TCTRL_GD .word 3C1h
TCNT .word 0 ; Timer counter value
TPRD .word 0 ; Timer-period value

.text
.
.
.

LDP Timer0
LD1 @Timer0,AR0 ; Load data page pointer
LD1 0,R0
ST1 R0,*AR0 ; Halt timer
LD1 @TCTRL_RST,R0 ; Configure timer
ST1 R0,*AR0
LD1 @TCNT,R0
ST1 R0,*+AR0(4) ; Load timer counter
LD1 @TPRD,R0
ST1 R0,**+AR0(8) ; Load timer period
LD1 @TCTRL_G0,R0
ST1 R0,*AR0 ; Start timer

Serial Ports

12-15Peripherals

12.2 Serial Ports

The ’C30 has two totally independent bidirectional serial ports. Both serial ports
are identical, and there is a complementary set of control registers in each one.
Only one serial port is available on the ’C31 and the ’C32. You can configure
each serial port to transfer 8, 16, 24, or 32 bits of data per word simultaneously
in both directions. The clock for each serial port can originate either internally,
through the serial port timer and period registers, or externally, through a supplied
clock. An internally generated clock is a divide down of the clockout frequency,
f(H1). A continuous transfer mode is available, which allows the serial port to
transmit and receive any number of words without new synchronization pulses.

Eight memory-mapped registers are provided for each serial port:

� Global-control register
� Two control registers for the six serial I/O pins
� Three receive/transmit timer registers
� Data-transmit register
� Data-receive register

The global-control register controls the global functions of the serial port and
determines the serial-port operating mode. Two port control registers control
the functions of the six serial port pins. The transmit buffer contains the next
complete word to be transmitted. The receive buffer contains the last complete
word received. Three additional registers are associated with the transmit/
receive sections of the serial-port timer. A serial-port block diagram is shown
in Figure 12–11 on page 12-16, and the memory map of the serial ports is
shown in Figure 12–12 on page 12-17.

Serial Ports

 12-16

Figure 12–11. Serial Port Block Diagram

Receive Section Transmit Section

Receive
timer (16)

Transmit
timer (16)

Bit counter
(8/16/24/32)

Bit counter
(8/16/24/32)

RSR
(32)

XSR
(32)

DRR
(32)

DXR
(32)

Load
control

Load
control

CLKR CLKX
TSTAT

CLKR CLKX
TSTAT

Receive ClockRINT
FSR

FSR FSX
FSX

Load

DX

DR DR

Load

DX DX

XINT

Serial Ports

12-17Peripherals

Figure 12–12. Memory-Mapped Locations for the Serial Ports

Serial-port 0 global control�

Serial port 0 FSR/DR/CLKR control§

Serial port 0 R/X timer control¶

Serial port 0 R/X timer counter#

Serial port 0 R/X timer period�

Serial port 0 data transmit�

808040h

808042h

808043h

808044h

808045h

808046h

808048h

80804Ch Serial port 0 data receive�

Serial port 0 FSX/DX/CLKX control‡

Serial-port 1 global control�

Serial port 1 FSX/DX/CLKX control‡

Serial port 1 FSR/DR/CLKR control§

Serial port 1 R/X timer control¶

Serial port 1 R/X timer counter#

Serial port 1 R/X timer period�

Serial port 1 data transmit�

Serial port 1 data receive�

808050h

808052h

808053h

808054h

808055h

808056h

808058h

80805Ch

Note: Serial port1 locations are reserved on the ’C31 and ’C32.
† See Figure 12–13.
‡ See Figure 12–14.
§ See Figure 12–15.
¶ See Figure 12–16.
See Figure 12–17.
|| See Figure 12–18.
�See Figure 12–19.
�See Figure 12–20.

12.2.1 Serial-Port Global-Control Register

The serial-port global-control register is a 32-bit register that contains the global-
control bits for the serial port. The register is shown in Figure 12–13. Table 12–2
shows the register bits, bit names, and bit functions.

Serial Ports

 12-18

Figure 12–13. Serial-Port Global-Control Register

28

RRESET RTINT XINT XTINT

31 30 29 27 26 25 24 23 22 21 20 19 18 17 16

RLEN XLEN FSRP FSXP

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

CLKXP RFSM XFSM
RCLK XCLK

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HS RSR XSR FSXOUT XRDY RRDY
SRCE SRCE FULL EMPTY

R/W R/W R/W R/W R/W R/W R R R/W R R

XRESET RINT

R/W

DRP DXP CLKRP RVAREN XVAREN

R/WR/WR/WR/WR/W

xx xx xx xx

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Table 12–2. Serial-Port Global-Control Register Bits Summary

Abbreviation
Reset
Value Name Description

RRDY 0 Receive ready flag If RRDY = 1, the receive buffer has new data and is ready to
be read. A three H1/H3 cycle delay occurs from the loading
of DRR to RRDY = 1. The rising edge of this signal sets RINT.

If RRDY = 0, the receive buffer does not have new data since
the last read. RRDY = 0 at reset and after the receive buffer is
read.

XRDY 1 Transmit ready flag If XRDY = 1, the transmit buffer has written the last bit of data
to the shifter and is ready for a new word. A three H1/H3 cycle
delay occurs from the loading of the transmit shifter until
XRDY is set to 1. The rising edge of this signal sets XINT.

If XRDY = 0, the transmit buffer has not written the last bit of
data to the transmit shifter and is not ready for a new word.

FSXOUT Transmit frame sync
configuration

FSXOUT = 0 configures the FSX pin as an input.

FSXOUT = 1 configures the FSX pin as an output.

XSREMPTY 0 Transmit-shift
register empty flag

If XSREMPTY = 0, the transmit-shift register is empty.

If XSREMPTY = 1, the transmit-shift register is not empty.

Reset or XRESET causes this bit to = 0.

RSRFULL 0 Receive-shift register
full flag

If RSRFULL = 1, an overrun of the receiver has occurred. In
continuous mode, RSRFULL is set to 1 when both RSR and
DRR are full. In noncontinuous mode, RSRFULL is set to 1
when RSR and DRR are full and a new FSR is received. A read
causes this bit to be set to 0. This bit can be set to 0 only by a
system reset, a serial-port receive reset (RRESET = 1), or a
read. When the receiver tries to set RSRFULL to 1 at the same
time that the global register is read, the receiver dominates,
and RSRFULL is set to 1.

If RSRFULL = 0, no overrun of the receiver has occurred.

Serial Ports

12-19Peripherals

Table 12–2. Serial-Port Global-Control Register Bits Summary (Continued)

Abbreviation DescriptionName
Reset
Value

HS 0 Handshake If HS = 1, the handshake mode is enabled.

If HS = 0, the handshake mode is disabled.

XCLK SRCE 0 Transmit clock
source

If XCLK SRCE = 1, the internal transmit clock is used.

If XCLK SRCE = 0, the external transmit clock is used.

RCLK SRCE 0 Receive clock
source

If RCLK SRCE = 1, the internal receive clock is used.

If RCLK SRCE = 0, the external receive clock is used.

XVAREN 0 Transmit data rate
mode

Specifies a fixed or variable data rate mode when transmitting.

With a fixed data rate, FSX is active for at least one XCLK
cycle and then goes inactive before transmission begins.

With variable data rate, FSX is active while all bits are being
transmitted. When you use an external FSX and variable data
rate signaling, the DX pin is driven by the transmitter when
FSX is held active or when a word is being shifted out.

RVAREN 0 Receive data rate
mode

Specifies a fixed or variable data rate mode when receiving.

If RVAREN = 0 (fixed data rate), FSX is active for at least one
RCLK cycle and then goes inactive before reception begins.

If RVAREN = 1 (controlled data rate), FSX is active while all
bits are being received.

XFSM 0 Transmit frame
sync mode

Configures the port for continuous mode operation or standard
mode operation.

If XFSM = 1 (continuous mode), only the first word of a block
generates a sync pulse, and the rest are transmitted continuously
to the end of the block.

If XFSM = 0 (standard mode), each word has an associated
sync pulse.

RFSM 0 Receive frame
sync mode

Configures the port for continuous mode operation or standard
mode operation.

If RFSM = 1 (continuous mode), only the first word of a block
generates a sync pulse, and the rest are received continuously
to the end of the block.

If RFSM = 0 (standard mode), each word received has an
associated sync pulse.

CLKXP CLKX polarity If CLKXP = 0, CLKX is active high.

If CLKXP = 1, CLKX is active low.

Serial Ports

 12-20

Table 12–2. Serial-Port Global-Control Register Bits Summary (Continued)

Abbreviation DescriptionName
Reset
Value

CLKRP 0 CLKR polarity If CLKRP = 0, CLKR is active (high).

If CLKRP = 1, CLKR is active (low).

DXP 0 DX polarity If DXP = 0, DX is active (high).

If DXP = 1, DX is active (low).

DRP 0 DR polarity If DRP = 0, DR is active (high).

If DRP = 1, DR is active (low).

FSXP 0 FSX polarity If FSXP = 0, FSX is active (high).

If FSXP = 1, FSX is active (low).

FSRP 0 FSR polarity If FSRP = 0, FSR is active (high).

If FSRP = 1, FSR is active (low).

XLEN 00 Transmit word length These two bits define the word length of serial data trans-
mitted. All data is assumed to be right justified in the transmit
buffer when fewer than 32 bits are specified.

0 0 — 8 bits 1 0 — 24 bits

0 1 — 16 bits 1 1 — 32 bits

RLEN 00 Receive word length These two bits define the word length of serial data received.
All data is right justified in the receive buffer.

0 0 — 8 bits 1 0 — 24 bits

0 1 — 16 bits 1 1 — 32 bits

XTINT 0 Transmit timer
interrupt enable

If XTINT = 0, the transmit timer interrupt is disabled.

If XTINT = 1, the transmit timer interrupt is enabled.

XINT 0 Transmit interrupt
enable

If XINT = 0, the transmit interrupt is disabled.

If XINT = 1, the transmit interrupt is enabled.

Note: The CPU receive flag XINT and the serial-port-to-DMA
interrupt (EXINT0 in the IE register) is the OR of the enabled
transmit timer interrupt and the enabled transmit interrupt.

RTINT 0 Receive timer
interrupt enable

If RTINT = 0, the receive timer interrupt is disabled.

If RTINT = 1, the receive timer interrupt is enabled.

Serial Ports

12-21Peripherals

Table 12–2. Serial-Port Global-Control Register Bits Summary (Continued)

Abbreviation DescriptionName
Reset
Value

RINT 0 Receive interrupt
enable

If RINT = 0, the receive interrupt is disabled.

If RINT = 1, the receive interrupt is enabled.

Note: The CPU receive interrupt flag RINT and the serial-
port-to-DMA interrupt (ERINT0 in the IE register) are the OR
of the enabled receive timer interrupt and the enabled receive
interrupt.

XRESET 0 Transmit reset If XRESET = 0, the transmit side of the serial port is reset.

To take the transmit side of the serial port out of reset, set
XRESET to 1.

Do not set XRESET to 1 until at least three cycles after RESET
goes inactive. This applies only to system reset. Setting XRESET
to 0 does not change the contents of any of the serial-port control
registers. It places the transmitter in a state corresponding to the
beginning of a frame of data. Resetting the transmitter generates
a transmit interrupt. Reset this bit during the time the mode of the
transmitter is set. You can toggle XFSM without resetting the
global-control register.

RRESET 0 Receive reset If RRESET = 0, the receive side of the serial port is reset.

To take the receive side of the serial port out of reset, set RRE-
SET to 1.

Do not set RRESET to 1 until at least three cycles after RESET
goes inactive. This applies only to system reset. Setting RRESET
to 0 does not change the contents of any of the serial-port control
registers. It places the receiver in a state corresponding to the
beginning of a frame of data. Reset this bit at the same time that
the mode of the receiver is set. You can toggle without resetting
the global-control register.

Serial Ports

 12-22

12.2.2 FSX/DX/CLKX Port-Control Register

This 32-bit port-control register controls the function of the serial port FSX, DX,
and CLKX pins. The register is shown in Figure 12–14. Table 12–3 shows the
register bits, bit names, and bit functions.

Figure 12–14. FSX/DX/CLKX Port-Control Register
31–16 15–12 11 10 9 8 7 6 5 4 3 2 1 0

xx xx FSX
DATIN

FSX
DATOUT

FSX
I/O

FSX
FUNC

DX
DATIN

DX
DATOUT

DX
I/O

DX
FUNC

CLKX
DATIN

CLKX
DATOUT

CLKX
I/O

CLKX
FUNC

R R/W R/W R/W R R/W R/W R/W R R/W R/W R/W

Notes: 1) R = read, W = write.

2) xx = reserved bit, read as 0.

Table 12–3. FSX/DX/CLKX Port-Control Register Bits Summary

Abbreviation
Reset
Value Name Description

CLKX FUNC 0 Clock transmit
function

Controls the function of CLKX.

If CLKX FUNC = 0, CLKX is configured as a general-purpose
digital I/O port.

If CLKX FUNC = 1, CLKX is configured as a serial port pin.

CLKX I /O 0 Clock transmit
input/output
mode

If CLKX I/O = 0, CLKX is configured as a general-purpose input
pin.

If CLKX I/O = 1, CLKX is configured as a general-purpose output
pin.

CLKX DATOUT 0 Clock transmit
data ouput

Data output on CLKX when configured as general-purpose
output.

CLKX DATIN x† Clock transmit
data input

Data input on CLKX when configured as general-purpose input.
A write has no effect.

DX FUNC 0 DX function DXFUNC controls the function of DX.

If DXFUNC = 0, DX is configured as a general-purpose digital
I/O port.

If DXFUNC = 1, DX is configured as a serial port pin.

DX I/O 0 DX input/output
mode

If DX I/O = 0, DX is configured as a general-purpose input pin.

If DX I/O = 1, DX is configured as a general-purpose output pin.

DX DATOUT 0 DX data output Data output on DX when configured as general-purpose output.

DX DATIN x† DX data input Data input on DX when configured as general-purpose input.
A write has no effect.

† x = 0 or 1

Serial Ports

12-23Peripherals

Table 12–3. FSX/DX/CLKX Port-Control Register Bits Summary (Continued)

Abbreviation DescriptionName
Reset
Value

FSX FUNC 0 FSX function Controls the function of FSX.

If FSX FUNC = 0, FSX is configured as a general-purpose digital
I/O port.

If FSX FUNC = 1, FSX is configured as a serial port pin.

FSX I/O 0 FSX input/output
mode

If FSX I/O = 0, FSX is configured as a general-purpose input
pin.

If FSX I/O = 1, FSX is configured as a general-purpose output
pin.

FSX DATOUT 0 FSX data output Data output on FSX when configured as general-purpose output.

FSX DATIN x† FSX data input Data input on FSX when configured as general-purpose input.
A write has no effect.

† x = 0 or 1

12.2.3 FSR/DR/CLKR Port-Control Register

This 32-bit port-control register is controlled by the function of the FSR, DR,
and CLKR pins. At reset, all bits are set to 0. The register is shown in
Figure 12–15. Table 12–4 shows the register bits, bit names, and bit functions.

Figure 12–15. FSR/DR/CLKR Port-Control Register

CLKR

FUNC

CLKR

I/O

CLKR

DATOUT

2

R/W

CLKR

DATINxx xx
FSR

DATIN

FSR

DATOUT

FSR

I/O

FSR

FUNC

DR

DATIN

DR

DATOUT

DR

I/O

DR

FUNC

31 16 15 12 11 10 9 8 7 6 5 4 3 1

R/W R/WR R/W R/W RR/W R/W

0

R R/WR/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Serial Ports

 12-24

Table 12–4. FSR/DR/CLKR Port-Control Register Bits Summary

Abbreviation
Reset
Value Name Description

CLKR FUNC 0 Clock receive
function

Controls the function of CLKR.

If CLKR FUNC = 0, CLKR is configured as a general-purpose
digital I/O port.

If CLKR FUNC = 1, CLKR is configured as a serial port pin.

CLKR I /O 0 Clock receive
input/output
mode

If CLKR I/O = 0, CLKR is configured as a general-purpose input
pin.

If CLKR I/O = 1, CLKR is configured as a general-purpose output
pin.

CLKR DATOUT 0 Clock receive
data output

Data output on CLKR when configured as general-purpose
output.

CLKR DATIN x† Clock receive
data input

Data input on CLKR when configured as general-purpose input.
A write has no effect.

DR FUNC 0 DR function Controls the function of DR.

If DR FUNC = 0, DR is configured as a general-purpose digital
I/O port.

If DR FUNC = 1, DR is configured as a serial port pin.

DR I/O 0 DR input/output
mode

If DR I/O = 0, DR is configured as a general-purpose input pin.

If DR I/O = 1, DR is configured as a general-purpose output pin.

DR DATOUT 0 DR data output Data output on DR when configured as general-purpose output.

DR DATIN x† DR data input Data input on DR when configured as general-purpose input.
A write has no effect.

FSR FUNC 0 FSR function FSR FUNC controls the function of FSR.

If FSR FUNC = 0, FSR is configured as a general-purpose digital
I/O port.

If FSR FUNC = 1, FSR is configured as a serial port pin.

FSR I/O 0 FSR input/output
mode

If FSR I/O = 0, FSR is configured as a general-purpose input
pin.

If FSR I/O = 1, FSR is configured as a general-purpose output
pin.

FSR DATOUT 0 FSR data output Data output on FSR when configured as general-purpose output.

FSR DATIN x† FSR data input Data input on FSR when configured as general-purpose input.
A write has no effect.

† x = 0 or 1.

Serial Ports

12-25Peripherals

12.2.4 Receive/Transmit Timer-Control Register

A 32-bit receive/transmit timer-control register contains the control bits for the
timer module. At reset, all bits are set to 0. Figure 12–16 shows the register.
Bits 5–0 control the transmitter timer. Bits 11–6 control the receiver timer. The
serial port receive/transmit timer function is similar to timer module operation.
It can be considered a 16-bit-wide timer. Table 12–5 describes the register
bits, bit names, and bit functions.

Figure 12–16. Receive/Transmit Timer-Control Register

xx xx XGOXHLDXC/P

2

R/W

XCLKSRCRSTAT xx RCLKSRC RC/P RHLD RGO XSTAT xx

31 16 15 12 11 10 9 8 7 6 5 4 3 1

R/WRR/W R/WR/W R/W

0

R R/WR/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Table 12–5. Receive/Transmit Timer-Control Register Register Bits Summary

Abbreviation
Reset
Value Name Function

XGO 0 Transmit timer counter
restart

Resets and restarts the transmit timer counter.

If XGO = 1 and the timer is not held, the counter is zeroed
and begins incrementing on the next rising edge of the timer
input clock.

The XGO bit is cleared on the same rising edge. Writing 0
to XGO has no effect on the transmit timer.

XHLD 0 Transmit counter hold
signal

If XHLD = 0, the counter is disabled and held in its current
state.

If XHLD = 1, the internal divide-by-two counter is also held so
that the counter continues where it left off.

XC/P 0 Transmit clock/pulse
mode control

When XC/P = 1, the clock mode is chosen. The signaling of
the status flag and external output has a 50 percent duty
cycle.

When XC/P = 0, the status flag and external output are active
for one CLKOUT cycle during each timer period.

Serial Ports

 12-26

Table 12–5. Receive/Transmit Timer-Control Register Register Bits Summary (Continued)

Abbreviation FunctionName
Reset
Value

XCLKSRC 0 Transmit clock source Specifies the source of the transmit timer clock.

When XCLKSRC = 1, an internal clock with frequency equal
to one-half the CLKOUT frequency is used to increment the
counter.

When XCLKSRC = 0, you can use an external signal from
the CLKX pin to increment the counter.

The external clock source is synchronized internally, thus
allowing for external asynchronous clock sources that do
not exceed the specified maximum allowable external clock
frequency, that is, less than f(H1)/2.6.

XTSTAT 0 Transmit timer status Indicates the status of the transmit timer. It tracks what
would be the output of the uninverted CLKX pin.

This flag sets a CPU interrupt on a transition from 0 to 1. A
write has no effect.

RGO 0 Receive timer counter
restart

Resets and starts the receive timer counter.

When RGO is set to 1 and the timer is not held, the counter
is zeroed and begins incrementing on the next rising edge
of the timer input clock.

The RGO bit is cleared on the same rising edge. Writing 0
to RGO has no effect on the receive timer.

RHLD 0 Receive counter hold
signal

If RHLD = 0, the counter is disabled and held in its current
state.

If RHLD = 1, the internal divide-by-2 counter is also held so
that the counter will continue where it left off.

You can read and modify the timer registers while the timer
is being held. RESET has priority over RHLD.

RC/P 0 Rclock/pulse mode
control

When RC/P = 1, the clock mode is chosen. The signaling of
the status flag and external output has a 50% duty cycle.

When RC/P = 0, the status flag and external output are active
for one CLKOUT cycle during each timer period.

Serial Ports

12-27Peripherals

Table 12–5. Receive/Transmit Timer-Control Register Register Bits Summary (Continued)

Abbreviation FunctionName
Reset
Value

RCLKSRC 0 Receive timer clock
source

Specifies the source of the receive timer clock.

When RCLKSRC = 1, an internal clock with frequency equal
to one-half the CLKOUT frequency is used to increment the
counter.

When RCLKSRC = 0, you can use an external signal from
the CLKR pin to increment the counter. The external clock
source is synchronized internally, allowing for external
asynchronous clock sources that do not exceed the speci-
fied maximum allowable external clock frequency (that is,
less than f(H1)/2.6).

RTSTAT 0 Receive timer status Indicates the status of the receive timer. It tracks what would
be the output of the uninverted CLKR pin.

This flag sets a CPU interrupt on a transition from 0 to 1. A
write has no effect.

12.2.5 Receive/Transmit Timer-Counter Register

The receive/transmit timer-counter register is a 32-bit register (see
Figure 12–17). Bits 15–0 are the transmit timer-counter, and bits 31–16 are
the receive timer-counter. Each counter is cleared to 0 whenever it increments
to the value of the period register (see Section 12.2.6). It is also set to 0 at reset.

Figure 12–17. Receive/Transmit Timer-Counter Register

31 16

15 0

Receive counter

Transmit counter

Note: All bits are read/write.

Serial Ports

 12-28

12.2.6 Receive/Transmit Timer-Period Register

The receive/transmit timer-period register is a 32-bit register (see Figure 12–18).
Bits 15–0 are the timer transmit period, and bits 31–16 are the receive period.
Each register specifies the period of the timer and is cleared to 0 at reset.

Figure 12–18. Receive/Transmit Timer-Period Register
31 16

15 0

Receive period

Transmit period

Note: All bits are read/write.

12.2.7 Data-Transmit Register

When the data-transmit register (DXR) is loaded, the transmitter loads the word
into the transmit-shift register (XSR), and the bits are shifted out. The delay from
a write to DXR until an FSX occurs (or can be accepted) is two CLKX cycles.
The word is not loaded into the shift register until the shifter is empty. When DXR
is loaded into XSR, the XRDY bit is set, specifying that the buffer is available
to receive the next word. Four tap points within the transmit-shift register are
used to transmit the word. These tap points correspond to the four-data word
sizes and are illustrated in Figure 12–19. The shift is a left-shift (LSB to MSB)
with the data shifted out of the MSB corresponding to the appropriate tap point.

Figure 12–19. Transmit Buffer Shift Operation

31 24 23 16 15 8 7 0

32-bit word tap 24-bit word tap 16-bit word tap 8-bit word tap

← Shift direction ←

12.2.8 Data-Receive Register

When serial data is input, the receiver shifts the bits into the receive-shift register
(RSR). When the specified number of bits are shifted in, the data-receive register
(DRR) is loaded from RSR, and the RRDY status bit is set. The receiver is double-
buffered. If the DRR has not been read and the RSR is full, the receiver is frozen.
New data coming into the DR pin is ignored. The receive shifter does not write over
the DRR. The DRR must be read to allow new data in the RSR to be transferred
to the DRR. When a write to DRR occurs at the same time that an RSR-to-DRR
transfer takes place, the RSR-to-DRR transfer has priority.

Serial Ports

12-29Peripherals

Data is shifted to the left (LSB to MSB). Figure 12–20 illustrates what happens
when words less than 32 bits are shifted into the serial port. In this figure, it is
assumed that an 8-bit word is being received and that the upper three bytes
of the receive buffer are originally undefined. In the first portion of the figure,
byte a has been shifted in. When byte b is shifted in, byte a is shifted to the left.
When the data-receive register is read, both bytes a and b are read.

Figure 12–20. Receive Buffer Shift Operation

After byte a

After byte b

31 24 23 16 15 8 7 0

X X X a

X X a b

← Shift direction ←

12.2.9 Serial-Port Operation Configurations

Several configurations are provided for the operation of the serial-port clocks
and timer. The clocks for each serial port can originate either internally or exter-
nally. Figure 12–21 shows serial-port clocking in the I/O mode (CLKXFUNC
= 0) when CLKX is either an input or an output. Figure 12–22 shows clocking
in the serial-port mode (CLKXFUNC=1). Both figures use a transmit section
for an example. The same relationship holds for a receive section.

Serial Ports

 12-30

Figure 12–21. Serial-Port Clocking in I/O Mode

TSTAT
Timer in

XSR

Timer in

XSR

Timer in

XSR

Timer in

XSR

TSTAT

TSTAT
TSTAT

DATIN
DATOUT

DATOUT (NC)

DATIN

DATAOUT

DATIN

DATOUT (NC)

DATIN

Internal

CLKX

CLKX

CLKX FUNC= 0 (I/O mode)
CLKX I/O = 0 (CLKX, an input)
XCLK SRC = 1 (internal CLK for timer)

(c)

CLKX FUNC= 0 (I/O mode)
CLKX I/O = 0 (CLKX, an input)
XCLK SRC = 0 (external CLK for timer)

(d)

CLKX FUNC= 0 (I/O mode)
CLKX I/O = 1 (CLKX, an output)
XCLK SRC = 1 (internal CLK for timer)

CLKX FUNC= 0 (I/O mode)
CLKX I/O = 1 (CLKX, an output)
XCLK SRC = 0 (external CLK for timer)

External

Internal External
Internal External

Internal External

Internal
clock

Internal
clock

(a) (b)

CLKX CLKX

Serial Ports

12-31Peripherals

Figure 12–22. Serial-Port Clocking in Serial-Port Mode

CLKX FUNC= 1 (serial-port mode)
CLKX I/O = 1 (output serial-port CLK)
XCLK SRC = 0 or 1

(a)

TSTAT

TSTAT

TSTAT
Timer Timer

Timer

XSR XSR

XSR

Internal

CLKX CLKX

CLKX

INV

INV

INV

Internal
clock

Internal
clock

DATOUT (NC)
DATIN

DATOUT (NC)
DATIN

DATOUT (NC)
DATIN

CLKX FUNC= 1 (serial-port mode)
CLKX I/O = 0 (input serial-port CLK)
XCLK SRC = 1 (internal CLK for timer)

(b)

CLKX FUNC= 1 (serial-port mode)
CLKX I/O = 0 (input serial-port CLK)
XCLK SRC = 0 (external CLK for timer)

(c)

External Internal External

Internal External

12.2.10 Serial-Port Timing

The formula for calculating the frequency of the serial-port clock with an inter-
nally generated clock depends upon the operation mode of the serial-port
timers, defined as:

f (pulse mode) = f (timer clock)/period register

f (clock mode) = f (timer clock)/(2 x period register)

An internally generated clock source f (timer clock) has a maximum frequency
of f(H1)/2. An externally generated serial-port clock f (timer clock) (CLKX or
CLKR) has a maximum frequency of less than f(H1)/2.6. See section 12.1.5
on page 12-7 for information on timer pulse/clock generation.

Transmit data is clocked out on the rising edge of the selected serial-port clock.
Receive data is latched into the receive-shift register on the falling edge of the
serial-port clock. All data is received MSB first and shifted to the left. If fewer than
32 bits are received, the data received is right-justified in the receive buffer.

Serial Ports

 12-32

The transmit ready (XRDY) signal specifies that the data-transmit register
(DXR) is available to be loaded with new data. XRDY goes active as soon as
the data is loaded into the transmit-shift register (XSR). The last word may still
be shifting out when XRDY goes active. If DXR is loaded before the last word
has completed transmission, the data bits transmitted are consecutive; that is,
the LSB of the first word immediately precedes the MSB of the second, with
all signaling valid as in two separate transmits. XRDY goes inactive when DXR
is loaded and remains inactive until the data is loaded into the shifter.

The receive ready (RRDY) signal is active as long as a new word of data is
loaded into the data-receive register and has not been read. As soon as the
data is read, the RRDY bit is turned off.

When FSX is specified as an output, the activity of the signal is determined by
the internal state of the serial port. If a fixed data rate is specified, FSX goes
active when DXR is loaded into XSR. One serial-clock cycle later FSX turns
inactive and data transmission begins. If a variable data rate is specified, the
FSX pin is activated when the data transmission begins and remains active
during the entire transmission of the word. Again, the data is transmitted one
clock cycle after it is loaded into the data-transmit register.

An input FSX in the fixed data-rate mode must go active for at least one serial-
clock cycle and then inactive to initiate the data transfer. The transmitter then
sends the number of bits specified by the XLEN (bit field 19, serial-port global-
control register) bits. In the variable data-rate mode, the transmitter begins
sending from the time FSX goes active until the number of specified bits have
been shifted out. In the variable data-rate mode, when the FSX status changes
prior to all the data bits being shifted out, the transmission completes, and the
DX pin is placed in a high-impedance state. An FSR input is exactly comple-
mentary to the FSX.

When using an external FSX, if DXR and XSR are empty, a write to DXR results
in a DXR-to-XSR transfer. This data is held in the XSR until an FSX occurs.
When the external FSX is received, the XSR begins shifting the data. If XSR is
waiting for the external FSX, a write to DXR changes DXR, but a DXR-to-XSR
transfer does not occur. XSR begins shifting when the external FSX is received,
or when it is reset using XRESET.

Serial Ports

12-33Peripherals

12.2.10.1 Continuous Transmit and Receive Modes

When you choose continuous mode, consecutive writes do not generate or
expect new sync pulse signaling. Only the first word of a block begins with
an active synchronization. Thereafter, data is transmitted as long as new
data is loaded into DXR before the last word has been transmitted. As soon
as TXRDY is active and all of the data has been transmitted out of the shift
register, the DX pin is placed in a high-impedance state, and a subsequent
write to DXR initiates a new block and a new FSX.

Similarly with FSR, the receiver continues shifting in new data and loading
DRR. If the data-receive buffer is not read before the next word is shifted in,
you will lose subsequent incoming data. You can use the RFSM bit to terminate
the receive-continuous mode.

12.2.10.2 Handshake Mode

The handshake mode (HS = 1) allows for direct connection between processors.
In this mode, all data words are transmitted with a leading 1 (see Figure 12–23).
For example, in order to transmit an 8-bit word, the first bit sent is a 1, followed
by the 8-bit data word.

Once the serial port transmits a word in this mode, it does not transmit another
word until it receives a separately transmitted 0 bit. Therefore, the 1 bit that
precedes every data word is a request bit.

Figure 12–23. Data Word Format in Handshake Mode
Data word (8 bits)

DX

Leading 1

1

After a serial port receives a word that has been read from the DRR (with the
leading 1), the receiving serial port sends a single 0 to the transmitting serial
port. The single 0 bit acts as an acknowledge bit (see Figure 12–24). This
single acknowledge bit is sent every time the DRR is read, even if the DRR
does not contain new data.

Figure 12–24. Single 0 Sent as an Acknowledge Bit

Single 0

0DX

Serial Ports

 12-34

When the serial port is placed in the handshake mode, the insertion and deletion
of a leading 1 for transmitted data, the sending of a 0 for acknowledgement of
received data, and the waiting for this acknowledge bit are all performed auto-
matically. Using this scheme, it is simple to connect processors with no external
hardware and to guarantee secure communication. Figure 12–25 is a typical
configuration.

In the handshake mode, FSX is automatically configured as an output. Con-
tinuous mode is automatically disabled. After a system reset or XRESET, the
transmitter is always permitted to transmit. The transmitter and receiver must
be reset when entering the handshake mode.

Figure 12–25. Direct Connection Using Handshake Mode

CLKX
FSX
DX

CLKR
FSR
DR

’C3x #1 ’C3x #2

CLKR
FSR
DR

CLKX
FSX
DX

12.2.11 Serial-Port Interrupt Sources

A serial port has the following interrupt sources:

� Transmit-timer interrupt. The rising edge of XTSTAT causes a single-
cycle interrupt pulse to occur. When XTINT is 0, this interrupt pulse is
disabled.

� Receive-timer interrupt. The rising edge of RTSTAT causes a single-
cycle interrupt pulse to occur. When RTINT is 0, this interrupt pulse is
disabled.

� Transmitter-interrupt. Occurs immediately following a DXR-to-XSR
transfer. The transmitter interrupt is a single-cycle pulse. When the serial-
port global-control register bit XINT is 0, this interrupt pulse is disabled.

� Receiver-interrupt. Occurs immediately following an RSR-to-DRR trans-
fer. The receiver interrupt is a single-cycle pulse. When the serial-port
global-control register bit RINT is 0, this interrupt pulse is disabled.

The transmit-timer interrupt pulse is ORed with the transmitter interrupt pulse
to create the CPU-transmit interrupt flag XINT. The receive-timer interrupt pulse
is ORed with the receiver interrupt pulse to create the CPU receive-interrupt flag
RINT.

Serial Ports

12-35Peripherals

12.2.12 Serial-Port Functional Operation

The following paragraphs and figures illustrate the functional timing of the
various serial-port modes of operation. The timing descriptions are presented
with the assumption that all signal polarities are configured to be positive (that
is, CLKXP = CLKRP = DXP = DRP = FSXP = FSRP = 0). Logical timing, in situ-
ations where one or more of these polarities are inverted, is the same except
with respect to the opposite polarity reference points (that is, rising vs. falling
edges, etc.).

These discussions pertain to the numerous operating modes and configurations
of the serial-port logic. When it is necessary to switch operating modes or
change configurations of the serial port, you should do so only when XRESET
or RRESET are asserted (low), as appropriate. When transmit configurations
are modified, XRESET should be low, and when receive configurations are
modified, RRESET should be low. When you use handshake mode, however,
since the transmitter and receiver are interrelated, you should make any configu-
ration changes with XRESET and RRESET both low.

All of the serial-port operating configurations can be classified in two categories:
fixed data-rate timing and variable data-rate timing. Both categories support
operation in either burst or continuous mode.

Burst-mode operation with variable data-rate timing is similar to burst-mode
operation with fixed data-rate timing. With variable data-rate timing, however,
FSX/R and data timing differ slightly at the beginning and end of transfers.
Specifically, there are three major differences between fixed and variable data-
rate timing:

� FSX/R pulses typically last for the entire transfer interval in variable data-
rate timing operation, although FSR and external FSX are ignored after
the first bit transferred. FSX/R pulses in fixed data-rate mode typically last
only one CLKX/R cycle but can last longer.

� With variable data-rate timing, data transfer begins during the CLKX/R
cycle in which FSX/R occurs. With fixed data-rate timing, data transfer be-
gins in the CLKX/R cycle following FSX/R.

� With variable data-rate timing, frame sync inputs are ignored until the end
of the last bit transferred. With fixed data-rate timing, frame sync inputs are
ignored until the beginning of the last bit transferred.

The following paragraphs discuss fixed and variable data-rate operation and all
of their variations.

Serial Ports

 12-36

12.2.12.1 Fixed Data-Rate Timing Operation

Fixed data-rate serial-port transfers can occur in two varieties: burst mode and
continuous mode. In burst mode, transfers of single words are separated by
periods of inactivity on the serial port. In continuous mode, there are no gaps
between successive word transfers; the first bit of a new word is transferred
on the next CLKX/R pulse following the last bit of the previous word. This occurs
continuously until the process is terminated. The following variations are
included in fixed data-rate timing operations.

� Fixed Burst Mode

In burst mode with fixed data-rate timing, FSX/FSR pulses initiate transfers,
and each transfer involves a single word. With an internally generated FSX
(see Figure 12–26), transmission is initiated by loading DXR. In this mode,
there is a delay of approximately 2.5 CLKX cycles (depending on CLKX and
H1 frequencies) from the time DXR is loaded until FSX occurs. With an
external FSX, the FSX pulse initiates the transfer, and the 2.5-cycle delay
effectively becomes a setup requirement for loading DXR with respect to
FSX. In this case, you must load DXR no later than three CLKX cycles before
FSX occurs. Once the XSR is loaded from the DXR, an XINT is generated.

Figure 12–26. Fixed Burst Mode

DXR loaded XINT RINT

A1 AN

CLKX/R

FSR/FSX (external)

FSX (internal)

DX/DR

R/XVAREN = 0
R/XFSM = 0

In receive operations, once a transfer is initiated, FSR is ignored until the
last bit. For burst-mode transfers, FSR must be low during the last bit, or
another transfer will be initiated. After a full word has been received and
transferred to the DRR, an RINT is generated.

� Fixed Standard Mode

In fixed data-rate mode, you can perform continuous transfers even if
R/XFSM = 0, as long as properly timed frame synchronization is provided,
or as long as DXR is reloaded each cycle with an internally generated FSX
(see Figure 12–27).

Serial Ports

12-37Peripherals

Figure 12–27. Fixed Standard Mode With Back-to-Back Frame Sync

A1 AN B1 BN C1

DXR loaded
with A

XINT

DXR loaded
with B

XINT
RINT

XINT
RINT

CLKX/R

FSX (Internal)

FSR/FSX (External)

DR/DX

Load DXR with C
read DRR

Load DXR with
Dread DRR

R/XVAREN = 0
R/XFSM = 0

For receive operations and with externally generated FSX, once transfers
have begun, frame sync pulses are required only during the last bit trans-
ferred to initiate another contiguous transfer. Otherwise, frame sync inputs
are ignored. Continuous transfers occur if the frame sync is held high. With
an internally generated FSX, there is a delay of approximately 2.5 CLKX
cycles from the time DXR is loaded until FSX occurs. This delay occurs
each time DXR is loaded; therefore, during continuous transmission, the
instruction that loads DXR must be executed by the N–3 bit for an N-bit
transmission. Since delays due to pipelining vary, you should incorporate
a conservative margin of safety in allowing for this delay.

Once the process begins, an XINT and an RINT are generated at the begin-
ning of each transfer. The XINT indicates that the XSR has been loaded from
DXR and can be used to cause DXR to be reloaded. To maintain continuous
transmission in fixed rate mode with frame sync, especially with an internally
generated FSX, DXR must be reloaded early in the ongoing transfer.

The RINT indicates that a full word has been received and transferred into
the DRR; RINT indicates an appropriate time to read DRR.

Continuous transfers are terminated by discontinuing frame sync pulses
or, in the case of an internally-generated FSX, not reloading DXR.

� Fixed Continuous Mode

You can accomplish continuous serial-port transfers, without the use of
frame sync pulses, if R/XFSM is set to 1. In this mode, operation of the serial
port is similar to continuous operation with frame sync, except that a frame
sync pulse is involved only in the first word transferred, and no further frame
sync pulses are used. Following the first word transferred (see
Figure 12–28), no internal frame sync pulses are generated, and frame

Serial Ports

 12-38

sync inputs are ignored. Additionally, you should set R/XFSM prior to or
during the first word transferred; you must set R/XFSM no later than the
transfer of the N–1 bit of the first word, except for transmit operations. For
transmit operations in the fixed data-rate mode, XFSM must be set no later
than the N–2 bit. You must clear R/XFSM no later than the N–1 bit to be
recognized in the current cycle.

Figure 12–28. Fixed Continuous Mode Without Frame Sync

DR/DX

FSX (internal)

FSR/FSX (external)

CLKX/R

A1 AN B1 BN C1

DXR loaded

XINT

DXR loaded

Set
R/XFSM

XINT
RINT

Load DXR
read DRR

XINT
RINT

Load DXR
read DRR

R/XVAREN = 0

R/XFSM = 1

The timing of RINT and XINT and data transfers to and from DXR and
DRR, respectively, are the same as in fixed data-rate standard mode with
back-to-back frame syncs. This mode of operation also exhibits the same
delay of 2.5 CLKX cycles after DXR is loaded before an internal FSX is
generated. As in the case of continuous operation in fixed data-rate mode
with frame sync, you must reload DXR no later than transmission of the
N–3 bit.

� Enabling or Disabling Frame Syncs in Fixed Mode

When you use continuous operation in fixed data-rate mode, you can set
and clear R/XFSM as desired, even during active transfers, to enable or
disable the use of frame sync pulses as dictated by system requirements.
Under most conditions, changing the state of R/XFSM occurs during the
transfer in which the R/XFSM change was made, provided the change
was made early enough in the transfer. For transmit operations with inter-
nal FSX in fixed data-rate mode, however, a 1-word delay occurs before
frame sync pulse generation resumes when clearing XFSM to 0 (see
Figure 12–29). In this case, one additional word is transferred before the
next FSX pulse is generated. The clearing of XFSM is recognized during
the transmission of the word currently being transmitted as long as XFSM
is cleared no later than the N–1 bit. The setting of XFSM is recognized as
long as XFSM is set no later than the N–2 bit.

Serial Ports

12-39Peripherals

Figure 12–29. Exiting Fixed Continuous Mode Without Frame Sync, FSX Internal

CLKX

FSX
(internal)

DX

LOAD DXR SET XFSM RESET XFSM

A1 AN B1 BN C1 CN D1 DN E1 EN F1 FN

1st word 2nd word 3rd word 4th word 5th word

12.2.12.2 Variable Data-Rate Timing Operation

The following variations are included in variable data-rate timing operations.

� Variable Burst Mode

In burst mode with variable data-rate timing, FSX/FSR pulse lasts for the
entire duration of transfer. With an internally generated FSX (see
Figure 12–30), transmission is initiated by loading DXR. In this mode there
is a delay of approximately 3.5 CLKX cycles (depending on CLKX and H1
freqency) from the time DXR is loaded until FSX occurs. With an external
FSX, the FSX pulse initiates the transfer and the 3.5-cycle delay effectively
becomes a setup requirement for loading DXR with respect to FSX. There-
fore, in this case, you must load DXR no later than four CLKX cycles before
FSX occurs. Once the XSR is loaded from the DXR, an XINT is generated.

Figure 12–30. Variable Burst Mode

DXR loaded XINT RINT

CLKX/R

FSR/FSX (external)

FSX (internal)

DX/DR A1 AN

R/XVAREN = 1
R/XFSM = 0

Serial Ports

 12-40

� Variable Standard Mode

When you transmit continuously in variable data-rate mode with frame sync,
timing is the same as for fixed data-rate mode, except for the differences
between these two modes as described in Section 12.2.12 Serial-Port
Functional Operation, on page 12-35. The only other exception is that you
must reload DXR no later than the N–4 bit to maintain continuous opera-
tion of the variable data-rate mode (see Figure 12–31); you must reload
DXR no later than the N–3 bit to maintain continuous operation of the fixed
data-rate mode.

Figure 12–31. Variable Standard Mode With Back-to-Back Frame Syncs

DXR
Loaded
with A

XINT

Load DSR
with B

XINT
RINT

Load DXR with C
Read DRR

XINT
RINT

Load DXR with D
Read DRR

CLKX/R

FSR/FSX (External)

FSX (Internal)

DX/DR A1 AN B1 BN C1 C2

R/XVAREN = 1

R/XFSM = 0

Continuous operation in variable data-rate mode without frame sync (see
Figure 12–32) is similar to continuous operation without frame sync in
fixed data-rate mode (see Figure 12–28). As with variable data-rate stan-
dard mode with back-to-back frame syncs, you must reload DXR no later
than the N–4 bit to maintain continuous operation. Additionally, when
R/XFSM is set or cleared in the variable data-rate mode, you must make
the modification no later than the N–1 bit for the result to be affected in the
current transfer.

Serial Ports

12-41Peripherals

Figure 12–32. Variable Continuous Mode Without Frame Sync

CLKX/R

FSR/FSX (external)

FSX (internal)

DX/DR A1 AN B1 BN C1 C2

XINT
RINT

Load DXR with D
read DRR

Set
R/XFS

M

DXR loaded
with B

XINT

DXR loaded
with A

XINT
RINT

Load DXR with C
read DRR

R/XVAREN = 1
R/XFSM = 1

12.2.13 Serial-Port Initialization/Reconfiguration

The serial ports are controlled through memory-mapped registers on the dedi-
cated peripheral bus. A general procedure for initializing and/or reconfiguring
the serial ports follows.

1) Halt the serial port by clearing the XRESET and/or RRESET bits of the serial-
port global-control register. To do this, write a 0 to the serial-port global-
control register. The serial ports are halted on RESET.

2) Configure the serial port via the serial-port global-control register (with
XRESET = RRESET = 0) and the FSX/DX/CLKX and FSR/DR/CLKR port-
control registers. If necessary, configure the receive/transmit registers;
timer control (with XHLD = RHLD = 0), timer counter, and timer period.
Refer to section 12.2.14 for more information.

3) Start the serial-port operation by setting the XRESET and RRESET bits
of the serial-port global-control register and the XHLD and RHLD bits of
the serial-port receive/transmit timer-control register, if necessary.

12.2.14 TMS320C3x Serial-Port Interface Examples

In addition to the examples presented in this section, you can find DMA/serial
port initialization examples in Example 12–9 and Example 12–10 on pages
12-76 and 12-77, respectively.

Serial Ports

 12-42

12.2.14.1 Handshake Mode Example

When using the handshake mode, the transmit (FSX/DS/CLKX) and receive
(FSR/DR/CLKR) signals transmit and receive data, respectively. Even if the
’C3x serial port is receiving data only with handshake mode, the transmit signals
are still needed to transmit the acknowledge signal. Example 12–3 shows the
serial-port register setup for the ’C3x serial-port handshake communication, as
shown in Figure 12–25 on page 12-34.

Example 12–3. Serial-Port Register Setup #1

Global control = 011x0x0xxxx00000000xx01100100b,
Transmit port control = 0111h
Receive port control = 0111h
S_port timer control = 0Fh
S_port timer count = 0h
S_port timer period ≥ 01h (if two C3xs have the same system clock).

Note: x = user-configurable

Since FSX is set as an output and continuous mode is disabled when hand-
shake mode is selected, follow these steps:

1) Set the XFSM and RFSM bits to 0 and the FSXOUT bit to 1 in the global-
control register.

2) Set the XRESET, RRESET, and HS bits to 1 in order to start the handshake
communication.

3) Set the polarity of the serial-port pins active (high) for simplification.

4) Although the CLKX/CLKR can be set as either input or output, set the
CLKX as output and the CLKR as input.

The rest of the bits are user-configurable as long as both serial ports have
consistent setup.

You need the serial-port timer only if the CLKX or CLKR is configured as an
output. Since only the CLKX is configured as an output, set the timer control
register to 0Fh. When you use the serial-port timer, set the serial timer register
to the proper value for the clock speed. The serial-port timer clock speed setup
is similar to the ’C3x timer. Refer to Section 12.1, Timers, on page 12-2 for
detailed information on timer clock generation.

The maximum clock frequency for serial transfers is f(CLKIN)/4 if the internal
clock is used and f(CLKIN)/5.2 if an external clock is used. If two ’C3xs have
the same system clock, the timer-period register should be set equal to or
greater than 1, which makes the clock frequency equal to f(CLKIN)/8.

Serial Ports

12-43Peripherals

Example 12–4 and Example 12–5 are serial-port register setups for the above
case. (Assume two ’C3xs have the same system clock.)

Example 12–4. Serial-Port Register Setup #1

Global control = 0EBC0064h; 32 bits, fixed data rate, burst mode,
Transmit port control = 0111h ; FSX (output), CLKX (output) = F(CLKIN)/8
Receive port control = 0111h ; CLKR (input), handshake mode, transmit
S_port timer control = 0Fh ; and receive interrupt is enabled.
S_port timer count = 0h
S_port timer period ≥ 01h

Example 12–5. Serial-Port Register Setup #2

Global control = 0C000364h; 8 bits, variable data rate, burst mode,
Transmit port control = 0111h; FSX (output), CLKX (output) = f(CLKIN)/24
Receive port control = 0111h ; CLKR (input), handshake mode, transmit
S_port timer control = 0Fh ; and receive interrupt is disabled.
S_port timer count = 0h
S_port timer period ≥ 01h

Since the data has a leading 1 and the acknowledge signal is a 0 in the hand-
shake mode, the ’C3x serial port can distinguish between the data and the
acknowledge signal. Even if the ’C3x serial port receives the data before the
acknowledge signal, the data is not misinterpreted as the acknowledge signal
and lost. Additionally, the acknowledge signal is not generated until the data
is read from the data-receive register (DRR); the ’C3x does not transmit the
data and the acknowledge signal simultaneously.

12.2.14.2 CPU Transfer With Serial Port Transmit Polling Method

Example 12–6 sets up the CPU to transfer data (128 words) from an array buffer
to the serial port 0 output register when the previous value stored in the serial-
port output register has been sent. Serial port 0 is initialized to transmit 32-bit
data words with an internally generated frame sync and a bit-transfer rate of
8H1 cycles/bit.

Serial Ports

 12-44

Example 12–6. CPU Transfer With Serial Port Transmit Polling Method

* TITLE: CPU TRANSFER WITH SERIAL-PORT TRANSMIT POLLING METHOD
*
 .GLOBAL START
 .DATA
SOURCE .WORD _ARRAY
 .BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
 ; THE UNDERSCORE USED IS JUST TO MAKE IT
 ; ACCESSIBLE FROM C (OPTIONAL)
SPORT .WORD 808040H ; SERIAL-PORT GLOBAL CONTROL REG ADDRESS
SPRESET .WORD 008C0044 ; SERIAL-PORT RESET
SGCCTRL .WORD 048C0044H ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
SXCTRL .WORD 111H ; SERIAL-PORT TX PORT CONTROL REG INITIALIZA-
TION
STCTRL .WORD 00FH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002h ; SERIAL-PORT TIMER PERIOD
RESET .WORD 0H ; SERIAL-PORT TIMER RESET VALUE
 .TEXT
START LDP RESET ; LOAD DATA PAGE POINTER
 ANDN 10H,IE ; DISABLE SERIAL-PORT TRANSMIT INTERRUPT TO CPU

* SERIAL PORT INITIALIZATION
 LDI @SPORT,AR1
 LDI @RESET,R0
 LDI 4,IR0
 STI R0,*+AR1(IR0) ; SERIAL-PORT TIMER RESET
 LDI @SPRESET,R0
 STI R0,*AR1 ; SERIAL-PORT RESET
 LDI @SXCTRL,R0 ; SERIAL-PORT TX CONTROL REG INITIALIZATON
 STI R0,*+AR1(3)
 LDI @STPERIOD,R0 ; SERIAL–PORT TIMER PERIOD INITIALIZATION
 STI R0,*+AR1(6)
 LDI @STCTRL,R0 ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
 STI R0,*+AR1(4)
 LDI @SGCCTRL,R0 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
 STI R0,*AR1

* CPU WRITES THE FIRST WORD

 LDI @SOURCE,AR0
 LDI *AR0++,R1
 STI R1,*+AR1(8)

* CPU WRITES 127 WORDS TO THE SERIAL PORT OUTPUT REG

 LDI 8,IR0
 LDI 2,R0
 LDI 126,RC
 RPTB LOOP
WAIT AND *AR1,R0,R2 ; WAIT UNTIL XRDY BIT = 1
 BZ WAIT
LOOP STI R1,*+AR1(IR0)
 || LDI *++AR0(1),R1
 BU $
 .END

Serial Ports

12-45Peripherals

12.2.14.3 DMA Transfer With Serial Port Interrupt

Example 12–8 and Example 12–9 of Section 12.3.11 on page 12-74 use the
DMA synchronized to serial port interrupts to transfer data (128 words) from
an array buffer to the serial port0 output register.

12.2.14.4 Serial Analog Interface Chips Interface Example

The TLC320C4x analog interface chips (AIC) from Texas Instruments offer a
zero-glue-logic interface to the ’C3x family of DSPs. The interface is shown in
Figure 12–33 as an example of the ’C3x serial-port configuration and operation.

Figure 12–33. TMS320C3x Zero-Glue-Logic Interface to TLC320C4x Example

XF0
CLKR0
CLKX0

FSR0
DR0

FSX0
DX0

TCLK0

RESET
SCLK

FSR
DR
FSX
DX
MCLK

TMS320C3x TLC320C4x

WORD

OUT+
OUT–

IN+
IN–

VCC

Analog
Out

Analog
In

GND

The ’C3x resets the AIC through the external pin XF0. It also generates the
master clock for the AIC through the timer 0 output pin, TCLK0. (Precise selec-
tion of a sample rate may require the use of an external oscillator rather than
the TCLK0 output to drive the AIC MCLK input.) In turn, the AIC generates the
CLKR0 and CLKX0 shift clocks as well as the FSR0 and FSX0 frame synchro-
nization signals.

A typical use of the AIC requires an 8-kHz sample rate of the analog signal.
If the clock input frequency to the ’C3x device is 30 MHz, you should load the
following values into the serial port and timer registers.

Serial Port:
Port global-control register 0E970300h
FSX/DX/CLKX port-control register 00000111h
FSR/DR/CLKR port-control register 00000111h

Timer:
Timer global-control register 000002C1h
Timer-period register 00000001h

Serial Ports

 12-46

12.2.14.5 Serial Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Interface Example

The DSP201/2 and DSP101/2 family of D/As and A/Ds from Burr Brown also
offer a zero-glue-logic interface to the ’C3x family of DSPs. The interface is
shown in Example 12–7. This interface is used as an example of the ’C3x serial
port configuration and operation.

Example 12–7. TMS320C3x Zero-Glue-Logic Interface to Burr Brown A/D and D/A

± 2.75 V

± 2.75 V

+5 V+5 V CASC

XCLK

SINA

SINB

SYNC

SSF

SWL

CONV

VOUTA

VOUTB

± 3 V

± 3 V

Burr Brown DSP202 D/ABurr Brown DSP102 A/D

+5 V

+5 V

+5 V

CLKX0

DX0

FSX0

CLKR0

DR0

FSR0

CASC

XCLK

SOUTA

SYNC

SSF

CONV

VINA

VINB

1 MΩ

12.29 MHz

22 pF22 pF

OSC0

OSC1

’C3x

TCLK0

The DSP102 A/D is interfaced to the ’C3x serial-port receive side; the DSP202
D/A is interfaced to the transmit side. The A/Ds and D/As are hard-wired to run
in cascade mode. In this mode, when the ’C3x initiates a convert command to
the A/D via the TCLK0 pin, both analog inputs are converted into two 16-bit
words, which are concatenated to form one 32-bit word.

1) The A/D signals the ’C3x via the A/D’s SYNC signal (connected to the
FSR0 pin) that serial data is to be transmitted.

2) The 32-bit word is then serially transmitted, MSB first, out the SOUTA serial
pin of the DSP102 to the DR0 pin of the ’C3x serial port.

3) The ’C3x is programmed to drive the analog interface bit clock from the
CLKX0 pin of the ’C3x.

Serial Ports

12-47Peripherals

4) The bit clock drives both the A/D’s and D/A’s XCLK input.

5) The ’C3x transmit clock also acts as the input clock on the receive side of
the ’C3x serial port.

6) Since the receive clock is synchronous to the internal clock of the ’C3x, the
receive clock can run at full speed (that is, f(H1)/2).

Similarly, on receiving a convert command, the pipelined D/A converts the last
word received from the ’C3x and signals the ’C3x via the SYNC signal (connected
to the ’C3x FSX0 pin) to begin transmitting a 32-bit word representing the two
channels of data to be converted. The data transmitted from the ’C3x DX0 pin is
input to both the SINA and SINB inputs of the D/A as shown in Example 12–7.

The ’C3x is set up to transfer bits at the maximum rate of about 8 Mbps, with a
dual-channel sample rate of about 44.1 kHz. Assuming a 32-MHz CLKIN, you
can configure this standard-mode fixed-data-rate signaling interface by setting
the registers as described below:

Serial Port:
Port global-control register 0EBC0040h
FSX/DX/CLKX port-control register 00000111h
FSR/DR/CLKR port-control register 00000111h
Receive/transmit timer-control register 0000000Fh

Timer:
Timer global-control register 000002C1h
Timer-period register 000000B5h

DMA Controller

 12-48

12.3 DMA Controller

The DMA controller is a programmable peripheral that transfers blocks of data
to any location in the memory map without interfering with CPU operation. The
’C3x can interface to slow, external memories and peripherals without reducing
throughput to the CPU. The ’C3x DMA controller features are:

� Transfers to and from anywhere in the processor’s memory map. For
example, transfers can be made to and from on-chip memory, off-chip
memory, and on-chip serial ports.

� One DMA channel for memory-to-memory transfers in ‘C30 and ‘C31. Two
DMA channels for memory-to-memory transfers in ‘C32.

� Concurrent CPU and DMA controller operation with DMA transfers at the
same rate as the CPU (supported by separate internal DMA address and
data buses).

� Source and destination-address registers with auto increment/decrement.

� Synchronization of data transfers via external and internal interrupts.

12.3.1 DMA Functional Description

The DMA controller supports one (‘C30 and ‘C31) or two (‘C32) DMA channels
that perform transfers to and from anywhere in the ‘C3x memory map.

Each DMA channel is controlled by four registers that are mapped in the ‘C3x
peripheral address space, as shown in Figure 12–35. The major DMA registers
are described in Section 12.3.3.

The DMA controller has dedicated on-chip address and data buses (see
Figure 2–5 through Figure 2–7 on pages 2-14 through 2-16 for a block dia-
gram of the peripherals of the ‘C3x). All accesses made by the DMA channels
are arbitrated in the DMA controller and take place over these dedicated
buses. The DMA channels transfer data in a sequential time-slice fashion,
rather than simultaneously, because they share common buses.

The DMA channels can run constantly or can be triggered by external (INT3–0)
or internal (on-chip timers and serial ports) interrupts.

DMA Controller

12-49Peripherals

12.3.1.1 TMS320C30 and TMS320C31 DMA Controller

The ’C30 and ’C31 have an on-chip direct memory access (DMA) controller
that reduces the need for the CPU to perform input/output functions. The DMA
controller can perform input/output operations without interfering with the
operation of the CPU. Therefore, it is possible to interface the ’C30 and ’C31
to slow external memories and peripherals (A/Ds, serial ports, etc.) without
reducing the computational throughput of the CPU. The result is improved sys-
tem performance and decreased system cost.

12.3.1.2 TMS320C32 Two-Channel DMA Controller

The ’C32 has an improved DMA that supports two channels and configurable
priorities. The next sections discuss the new features.

The ’C32 has a two-channel (channel 0 and channel 1) DMA instead of a one-
channel DMA as in the ’C30/’C31 devices. The ’C32’s DMA functions similarly
to that of the ’C30/’C31 DMA but with the addition of DMA/CPU priority scheme
and inter-DMA priority mode. Although the ’C32 CPU supports both floating-
point and integer data access with different data size from the external
memory, the ’C32’s DMA transfer is strictly an integer data transfer. The integer
data access of the ’C32 DMA is the same as the CPU integer data access —
32-bit internal and data size conversion at the external memory interface port.

DMA Controller

 12-50

12.3.2 DMA Basic Operation

If a block of data is to be transferred from one region in memory to another region
in memory (as shown in Figure 12–34), the following sequence is performed:

DMA Registers Initialization

1) The source-address register of a DMA channel is loaded with the address
of the memory location to read from.

2) The destination-address register of the same DMA channel is loaded with
the address of the memory location to write to.

3) The transfer counter is loaded with the number of words to be transferred.

4) The DMA channel control register is loaded with the appropriate modes
to synchronize the DMA controller reads and writes with interrupts.

DMA Start

5) The DMA controller is started through the DMA START field in the DMA
channel control register.

Word Transfers

6) The DMA channel reads a word from the source-address register and
writes it to a temporary register within the DMA channel.

7) After a read by the DMA channel, the source-address register is increm-
ented, decremented, or unchanged depending on the INCSRC or
DECSRC bit fields of DMA channel control register.

8) After the read operation completes, the DMA channel writes the temporary
register value to the destination-address pointed to by the destination-
address register.

9) After the destination-address has been fetched, the transfer-counter reg-
ister is decremented and the destination-address register is incremented,
decremented, or unchanged, depending on the INCDST or DECDST bit
fields of the DMA channel control register.

10) During every data write, the transfer counter is decremented. The block
transfer terminates when the transfer counter reaches zero and the write
of the last transfer is completed. The DMA channel sets the transfer-counter
interrupt (TCINT) flag in the DMA channel control register.

DMA Controller

12-51Peripherals

After the completion of a block transfer, the DMA controller can be programmed
to do several things:

� Stop until reprogrammed (TC = 1)

� Continue transferring data (TC = 0)

� Generate an interrupt to signal the CPU that the block transfer is complete
(TCINT = 1)

The DMA can be stopped by setting the START bits to 00, 01, or 10. When the
DMA is restarted (START = 11), it completes any pending transfer.

Figure 12–34. DMA Basic Operation

Memory pointed to by DMA
source-address register

Memory pointed to by DMA
destination-address register

DMA
channel

Temporary register

External or Internal
 memory

External or Internal
 memory

12.3.3 DMA Registers

Each DMA channel has four registers designated as follows:

� Control register: contains the status and mode information about the
associated DMA channel

� Source-address register: contains the memory address of data to be
read

� Destination-address register: contains the memory address where data
is written

� Transfer-counter register: contains the block size to move

After reset, the control register, the transfer counter, and the auxiliary transfer-
counter registers are set to 0s and the other registers are undefined.

Figure 12–36 shows these registers for ’C30 and ’C31. Figure 12–37 shows
these registers for ’C32.

The format of the DMA-channel control register is shown in Figure 12–35. The
text following the figure describes the functions of each field in the register.

DMA Controller

 12-52

At reset, each DMA-channel control register is set to 0. This makes the DMA
channels lower-priority than the CPU, sets up the source address and destination
address to be calculated through linear addressing, and configures the DMA
channel in the unified mode.

Figure 12–35. Memory-Mapped Locations for DMA Channels

ÁÁÁÁÁ
ÁÁÁÁÁ

Address ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Register Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
808000h ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
DMA 0 global control Á

ÁÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
808004h ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
DMA 0 source address Á

ÁÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
808006h ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
DMA 0 destination address Á

ÁÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
808008h ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
DMA 0 transfer counter Á

ÁÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

808010h

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DMA 1 global control†
Á
Á
Á

ÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ808014h
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁDMA 1 source address†

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ808016h
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁDMA 1 destination address†

Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
808018h

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

DMA 1 transfer counter†
Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
Á
ÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

† ’C32 only

DMA Controller

12-53Peripherals

12.3.3.1 DMA Global-Control Register

The global-control register controls the state in which the DMA controller
operates. This register also indicates the status of the DMA, which changes
every cycle. Source and destination addresses can be incremented, decrem-
ented, or synchronized using specified global-control register bits. At system
reset, all bits in the DMA control register are cleared to 0. Figure 12–36 shows
the global-control registers for the ’C30 and ’C31 devices. Figure 12–37 and
Figure 12–38 show the global-control registers for the ’C32. Table 12–6 shows
the register bits, bit names, and bit functions.

Figure 12–36. TMS320C30 and TMS320C31 DMA Global-Control Register

DECSRCDECDST

31

xx TCINT TC INCDST

15 14 12 11 10 9 8 7 6 5 4 3 2 1 0

INCSRC START

R/W R/W R/W R/W R/W R R/W

xx

R/W

SYNC STAT

R/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Figure 12–37. TMS320C32 DMA0 Global-Control Register

PRIORITY
MODE

DMAO
PRI

DECSRCDECDST

31

TCINT TC INCDST

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INCSRC START

R/W R/W R/W R/W R/W R R/W

xx

R/W

SYNC STAT

R/W

14

R/WR/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Figure 12–38. TMS320C32 DMA1 Global-Control Register

xx
DMA1
PRI DECSRCDECDST

31

TCINT TC INCDST

15 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INCSRC START

R/W R/W R/W R/W R/W R R/W

xx

R/W

SYNC STAT

R/W

14

R/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

DMA Controller

 12-54

Table 12–6. DMA Global-Control Register Bits Summary

Abbreviation
Reset
Value Name Description

START 00 DMA start control Controls the state in which the DMA starts and stops. The
DMA may be stopped without any loss of data.

The following table summarizes the START bits and DMA
operation:

Bit 1 Bit 0 Function

0 0 DMA read or write cycles in progress are
completed; any data read is ignored. Any
pending read or write is cancelled. The
DMA is reset so that when it starts, a new
transaction begins; that is, a read is per-
formed (Reset value).

0 1 If a read or write has begun, it is completed
before it stops. If a read or write has not
begun, no read or write is started.

1 0 If a DMA transfer has begun, the entire
transfer is complete (including both read
and write operations) before stopping. If a
transfer has not begun, none is started.

1 1 DMA starts from reset or restarts from the
previous state.

When the DMA completes a transfer, the START bits remain
in 11 (base 2). The DMA starts when the START bits are set
to 11 and one of the following conditions applies:

� The transfer counter is set to a value different from 0x0.

� The TC bit is set to 0.

STAT 00 DMA status Indicates the status of the DMA and changes every cycle.

The following table summarizes the STAT bits and DMA status.

Bit 3 Bit 2 Function

0 0 The DMA is being held between DMA
transfer (between a write and a read). This
is the value at reset.

0 1 DMA is being held in the middle of a DMA
transfer (between a read and a write).

1 0 Reserved.

1 1 DMA busy. DMA is performing a read or
write or waiting for a source or destination
synchronization interrupt.

DMA Controller

12-55Peripherals

Table 12–6. DMA Global-Control Register Bits Summary (Continued)

Abbreviation
Reset
Value Name Description

INCSRC 0 DMA source address
increment mode

If INCSRC = 1, the source address is incremented after every
read.

DECSRC 0 DMA source address
decrement mode

If DECSRC = 1, the source address is decremented after
every read.

If INCSRC = DECSRC, the source address is not modified
after a read.

INCDST 0 DMA destination
address increment
mode

If INCDST = 1, the destination address is incremented after
every write.

DECDST 0 DMA destination
address decrement
mode

If DECDST = 1, the destination address is decremented after
every write.

If INCDST = DECDST, the destination address is not modified
after a write.

SYNC 0 DMA synchronization
mode

Determines the timing synchronization between the events
initiating the source and destination transfers.

The following table summarizes the SYNC bits and DMA
synchronization.

Bit 9 Bit 8 Function

0 0 No synchronization. Enabled interrupts
are ignored (reset value).

0 1 Source synchronization. A read is per-
formed when an enabled interrupt occurs.

1 0 Destination synchronization. A write is per-
formed when an enabled interrupt occurs.

1 1 Source and destination synchronization. A
read is performed when an enabled interrupt
occurs. A write is then performed when the
next enabled interrupt occurs.

TC 0 DMA transfer mode Affects the operation of the transfer counter.

If TC = 0, transfers are not terminated when the transfer
counter becomes 0.

If TC = 1, transfers are terminated when the transfer
counter becomes 0.

TCINT 0 DMA transfer counter
interrupt mode

If TCINT = 1, the DMA interrupt is set when the transfer
counter makes a transition to 0.

If TCINT = 0, the DMA interrupt is not set when the transfer
counter makes a transition to 0.

DMA Controller

 12-56

Table 12–6. DMA Global-Control Register Bits Summary (Continued)

Abbreviation
Reset
Value Name Description

DMA0 PRI 00 CPU/DMA channel 0
priority mode

(on the DMA0 control register) (’C32 only)

DMA1 PRI
00 CPU/DMA channel 1

priority mode
(on the DMA1 control register) (‘C32 only)

Configures CPU/DMA controller priority. (See Section 12.3.6
on page 12-63).

The following table explains the DMA PRI bits and CPU/
DMA priorities.

Bit 13 Bit 12 Function

0 0 DMA has lower priority than the CPU
access. If the DMA channel and the CPU
are requesting the same resource, the
CPU has priority (reset value).

0 1 Reserved.

1 0 Rotating arbitration, which sets priorities
be tween the CPU and DMA channel by
alternating their accesses (but not exactly
equally). Priority rotates between the CPU
and DMA accesses when they conflict
during consecutive instruction cycles.

1 1 DMA has higher priority than the CPU
access. Ift he DMA channel and the CPU
are requesting the same resource, the
DMA has priority.

PRIORITY
MODE

0 DMA channels priority
mode

If PRIORITY MODE = 0, fixed priority for the two DMA chan-
nels. DMA channel 0 always has priority over DMA channel 1.

If priority mode = 1, rotating priority for the two DMA channels.
DMA channel 0 has priority after the device is reset. After
reset, the last channel serviced has the lowest priority. The ar-
bitration is performed at DMA service boundaries, that is,
after either a DMA read or DMA write.

See Section 12.3.5 on page 12-62 for more information.

DMA Controller

12-57Peripherals

12.3.3.2 Destination-Address and Source-Address Registers

The DMA destination-address and source-address registers are 24-bit registers
whose contents specify destination and source addresses. As specified by
control bits DECSRC, INCSRC, DECDST, and INCDST of the DMA global-
control register, these registers are incremented, decremented, or remain
unchanged at the end of the corresponding memory access; that is, the source
register for a read and the destination register for a write (see Figure 12–39).
On system reset, 0 is written to these registers.

Figure 12–39. DMA Controller Address Generation

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DMA destination-address register

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

DMA source-address register

DMA
address

bus

DMA
address

bus
INCSRC
DECSRC

0 1 –1

0 1 –1
INCDST
DECDST

DMA destination-address
generator

DMA source-address
generator

DMA Controller

 12-58

12.3.3.3 Transfer-Counter Register

The transfer-counter register is a 24-bit register that contains the number of
words to be transmitted. Figure 12–40 shows the transfer-counter operation.
It is controlled by a 24-bit counter that decrements at the beginning of a DMA
memory write. In this way, it can control the size of a block of data transferred.
The transfer-counter register is set to 0 at system reset. When the TCINT bit
of the DMA global-control register is set, the transfer-counter register causes
a DMA interrupt flag to be set when 0 is reached.

The counter is decremented after completing the destination-address fetch.
The interrupt is generated after the transfer counter is decremented and after
the completion of the write of the last transfer.

The decrementer checks whether the transfer counter equals 0 after the decre-
ment is performed. As a result, if the counter register has a value of 1, then the
DMA channel can be halted after only one transfer is performed. Thus, by set-
ting the transfer counter to 1, the DMA channel transfers the minimum possible
number of words (1 time). The value of the transfer counter is treated as an un-
signed integer. Transfers can be halted when a 0 value is detected after a decre-
ment. If the DMA controller channel is not halted after the transfer reaches zero,
the counter continues decrementing below 0. Thus, by setting the transfer
counter to 0, the DMA channel transfers the maximum possible number of
words (100 0000h times).

DMA Controller

12-59Peripherals

Figure 12–40. Transfer-Counter Operation

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Halt

?
TC=1

Is

DMA interrupt generated

?
TCINT=1

Is

?
to 0

Compare

Decrementer

Transfer-counter register

Yes

Yes

No

No

Yes

No

12.3.4 CPU/DMA Interrupt-Enable Register

The CPU/DMA interrupt-enable register (IE) is a 32-bit register located in the
CPU register file. The CPU interrupt-enable bits are in locations 10–1. The DMA
interrupt-enable bits are in locations 26–16. A 1 in a CPU/DMA interrupt-enable
register bit enables the corresponding interrupt. A 0 disables the corresponding
interrupt. At reset, 0 is written to this register.

Figure 12–41 shows the CPU/DMA interrupt-enable registers for the ‘C30 and
‘C31. Figure 12–42 shows the CPU/DMA interrupt-enable register for the ‘C32.
Table 12–7 describes the register bits, bit names, and bit functions.

DMA Controller

 12-60

Figure 12–41. TMS320C30 and TMS320C31 CPU/DMA
Interrupt-Enable Register

xx
EDINT ETINT1 ETINT0 ERINT1 EXINT1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

xxxxxxxx
ERINT0 EXINT0 EINT3 EINT2 EINT1 EINT0

(DMA) (DMA) (DMA)(DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA) (DMA)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

xx
EDINT ETINT1 ETINT0 ERINT1 EXINT1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xxxxxxxx
ERINT0 EXINT0 EINT3 EINT2 EINT1 EINT0

(CPU) (CPU) (CPU)(CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU) (CPU)

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

Figure 12–42. TMS320C32 CPU/DMA Interrupt-Enable Register

EDINT1
(CPU) xxxx

ETINT0
(CPU)

ETINT1
(CPU)

EDINT0
(CPU)

EINT0
(CPU)

EINT3

(DMA1)

ETINT1

(DMA1)

EXINT0

(DMA0)

EINT1

(DMA0)

EINT2

(DMA1)

ETINT1

(DMA0)

EDINT1

(DMA0)

ETINT0

(DMA1)

ERINT0

(DMA1)

EINT3

(DMA0)

EINT2

(DMA0)

EINT0

(DMA0)

EINT1

(DMA1)

EINT0

(DMA1)

EDINT0

(DMA1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xxxx

R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

ETINT0

(DMA0)

R/WR/WR/WR/WR/W

EINT1
(CPU)

EINT2
(CPU)

EINT3
(CPU)

EXINT0
(CPU)

xx xx ERINT0
(CPU)

Notes: 1) R = read, W = write

2) xx = reserved bit, read as 0

DMA Controller

12-61Peripherals

Table 12–7. CPU/DMA Interrupt-Enable Register Bits

Abbreviation
Reset
Value Description

EINT0 (CPU) 0 CPU external interrupt 0 enable

EINT1 (CPU) 0 CPU external interrupt 1 enable

EINT2 (CPU) 0 CPU external interrupt 2 enable

EINT3 (CPU) 0 CPU external interrupt 3 enable

EXINT0 (CPU) 0 CPU serial port 0 transmit interrupt enable

ERINT0 (CPU) 0 CPU serial port 0 receive interrupt enable

EXINT1 (CPU) 0 CPU serial port 1 transmit interrupt enable (’C30 only)

ERINT1 (CPU) 0 CPU serial port 1 receive interrupt enable (’C30 only)

ETINT0 (CPU) 0 CPU timer0 interrupt enable

ETINT1 (CPU) 0 CPU timer1 interrupt enable

EDINT (CPU) 0 CPU DMA controller interrupt enable (’C30 and ’C31 only)

EDINT0 (CPU) 0 CPU DMA0 controller interrupt enable (’C32 only)

EDINT1 (CPU) 0 CPU DMA1 controller interrupt enable (’C32 only)

EINT0 (DMA) 0 DMA external interrupt 0 enable (’C30 and ’C31 only)

EINT1 (DMA) 0 DMA external interrupt 1 enable (’C30 and ’C31 only)

EINT2 (DMA) 0 DMA external interrupt 2 enable (’C30 and ’C31 only)

EINT3 (DMA) 0 DMA external interrupt 3 enable (’C30 and ’C31 only)

EINT0 (DMA0) 0 DMA0 external interrupt 0 enable (’C32 only)

EINT1 (DMA0) 0 DMA0 external interrupt 1 enable (’C32 only)

EINT2 (DMA0) 0 DMA0 external interrupt 2 enable (’C32 only)

EINT3 (DMA0) 0 DMA0 external interrupt 3 enable (’C32 only)

EXINT0 (DMA) 0 DMA serial port 0 transmit interrupt enable
(’C30 and ’C31 only)

ERINT0 (DMA) 0 DMA serial port 0 receive interrupt enable
(’C30 and ’C31 only)

EXINT1 (DMA) 0 DMA serial port 1 transmit interrupt enable (’C30 only)

ERINT1 (DMA) 0 DMA serial port 1 receive interrupt enable (’C30 only)

EXINT0 (DMA0) 0 DMA0 serial port 1 transmit interrupt enable (’C32 only)

ERINT0 (DMA1) 0 DMA1 serial port 1 receive interrupt enable (’C32 only)

DMA Controller

 12-62

Table 12–7. CPU/DMA Interrupt-Enable Register Bits (Continued)

Abbreviation Description
Reset
Value

ETINT0 (DMA) 0 DMA timer0 interrupt enable (’C30 and ’C31)

ETINT1 (DMA) 0 DMA timer1 interrupt enable (’C30 and ’C31 only)

ETINT0 (DMA0) 0 DMA0 timer1 interrupt enable (’C32 only)

ETINT1 (DMA0) 0 DMA0 timer1 interrupt enable (’C32 only)

ETINT0 (DMA1) 0 DMA1 timer0 interrupt enable (’C32 only)

ETINT1 (DMA1) 0 DMA1 timer1 interrupt enable (’C32 only)

EDINT (DMA) 0 DMA controller interrupt enable (’C30 and ’C31)

EDINT1 (DMA0) 0 DMA0-DMA1 controller interrupt enable (’C32 only)

EDINT0 (DMA1) 0 DMA1-DMA0 controller interrupt enable (’C32 only)

EINT0 (DMA1) 0 DMA1 external interrupt 0 enable (’C32 only)

EINT1 (DMA1) 0 DMA1 external interrupt 1 enable (’C32 only)

EINT2 (DMA1) 0 DMA1 external interrupt 2 enable (’C32 only)

EINT3 (DMA1) 0 DMA1 external interrupt 2 enable (’C32 only)

12.3.5 TMS320C32 DMA Internal Priority Schemes

Because all accesses made by the two DMA channels take place over one
common internal DMA data and address bus, a priority scheme for bus arbitra-
tion is required. Within the DMA controller, two priority schemes are used to
designate which channel is serviced next:

� A fixed priority scheme with channel 0 always having the highest priority
and channel 1 the lowest

� A rotating priority scheme that places the most recently serviced channel
at the bottom of the priority list (default setup after reset)

12.3.5.1 Fixed Priority Scheme

This scheme provides a fixed (unchanging) priority for each channel as follows:

Priority Channel

Highest 0

Lowest 1

To select fixed priority, set the PRIORITY MODE bit (bit 14) of channel 0’s
DMA-channel control register to 1.

DMA Controller

12-63Peripherals

12.3.5.2 Rotating Priority Scheme

In a rotating priority scheme, the last channel serviced becomes the lowest
priority channel. The other channel sequentially rotates through the priority list
with the lowest channel next to the last-serviced channel becoming the highest
priority on the following request. The priority rotates every time the channel
most recently granted priority completes its access. At system reset, the
channels are ordered from highest to lowest priority (0, 1).

To select this scheme, set the PRIORITY MODE bit (bit 14) of channel 0’s DMA
control register to 0.

12.3.6 CPU and DMA Controller Arbitration

The DMA controller transfers data on its own internal buses. Arbitration is neces-
sary only when a resource conflict exists between the DMA controller and the
CPU. The arbitration causes no delay. When there is no conflict, the CPU and
DMA controller accesses proceed in parallel.

All arbitration between the CPU and the DMA controller is on an access basis.
DMA controller internal memory access starts during H3 (see Section 8.5,
Clocking Memory Access, for more information).

When the CPU and DMA controllers request the same resource, priority is
determined as follows:

� For the ‘C30 and ‘C31, the CPU always has higher priority, thus the DMA
must wait until the CPU frees the resource.

� For the ‘C32, the DMA channel’s DMA PRI bits (bits 12 and 13 of the channel
control register) define the arbitration rules (as shown in Table 12–8). The
CPU has higher priority than the DMA when DMA PRI = 002; it has lower
priority than the DMA when DMA PRI = 112. They rotate priority when DMA
PRI = 012.

DMA Controller

 12-64

Table 12–8.TMS320C32 DMA PRI Bits and CPU/DMA Arbitration Rules

DMA PRI
(Bits 13–12) Description

0 0 DMA access is lower priority than the CPU access. If the DMA
channel and the CPU request the same resource, then the CPU
has priority. (DMA PRI bits are set to 002 at reset.)

0 1 This setting selects rotating arbitration, which sets priorities between
the CPU and DMA channel by alternating their accesses, but not
exactly equally. Priority rotates between CPU and DMA accesses
when they conflict during consecutive instruction cycles. The first
time the DMA channel and the CPU request the same resource,
the CPU has priority. If, in the following instruction cycle, the DMA
controller and the CPU again request the same resource, the DMA
has priority. Alternate access continues as long as the CPU and
DMA requests conflict in consecutive instruction cycles. When
there is no conflict in a previous instruction cycle, the CPU has
priority.

1 0 Reserved

1 1 DMA access is higher priority than the CPU access. If the DMA
channel and the CPU request the same resource, the DMA has
priority.

12.3.7 DMA and Interrupts

The DMA controller uses interrupts in the following way:

� It can send interrupts to the CPU or other DMA channel when a block
transfer finishes. See the TCINT bit field in the DMA global-control register
(Figure 12–36, Figure 12–37, or Figure 12–38 on page 12-53). The
EDINT bit field (’C30 and ’C31) or the EDINT0 and EDINT1 bit fields (’C32)
in the interrupt-enable register must be set to allow the CPU to be inter-
rupted by the DMA.

� It can receive interrupts from the external interrupt pins (INT3–0), the
timers, the serial ports, or other DMA channel.

This section explains how the DMA receives interrupts. This process is called
synchronization.

All of the interrupts that the DMA controller receives are detected by the CPU
interrupt controller and latched by the CPU in the appropriate interrupt-flag
register.

DMA Controller

12-65Peripherals

The DMA and the CPU can respond to the same interrupt if the CPU is not
involved in any pipeline conflict or in any instruction that halts instruction fetching.
Refer to section 7.6.2, Interrupt Vector Table and Prioritization, on page 7-29 for
more details. It is also possible for different DMA channels to respond to the same
interrupt. If the same interrupt is selected for source and destination synchroniza-
tion, both read and write cycles are enabled with a single incoming interrupt.

12.3.7.1 Interrupts and Synchronization of DMA Channels

You can use interrupts to synchronize DMA channels. This section describes
the following four synchronization mechanisms:

� No synchronization (SYNC = 0 0)

When SYNC = 0 0, no synchronization is performed. The DMA performs
reads and writes whenever there are no conflicts. All interrupts are ignored
and are considered to be globally disabled. However, no bits in the DMA
interrupt-enable register are changed. Figure 12–43 shows the synchro-
nization mechanism when SYNC = 0 0.

Figure 12–43. Mechanism for No DMA Synchronization

Start

DMA channel performs a read

DMA channel performs a write

Go to start

� Source synchronization (SYNC = 0 1)

When SYNC = 0 1, the DMA is synchronized to the source (see
Figure 12–44). A read is not performed until an interrupt is received by the
DMA. Then all DMA interrupts are disabled globally. However, no bits in
the DMA interrupt-enable register are changed.

DMA Controller

 12-66

Figure 12–44. Mechanism for DMA Source Synchronization

Start

Disable DMA interrupts globally

DMA channel performs a read

DMA channel performs a write

Go to start

Enable DMA interrupts globally

Idle until enabled interrupt is received

Clear corresponding IF bit

� Destination synchronization (SYNC = 1 0)

When SYNC = 1 0, the DMA is synchronized to the destination. First, all
interrupts are ignored until the read is complete. Though the DMA interrupts
are considered globally disabled, no bits in the DMA interrupt-enable regis-
ter are changed. A write is not performed until an interrupt is received by the
DMA, while the read is performed without waiting for the interrupt.
Figure 12–45 shows the synchronization mechanism when SYNC = 1 0.

Figure 12–45. Mechanism for DMA Destination Synchronization

Start

Disable DMA interrupts globally

DMA channel performs a read

DMA channel performs a write

Go to start

Idle until enabled interrupt is received

DMA interrupts are enabled globally

Clear corresponding IF bit

DMA Controller

12-67Peripherals

� Source and destination synchronization (SYNC = 1 1)

When SYNC = 1 1, the DMA is synchronized to both the source and
destination. A read is performed when an interrupt is received. Then, a
write is performed on the following interrupt. Figure 12–46 shows source
and destination synchronization when SYNC = 1 1.

Figure 12–46. Mechanism for DMA Source and Destination Synchronization

Start

Disable DMA interrupts globally

DMA channel performs a read

DMA channel performs a write

Go to start

Idle until enabled interrupt is received

Enable DMA interrupts globally

Idle until enabled interrupt is received

Disable DMA interrupts globally

Enable DMA interrupts globally

Clear corresponding IF bit

Clear corresponding IF bit

12.3.8 DMA Memory Transfer Timing

The ’C30 and ’C31 devices provide one DMA channel, while the ’C32 device
provides two DMA channels. The maximum data transfer rate that the ’C3x
DMA sustains is one word every two cycles. In the ’C32, the two DMA channels
transfer data in a sequential time-slice fashion, rather than simultaneously,
because the two channels share one common set of busses.

DMA Controller

 12-68

The data transfer rate for a DMA channel (assuming a single-channel access
with no conflicts between CPU or other DMA channels) is as follows:

� On-chip memory and peripheral

� DMA read: One cycle
� DMA write: One cycle

� External memory (STRB, STRB0, STRB1, MSTRB)

� DMA read: Two cycles (one cycle external read followed by one
cycle load of internal DMA register)

� DMA write: Two cycles (identical to CPU write)

� External memory (IOSTRB)

� DMA read: Three cycles (two-cycle external read followed by one
cycle load of internal DMA register)

� DMA write: Two cycles (identical to CPU write)

If the DMA started and is transferring data over either external bus, do not
modify the bus-control register associated with that bus. If you must modify the
bus-control register (see Chapter 9 or 10), stop the DMA, make the modifica-
tion, and then restart the DMA. Failure to do this may produce an unexpected
zero-wait-state bus access.

DMA memory transfer timing can be very complicated, especially if bus resource
conflicts occur. However, some rules help you calculate the transfer timing for
certain DMA setups. For simplification, the following section focuses on a single-
channel DMA memory transfer timing with no conflict with the CPU or other
DMA channels. You can obtain the actual DMA transfer timing by combining the
calculations for single-channel DMA transfer timing with those for bus resource
conflict situations.

12.3.8.1 Single DMA Memory Transfer Timing

When the DMA memory transfer has no conflict with the CPU or any other
DMA channels, the number of cycles of a DMA transfer depends on whether
the source and destination location are designated as on-chip memory,
peripheral, or external ports. When the external port is used, the DMA transfer
speed is affected by two factors: the external bus wait state and the read/write
conflict (for example, if a write is followed by a read, the read takes one extra
half-cycle. See Figure 12–48 footnote on page 12-70). Figure 12–47 through
Figure 12–49 show the number of cycles a DMA transfer requires from different
sources to different destinations. Entries in the table represent the number of
cycles required to do the T transfers, assuming that there are no pipeline conflicts.
A timing diagram for the DMA transfers accompanies each figure.

DMA Controller

12-69Peripherals

F
ig

ur
e

12
–4

7.
D

M
A

 T
im

in
g

W
he

n
D

es
tin

at
io

n
is

 O
n

C
hi

p

C
yc

le
s

(H
1)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

R
at

e

S
ou

rc
e

on
 c

hi
p

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

(1
+

1)
T

D
es

tin
at

io
n

on
 c

hi
p

W
1

W
2

W
3

W
4

W
5

W
6

W
7

(1
 +

 1
)

T

S
ou

rc
e

S
T

R
B

S
T

R
B

0
S

T
R

B
1

M
S

T
R

B
bu

s
R

1
R

1
R

1
I

R
2

R
2

R
2

I
R

3
R

3
R

3
I

(2
C

1)
T

S
ou

rc
e

S
T

R
B

, S
T

R
B

0,
 S

T
R

B
1,

 M
S

T
R

B
 b

us
C

r
C

r
C

r
(2

 +
 C

r
+

1)
 T

D
es

tin
at

io
n

on
 c

hi
p

W
1

W
2

W
3

S
ou

rc
e

IO
S

T
R

B
bu

s
R

1
R

1
R

1
R

1
I

R
2

R
2

R
2

R
2

I
R

3
R

3
R

3
R

3
I

(3
C

1)
T

S
ou

rc
e

IO
S

T
R

B
 b

us
C

r
C

r
C

r
(3

 +
 C

r
+

 1
)

T

D
es

tin
at

io
n

on
 c

hi
p

W
1

W
2

W
3

Le
ge

nd
:

T
=

N
um

be
r o

f t
ra

ns
fe

rs
W

=
S

in
gl

e-
cy

cl
e

w
rit

es
C

r
=

S
ou

rc
e-

re
ad

 w
ai

t s
ta

te
s

R
n

=
M

ul
tic

yc
le

 re
ad

s
C

w
=

D
es

tin
at

io
n-

w
rit

e
w

ai
t s

ta
te

s
W

n
=

M
ul

tic
yc

le
 w

rit
es

R
=

S
in

gl
e-

cy
cl

e
re

ad
s

I
=

In
te

rn
al

 r
eg

is
te

r
cy

cl
e

DMA Controller

12-70

F
ig

ur
e

12
–4

8.
D

M
A

 T
im

in
g

W
he

n
D

es
tin

at
io

n
is

 a
n

S
T

R
B

, S
T

R
B

0,
 S

T
R

B
1,

 M
S

T
R

B
 B

us

C
yc

le
s

(H
1)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
R

at
e

S
ou

rc
e

on
 c

hi
p

R
1

R
2

R
3

R
4

R
5

(1
2

C
)

T
D

es
tin

at
io

n
S

TR
B

,
S

TR
B

0,

W
1

W
1

W
1

W
1

W
2

W
2

W
2

W
2

W
3

W
3

W
3

W
3

W
4

W
4

W
4

W
4

. .
 .

(1
 +

 2
 +

 C
w

)
T

,
S

TR
B

1,
M

S
TR

B
bu

s
C

w
C

w
C

w
C

w

S
ou

rc
e

S
TR

B
,

S
TR

B
0,

R
1

R
1

R
1

I
R

2
R

2
R

2
I

(2
C

2
C

)
T

0
5

(T
1)
�

S
TR

B
0,

S
T

R
B

1
bu

s
C

r
C

r
(2

 +
 C

r
+

 2
 +

 C
w

)
T

 +
 0

.5
 (T

 –
 1

)�

D
es

tin
at

io
n

S
TR

B
,

W
1

W
1

W
1

W
1

W
2

W
2

W
2

W
2

. .
 .

S
TR

B
,

S
TR

B
0,

S
TR

B
1

bu
s

C
w

C
w

(3
.5

 +
 C

r
+

 2
 +

 C
w

)
T

 +
 .5

 (T
 –

 1
)�

(’C
30

 o
nl

y)
S

ou
rc

e
R

1
R

1
R

1
R

1
I

R
2

R
2

R
2

R
2

I
R

3
R

3
R

3
R

3
I

R
4

R
4

R
4

R
4

(3
C

2
C

)
(2

C
[1

C
C

1]
)

S
ou

rc
e

IO
S

TR
B

C
r

C
r

C
r

C
r

(3
 +

 C
r

+
 2

 +
 C

w
)

+
 (2

 +
 C

w
 +

 m
ax

[1
, C

r
–

C
w

 +
 1

])
(T

–1
)

D
es

tin
at

io
n

S
TR

B
b

W
1

W
1

W
1

W
1

W
2

W
2

W
2

W
2

W
3

W
3

W
3

W
3

(T
–1

)

S
TR

B
 b

us
C

w
C

w
C

w

Le
ge

nd
:

T
=

N
um

be
r

of
 tr

an
sf

er
s

W
=

S
in

gl
e-

cy
cl

e
w

rit
es

C
r

=
S

ou
rc

e-
re

ad
 w

ai
t s

ta
te

s
R

n
=

M
ul

tic
yc

le
 re

ad
s

C
w

=
D

es
tin

at
io

n-
w

rit
e

w
ai

t s
ta

te
s

W
n

=
M

ul
tic

yc
le

 w
rit

es
R

=
S

in
gl

e-
cy

cl
e

re
ad

s
I

=
In

te
rn

al
 r

eg
is

te
r

cy
cl

e

†
W

rit
e

fo
llo

w
ed

 b
y

re
ad

 in
cu

rs
 in

 o
ne

 e
xt

ra
 h

al
f-c

yc
le

.

DMA Controller

12-71Peripherals

F
ig

ur
e

12
–4

8.
D

M
A

 T
im

in
g

W
he

n
D

es
tin

at
io

n
is

 a
n

S
T

R
B

, S
T

R
B

0,
 S

T
R

B
1,

 M
S

T
R

B
 B

us
 (

C
on

tin
ue

d)

C
yc

le
s

(H
1)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

R
at

e

S
ou

rc
e

IO
S

TR
B

R
1

R
1

R
1

R
1

I
R

2
R

2
R

2
R

2
I

(3
C

2
C

)
T

0
5

(T
1)

†

IO
S

TR
B

bu
s

C
w

C
w

(3
C

2
C

)
T

0
5

(T
1)

†
D

es
tin

at
io

n
S

TR
B

0,
S

TR
B

1,
 o

r
M

S
TR

B
bu

s

W
1

W
1

W
1

W
1

W
2

W
2

W
2

W
2

(3
 +

 C
r

+
 2

 +
 C

w
)

T
 +

 0
.5

 (T
 –

 1
)†

C
w

C
w

(’C
30

 o
nl

y)
S

ou
rc

e
S

TR
B

 b
us

R
1

R
1

R
1

I
R

2
R

2
R

2
I

R
3

R
3

R
3

I

(2
C

2
C

)
(2

C
[1

C
C

1]
)

C
r

C
r

C
r

(2
 +

 C
r

+
 2

 +
 C

w
)

+
 (2

 +
 C

w
 +

 m
ax

[1
, C

r
–

C
w

 +
 1

])
(T

1)
D

es
tin

at
io

n
M

S
TR

B
bu

s
W

1
W

1
W

1
W

1
W

2
W

2
W

2
W

2
W

3
W

3
W

3
W

3

(
r

w
)

(
w

r
w

)
(T

–1
)

C
w

C
w

C
w

Le
ge

nd
:

T
=

N
um

be
r

of
 tr

an
sf

er
s

W
=

S
in

gl
e-

cy
cl

e
w

rit
es

C
r

=
S

ou
rc

e-
re

ad
 w

ai
t s

ta
te

s
R

n
=

M
ul

tic
yc

le
 re

ad
s

C
w

=
D

es
tin

at
io

n-
w

rit
e

w
ai

t s
ta

te
s

W
n

=
M

ul
tic

yc
le

 w
rit

es
R

=
S

in
gl

e-
cy

cl
e

re
ad

s
I

=
In

te
rn

al
 r

eg
is

te
r

cy
cl

e

†
W

rit
e

fo
llo

w
ed

 b
y

re
ad

 in
cu

rs
 in

 o
ne

 e
xt

ra
 h

al
f-c

yc
le

.

DMA Controller

12-72

F
ig

ur
e

12
–4

9.
D

M
A

 T
im

in
g

W
he

n
D

es
tin

at
io

n
is

 a
n

IO
S

T
R

B
 B

us

C
yc

le
s

(H
1)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

R
at

e

S
ou

rc
e

on
 c

hi
p

R
1

R
2

R
3

R
4

R
5

D
es

tin
at

io
n

IO
S

T
R

B
W

1
W

1
W

1
W

1
W

2
W

2
W

2
W

2
W

3
W

3
W

3
W

3
W

4
W

4
W

4
W

4
1

+
 (

2
+

 C
w

)
T

D
es

tin
at

io
n

IO
S

T
R

B
C

w
C

w
C

w
C

w
1

+
 (

2
+

 C
w

)
T

(’C
30

 o
nl

y)
S

ou
rc

e
S

TR
B

 b
us

R
1

R
1

R
1

I
R

2
R

2
R

2
I

R
3

R
3

R
3

I

(2
C

2
C

)
(2

C
C

r
C

r
C

r
(2

 +
 C

r
+

 2
 +

 C
w

)
+

 (
2

+
 C

w
 +

m
ax

 (
1,

 C
r

–
C

w
 +

 1
))

 (
T

 –
 1

)

D
es

tin
at

io
n

IO
S

T
R

B
 b

us
W

1
W

1
W

1
W

1
W

2
W

2
W

2
W

2
W

3
W

3
W

3
W

3

m
ax

 (
1,

 C
r

–
C

w
 +

 1
))

 (
T

 –
 1

)

D
es

tin
at

io
n

IO
S

T
R

B
 b

us
C

w
C

w
C

w

S
ou

rc
e

S
T

R
B

0,
 S

T
R

B
1,

M
S

T
R

B
 b

us
R

1
R

1
R

1
I

R
2

R
2

R
2

I

C
r

C
r

(2
+

C
+

2
+

C
)

T
+

(T
1)
�

D
es

tin
at

io
n

IO
S

T
R

B
W

1
W

1
W

1
W

1
W

2
W

2
W

2
W

2
(2

 +
 C

r
+

 2
 +

 C
w

)
T

 +
 (

T
–1

)�

C
w

C
w

Le
ge

nd
:

T
=

N
um

be
r

of
 tr

an
sf

er
s

W
=

S
in

gl
e-

cy
cl

e
w

rit
es

C
r

=
S

ou
rc

e-
re

ad
 w

ai
t s

ta
te

s
R

n
=

M
ul

tic
yc

le
 re

ad
s

C
w

=
D

es
tin

at
io

n-
w

rit
e

w
ai

t s
ta

te
s

W
n

=
M

ul
tic

yc
le

 w
rit

es
R

=
S

in
gl

e-
cy

cl
e

re
ad

s
I

=
In

te
rn

al
 r

eg
is

te
r

cy
cl

e

†
W

rit
e

fo
llo

w
ed

 b
y

re
ad

 in
cu

rs
 in

 o
ne

 e
xt

ra
 c

yc
le

.

DMA Controller

12-73

12.3.9 DMA Initialization/Reconfiguration

You can control the DMA through memory-mapped registers located on the
dedicated peripheral bus. Following is the general procedure for initializing
and/or reconfiguring the DMA:

1) Halt the DMA by clearing the START bits of the DMA global-control register.
You can do this by writing a 0 to the DMA global-control register. The DMA
is halted on RESET.

2) Configure the DMA through the DMA global-control register (with
START = 00), as well as the DMA source, destination, and transfer-
counter registers, if necessary. Refer to Section 12.3.11 on page 12-74
for more information.

3) Start the DMA by setting the START bits of the DMA global-control register
as necessary.

12.3.10 Hints for DMA Programming

The following hints help you to improve your DMA programming and avoid un-
expected results:

� Reset the DMA register before starting it. This clears any previously
latched interrupt that may no longer exist.

� In the event of a CPU-DMA access conflict, the CPU always prevails. Care-
fully allocate the different sections of the program in memory for faster
execution. If a CPU program access conflicts with a DMA access, enabling
the cache helps if the program is located in external memory. DMA on-chip
access happens during the H3 phase.

Note: Expansion and Peripheral Buses

The expansion and peripheral buses cannot be accessed simultaneously
because they are multiplexed into a common port (see Figure 2–1 on
page 2-3). This might increase CPU-DMA access conflicts.

� Ensure that each interrupt is received when you use interrupt synchroniza-
tion; otherwise, the DMA will never complete the block transfer.

� Use read/write synchronization when reading from or writing to serial ports
to guarantee data validity.

The following are indications that the DMA has finished a set of transfers:

� The DINT bit in the IF register is set to 1 (interrupt polling). This requires
that you set the TCINT bit in the DMA control register first. This interrupt-
polling method does not cause any additional CPU-DMA access conflict.

DMA Controller

 12-74

� The transfer counter has a zero value. However, the transfer counter is
decremented after the DMA read operation finishes (not after the write
operation). Nevertheless, a transfer counter with a 0 value can be used as
an indication of a transfer completion.

� The STAT bits in the DMA channel-control register are set to 002. You can
poll the DMA channel-control register for this value. However, because the
DMA registers are memory-mapped into the peripheral bus address
space, this option can cause further CPU/DMA access conflicts.

12.3.11 DMA Programming Examples

Example 12–8, Example 12–9, and Example 12–10 illustrate initialization
procedures for the DMA.

When linking the examples, you should allocate section memory addresses
carefully to avoid CPU-DMA conflict. In the C3x, the CPU always prevails in
cases of conflict. In the event of a CPU program/DMA data conflict, cache
enabling helps if the .text section is in external memory. For example, when
linking the code in Example 12–8, Example 12–9, and Example 12–10, the
.text section can be allocated into RAM0, .data into RAM1, and .bss into
RAM1, where RAM0 corresponds to on-chip RAM block 0 and RAM1 corre-
sponds to on-chip RAM block 1.

In Example 12–8, the DMA initializes a 128-element array to 0. The DMA
sends an interrupt to the CPU after the transfer is completed. This program as-
sumes previous initialization of the CPU interrupt-vector table (specifically the
DMA-to-CPU interrupt). The program initializes the ST and IE registers for
interrupt processing.

DMA Controller

12-75

Example 12–8. Array Initialization With DMA

* TITLE: ARRAY INITIALIZATION WITH DMA
*
 .GLOBAL START
 .DATA
DMA .WORD 808000H ; DMA GLOBAL-CONTROL REG ADDRESS
RESET .WORD 0C40H ; DMA GLOBAL-CONTROL REG RESET VALUE
CONTROL .WORD 0C43H ; DMA GLOBAL-CONTROL REG INITIALIZATION
SOURCE .WORD ZERO ; DATA SOURCE ADDRESS
DESTIN .WORD _ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
ZERO .FLOAT 0.0 ; ARRAY INITIALIZATION VALUE 0.0 = 0x80000000
 .BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
 .TEXT

START LDP DMA ; LOAD DATA PAGE POINTER
 LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
 LDI @RESET,R0 ; RESET DMA
 STI R0,*AR0
 LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE-ADDRESS REGISTER
 STI R0,*+AR0(4)
 LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION-ADDRESS REGISTER
 STI R0,*+AR0(6)
 LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
 STI R0,*+AR0(8)
 OR 400H,IE ; ENABLE INTERRUPT FROM DMA TO CPU
 OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
 LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
 STI R0,*AR0 ; START DMA TRANSFER
 BU $
 .END

Example 12–9 sets up the DMA to transfer data (128 words) from the serial
port 0 input register to an array buffer with serial port receive interrupt (RINT0).
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to receive 32-bit data words with an internally generated
receive-bit clock and a bit-transfer rate of 8H1 cycles/bit.

This program assumes previous initialization of the CPU interrupt vector table
(specifically the DMA-to-CPU interrupt). The serial port interrupt directly affects
only the DMA; no CPU serial-port interrupt-vector setting is required.

DMA Controller

 12-76

Example 12–9. DMA Transfer With Serial-Port Receive Interrupt

* TITLE DMA TRANSFER WITH SERIAL PORT RECEIVE INTERRUPT
*

.GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL-CONTROL REG ADDRESS
CONTROL .WORD 0D43H ; DMA GLOBAL-CONTROL REG INITIALIZATION
SOURCE .WORD 80804CH ; DATA SOURCE-ADDRESS: SERIAL PORT INPUT REG
DESTIN .WORD _ARRAY ; DATA DESTINATION ADDRESS
COUNT .WORD 128 ; NUMBER OF WORDS TO TRANSFER
IEVAL .WORD 00200400H ; IE REGISTER VALUE
RESET1 .WORD 0D40H ; DMA RESET

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

SPORT .WORD 808040H ; SERIAL-PORT GLOBAL-CONTROL REG ADDRESS
SGCCTRL .WORD 0A300080H ; SERIAL-PORT GLOBAL-CONTROL REG INITIALIZATION
SRCTRL .WORD 111H ; SERIAL-PORT RX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 3C0H ; SERIAL-PORT TIMER-CONTROL REG INITIALIZATION
STPERIOD .WORD 00020000H ; SERIAL-PORT TIMER PERIOD
SPRESET .WORD 01300080H ; SERIAL-PORT RESET
RESET .WORD 0H ; SERIAL-PORT TIMER RESET

.TEXT

START LDP DMA ; LOAD DATA PAGE POINTER

* DMA INITIALIZATION

 LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
 LDI @SPORT,AR1
 LDI @RESET,R0
 STI R0,*+AR1(4) ; RESET SPORT TIMER
 LDI @RESET1,R0
 STI R0,*AR0 ; RESET DMA
 LDI @SPRESET,R0
 STI R0,*AR1 ; RESET SPORT
 LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE-ADDRESS REGISTER
 STI R0,*+AR0(4)
 LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION-ADDRESS REGISTER
 STI R0,*+AR0(6)
 LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
 STI R0,*+AR0(8)
 OR @IEVAL,IE ; ENABLE INTERRUPTS
 OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
 LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
 STI R0,*AR0 ; START DMA TRANSFER

* SERIAL PORT INITIALIZATION

 LDI @SRCTRL,R0 ; SERIAL-PORT RECEIVE CONTROL REG INITIALIZATION
 STI R0,*+AR1(3)
 LDI @STPERIOD,R0 ; SERIAL-PORT TIMER-PERIOD INITIALIZATION
 STI R0,*+AR1(6)
 LDI @STCTRL,R0 ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
 STI R0,*+AR1(4)
 LDI @SGCCTRL,R0 ; SERIAL-PORT GLOBAL CONTROL REG INITIALIZATION
 STI R0,*AR1
 BU $
 .END

DMA Controller

12-77

Example 12–10 sets up the DMA to transfer data (128 words) from an array
buffer to the serial port 0 output register with serial port transmit interrupt XINT0.
The DMA sends an interrupt to the CPU when the data transfer completes.

Serial port 0 is initialized to transmit 32-bit data words with an internally gener-
ated frame sync and a bit-transfer rate of 8(H1) cycles/bit. The receive-bit
clock is internally generated and equal in frequency to one-half of the ’C3x H1
frequency.

This program assumes previous initialization of the CPU interrupt-vector table
(specifically the DMA-to-CPU interrupt). The serial-port interrupt directly affects
only the DMA; no CPU serial-port interrupt-vector setting is required.

Note: Serial-Port Transmit Synchronization

The DMA uses serial-port transmit interrupt XINT0 to synchronize transfers.
Because the XINT0 is generated when the transmit buffer has written the last
bit of data to the shifter, an initial CPU write to the serial port is required to
trigger XINT0 to enable the first DMA transfer.

Example 12–10. DMA Transfer With Serial-Port Transmit Interrupt

* TITLE: DMA TRANSFER WITH SERIAL PORT TRANSMIT INTERRUPT
* .GLOBAL START

.DATA
DMA .WORD 808000H ; DMA GLOBAL-CONTROL REG ADDRESS
CONTROL .WORD 0E13H ; DMA GLOBAL-CONTROL REG INITIALIZATION
SOURCE .WORD (_ARRAY+1) ; DATA SOURCE ADDRESS
DESTIN .WORD 80804CH ; DATA DESTIN ADDRESS: SERIAL-PORT OUTPUT REG
COUNT .WORD 127 ; NUMBER OF WORDS TO TRANSFER =(MSG LENGHT–1)
IEVAL .WORD 00100400H ; IE REGISTER VALUE

.BSS _ARRAY,128 ; DATA ARRAY LOCATED IN .BSS SECTION
; THE UNDERSCORE USED IS JUST TO MAKE IT
; ACCESSIBLE FROM C (OPTIONAL)

RESET1 .WORD 0E10H ; DMA RESET
SPORT .WORD 808040H ; SERIAL-PORT GLOBAL–CONTROL REG ADDRESS
SGCCTRL .WORD 048C0044H ; SERIAL-PORT GLOBAL-CONTROL REG INITIALIZATION
SXCTRL .WORD 111H ; SERIAL-PORT TX PORT CONTROL REG INITIALIZATION
STCTRL .WORD 00FH ; SERIAL-PORT TIMER CONTROL REG INITIALIZATION
STPERIOD .WORD 00000002H ; SERIAL-PORT TIMER PERIOD
SPRESET .WORD 00880044H ; SERIAL-PORT RESET
RESET .WORD 0H ; SERIAL-PORT TIMER RESET

.TEXT
START LDP DMA ; LOAD DATA PAGE POINTER

DMA Controller

 12-78

Example 12–10. DMA Transfer With Serial-Port Transmit Interrupt (Continued)

* DMA INITIALIZATION

LDI @DMA,AR0 ; POINT TO DMA GLOBAL CONTROL REGISTER
LDI @SPORT,AR1
LDI @RESET,R0
STI R0,*+AR1(4) ; RESET SPORT TIMER
STI R0,*AR0 ; RESET DMA
STI R0,*AR1 ; RESET SPORT
LDI @SOURCE,R0 ; INITIALIZE DMA SOURCE-ADDRESS REGISTER
STI R0,*+AR0(4)
LDI @DESTIN,R0 ; INITIALIZE DMA DESTINATION-ADDRESS REGISTER
STI R0,*+AR0(6)
LDI @COUNT,R0 ; INITIALIZE DMA TRANSFER COUNTER REGISTER
STI R0,*+AR0(8)
OR @IEVAL,IE ; ENABLE INTERRUPT FROM DMA TO CPU
OR 2000H,ST ; ENABLE CPU INTERRUPTS GLOBALLY
LDI @CONTROL,R0 ; INITIALIZE DMA GLOBAL CONTROL REGISTER
STI R0,*AR0 ; START DMA TRANSFER

* SERIAL PORT INITIALIZATION

LDI @SXCTRL,R0 ; SERIAL-PORT TX CONTROL REG INITIALIZATION
STI R0,*+AR1(2)
LDI @STPERIOD,R0 ; SERIAL–PORT TIMER-PERIOD INITIALIZATION
STI R0,*+AR1(6)
LDI @STCTRL,R0 ; SERIAL-PORT TIMER-CONTROL REG INITIALIZATION
STI R0,*+AR1(4)
LDI @SGCCTRL,R0 ; SERIAL-PORT GLOBAL-CONTROL REG INITIALIZATION
STI R0,*AR1

* CPU WRITES THE FIRST WORD (TRIGGERING EVENT –––> XINT IS GENERATED)

LDI @SOURCE,AR0
LDI *–AR0(1),R0
STI R0,*+AR1(8)
BU $
.END

Other examples are as follows:

� Transfer a 256-word block of data from off-chip memory to on-chip
memory and generate an interrupt on completion. Maintain the memory
order.

DMA source address: 800000h
DMA destination address: 809800h
DMA transfer counter: 00000100h
DMA global control: 00000C53h
CPU/DMA interrupt enable (IE): 00000400h

DMA Controller

12-79

� Transfer a 128-word block of data from on-chip memory to off-chip
memory and generate an interrupt on completion. Invert the memory or-
der; the highest addressed member of the block is to become the lowest
addressed member.

DMA source address: 809800h
DMA destination address: 800000h
DMA transfer counter: 00000080h
DMA global control: 00000C93h
CPU/DMA interrupt-enable (IE): 00000400h

� Transfer a 200-word block of data from the serial-port 0 receive register
to on-chip memory and generate an interrupt on completion. Synchronize
the transfer with the serial-port 0 receive interrupt.

DMA source address: 80804Ch
DMA destination address: 809C00h
DMA transfer counter: 000000C8h
DMA global control: 00000D43h
CPU/DMA interrupt-enable (IE): 00200400h

� Transfer a 200-word block of data from off-chip memory to the serial-port 0
transmit register and generate an interrupt on completion. Synchronize with
the serial-port 0 transmit interrupt.

DMA source address: 809C00h
DMA destination address: 808048h
DMA transfer counter: 000000C8h
DMA global control: 00000E13h
CPU/DMA interrupt-enable (IE): 00400400h

� Transfer data continuously between the serial-port 0 receive register and
the serial-port 0 transmit register to create a digital loop back. Synchronize
with the serial-port 0 receive and transmit interrupts.

DMA source address: 80804Ch
DMA destination address: 808048h
DMA transfer counter: 00000000h
DMA global control: 00000303h
CPU/DMA interrupt-enable (IE): 00300000h

 12-80

13-1

Assembly Language Instructions

The ’C3x assembly language instruction set supports numeric-intensive, signal-
processing, and general-purpose applications. (The addressing modes used with
the instructions are described in Chapter 5.)

The ’C3x instruction set can also use one of 20 condition codes with any of the
10 conditional instructions, such as LDFcond. This chapter defines the condition
codes and flags.

The assembler allows optional syntax forms to simplify the assembly language
for special-case instructions. These optional forms are listed and explained.

Each of the individual instructions is described and listed in alphabetical order
(see subsection 13.6.2, Optional Assembler Syntax, on page 13-34). Example
instructions demonstrate the special format and explain its content.

This chapter discusses these topics:

Topic Page

13.1 Instruction Set 13-2.

13.2 Instruction Set Summary 13-10.

13.3 Parallel Instruction Set Summary 13-17.

13.4 Group Addressing Mode Instruction Encoding 13-20.

13.5 Condition Codes and Flags 13-28.

13.6 Individual Instructions 13-32.

Chapter 13

Instruction Set

 13-2

13.1 Instruction Set

The ’C3x instruction set is well suited to digital signal processing and other
numeric-intensive applications. All instructions are a single machine word
long, and most instructions require one cycle to execute. In addition to multiply
and accumulate instructions, the ’C3x possesses a full complement of general-
purpose instructions.

The instruction set contains 113 instructions organized into the following func-
tional groups:

� Load and store
� 2-operand arithmetic/logical
� 3-operand arithmetic/logical
� Program control
� Interlocked operations
� Parallel operations

Each of these groups is discussed in the following subsections.

13.1.1 Load and Store Instructions

The ’C3x supports 13 load and store instructions (see Table 13–1). These
instructions can:

� Load a word from memory into a register
� Store a word from a register into memory
� Manipulate data on the system stack

Two of these instructions can load data conditionally. This is useful for locating
the maximum or minimum value in a data set. See Section 13.5 on page 13-28
for detailed information on condition codes.

Table 13–1. Load and Store Instructions

Instruction Description Instruction Description

LDE Load floating-point exponent POP Pop integer from stack

LDF Load floating-point value POPF Pop floating-point value from stack

LDFcond Load floating-point value
conditionally

PUSH Push integer on stack

LDI Load integer PUSHF Push floating-point value on stack

LDIcond Load integer conditionally STF Store floating-point value

LDM Load floating-point mantissa STI Store integer

LDP Load data page pointer

Instruction Set

13-3Assembly Language Instructions

13.1.2 2-Operand Instructions

The ’C3x supports 35 2-operand arithmetic and logical instructions. The two
operands are the source and destination. The source operand can be a memory
word, a register, or a part of the instruction word. The destination operand is
always a register.

As shown in Table 13–2, these instructions provide integer, floating-point or
logical operations, and multiprecision arithmetic.

Table 13–2. 2-Operand Instructions

Instruction Description Instruction Description

ABSF Absolute value of a floating-
point number

NORM Normalize floating-point value

ABSI Absolute value of an integer NOT Bitwise-logical complement

ADDC† Add integers with carry OR† Bitwise-logical OR

ADDF† Add floating-point values RND Round floating-point value

ADDI† Add integers ROL Rotate left

AND† Bitwise-logical AND ROLC Rotate left through carry

ANDN† Bitwise-logical AND with

complement

ROR Rotate right

ASH† Arithmetic shift RORC Rotate right through carry

CMPF† Compare floating-point values SUBB† Subtract integers with borrow

CMPI† Compare integers SUBC Subtract integers conditionally

FIX Convert floating-point value to
integer

SUBF† Subtract floating-point values

FLOAT Convert integer to floating-point
value

SUBI† Subtract integer

LSH† Logical shift SUBRB Subtract reverse integer with
borrow

MPYF† Multiply floating-point values SUBRF Subtract reverse floating-point
value

MPYI† Multiply integers SUBRI Subtract reverse integer

NEGB Negate integer with borrow TSTB† Test bit fields

NEGF Negate floating-point value XOR† Bitwise-exclusive OR

NEGI Negate integer

† 2- and 3-operand versions

Instruction Set

 13-4

13.1.3 3-Operand Instructions

Whereas 2-operand instructions have a single source operand (or shift count)
and a destination operand, 3-operand instructions can have two source operands
(or one source operand and a count operand) and a destination operand. A source
operand can be a memory word or a register. The destination of a 3-operand
instruction is always a register.

Table 13–3 lists the instructions that have 3-operand versions. You can omit
the 3 in the mnemonic from 3-operand instructions (see subsection 13.6.2 on
page 13-34).

Table 13–3. 3-Operand Instructions

Instruction Description Instruction Description

ADDC3 Add with carry MPYF3 Multiply floating-point values

ADDF3 Add floating-point values MPYI3 Multiply integers

ADDI3 Add integers OR3 Bitwise-logical OR

AND3 Bitwise-logical AND SUBB3 Subtract integers with borrow

ANDN3 Bitwise-logical AND with complement SUBF3 Subtract floating-point values

ASH3 Arithmetic shift SUBI3 Subtract integers

CMPF3 Compare floating-point values TSTB3 Test bit fields

CMPI3 Compare integers XOR3 Bitwise-exclusive OR

LSH3 Logical shift

13.1.4 Program-Control Instructions

The program-control instruction group consists of all of those instructions (17)
that affect program flow. The repeat mode allows repetition of a block of code
(RPTB) or of a single line of code (RPTS). Both standard and delayed
(single-cycle) branching are supported. Several program-control instructions
can perform conditional operations. (See Section 13.5 on page 13-28
for detailed information on condition codes.) Table 13–4 lists the program-
control instructions.

Instruction Set

13-5Assembly Language Instructions

Table 13–4. Program-Control Instructions

Instruction Description Instruction Description

Bcond Branch conditionally (standard) IDLE Idle until interrupt

BcondD Branch conditionally (delayed) NOP No operation

BR Branch unconditionally (standard) RETIcond Return from interrupt conditionally

BRD Branch unconditionally (delayed) RETScond Return from subroutine conditionally

CALL Call subroutine RPTB Repeat block of instructions

CALLcond Call subroutine conditionally RPTS Repeat single instruction

DBcond Decrement and branch conditionally
(standard)

SWI Software interrupt

DBcondD Decrement and branch conditionally
(delayed)

TRAPcond Trap conditionally

IACK Interrupt acknowledge

13.1.5 Low-Power Control Instructions

The low-power control instruction group consists of three instructions that affect
the low-power modes. The low-power idle (IDLE2) instruction allows extremely
low-power mode. The divide-clock-by-16 (LOPOWER) instruction reduces the
rate of the input clock frequency. The restore-clock-to-regular-speed
(MAXSPEED) instruction causes the resumption of full-speed operation.
Table 13–5 lists the low-power control instructions.

Table 13–5. Low-Power Control Instructions

Instruction Description Instruction Description

IDLE2 Low-power idle MAXSPEED Restore clock to regular speed

LOPOWER Divide clock by 16

13.1.6 Interlocked-Operations Instructions

The five interlocked-operations instructions (Table 13–6) support multi-
processor communication and the use of external signals to allow for powerful
synchronization mechanisms. They also ensure the integrity of the communi-
cation and result in a high-speed operation. Refer to Chapter 7 for examples
of the use of interlocked instructions.

Instruction Set

 13-6

Table 13–6. Interlocked-Operations Instructions

Instruction Description Instruction Description

LDFI Load floating-point value, interlocked STFI Store floating-point value, interlocked

LDII Load integer, interlocked STII Store integer, interlocked

SIGI Signal, interlocked

13.1.7 Parallel-Operations Instructions

The 13 parallel-operations instructions make a high degree of parallelism
possible. Some of the ’C3x instructions can occur in pairs that are executed
in parallel. These instructions offer the following features:

� Parallel loading of registers
� Parallel arithmetic operations
� Arithmetic/logical instructions used in parallel with a store instruction

Each instruction in a pair is entered as a separate source statement. The second
instruction in the pair must be preceded by two vertical bars (||). Table 13–7 lists
the valid instruction pairs.

Table 13–7. Parallel Instructions

(a) Parallel arithmetic with store instructions

Mnemonic Description

ABSF
|| STF

Absolute value of a floating-point number and store floating-
point value

ABSI
|| STI

Absolute value of an integer and store integer

ADDF3
|| STF

Add floating-point values and store floating-point value

ADDI3
|| STI

Add integers and store integer

AND3
|| STI

Bitwise-logical AND and store integer

ASH3
|| STI

Arithmetic shift and store integer

FIX
|| STI

Convert floating-point to integer and store integer

Instruction Set

13-7Assembly Language Instructions

Table 13–7. Parallel Instructions (Continued)

(a) Parallel arithmetic with store instructions (Continued)

Mnemonic Description

FLOAT
|| STF

Convert integer to floating-point value and store floating-
point value

LDF
|| STF

Load floating-point value and store floating-point value

LDI
|| STI

Load integer and store integer

LSH3
|| STI

Logical shift and store integer

MPYF3
|| STF

Multiply floating-point values and store floating-point value

MPYI3
|| STI

Multiply integer and store integer

NEGF
|| STF

Negate floating-point value and store floating-point value

NEGI
|| STI

Negate integer and store integer

NOT
|| STI

Complement value and store integer

OR3
|| STI

Bitwise-logical OR value and store integer

STF
|| STF

Store floating-point values

STI
|| STI

Store integers

SUBF3
|| STF

Subtract floating-point value and store floating-point value

SUBI3
|| STI

Subtract integer and store integer

XOR3
|| STI

Bitwise-exclusive OR values and store integer

Instruction Set

 13-8

Table 13–7. Parallel Instructions (Continued)

(b) Parallel load instructions

Mnemonic Description

LDF
|| LDF

Load floating-point value

LDI
|| LDI

Load integer

(c) Parallel multiply and add/subtract instructions

Mnemonic Description

MPYF3
|| ADDF3

Multiply and add floating-point value

MPYF3
|| SUBF3

Multiply and subtract floating-point value

MPYI3
|| ADDI3

Multiply and add integer

MPYI3
|| SUBI3

Multiply and subtract integer

These parallel instructions have been enhanced on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

These devices support greater combinations of operands by also allowing the
use of any CPU register whenever an indirect operand is required. The particular
instruction description details the operand combination.

To support these new modes, you need to invoke the TMS320 floating-point
code generation tools (version 5.0 or later) with the following switches:

� C Compiler

� ‘C31: CL30 –v31 –gsrev6
� ‘C32: CL30 –v32 –gsrev2

� Assembler

� ‘C31: asm30 –v31 –msrev6
� ‘C32: asm30 –v32 –msrev2

Instruction Set

13-9Assembly Language Instructions

13.1.8 Illegal Instructions

The ’C3x has no illegal instruction-detection mechanism. Fetching an illegal
(undefined) opcode can cause the execution of an undefined operation. Proper
use of the TI TMS320 floating-point software tools will not generate an illegal
opcode. Only the following conditions can cause the generation of an illegal
opcode:

� Misuse of the tools
� An error in the ROM code
� Defective RAM

Instruction Set Summary

 13-10

13.2 Instruction Set Summary
Table 13–8 lists the ’C3x instruction set in alphabetical order. Each table entry
provides the instruction mnemonic, description, and operation.

Table 13–8. Instruction Set Summary

Mnemonic Description Operation

ABSF Absolute value of a floating-point number |src| → Rn

ABSI Absolute value of an integer |src| → Dreg

ADDC Add integers with carry src + Dreg + C → Dreg

ADDC3 Add integers with carry (3-operand) src1 + src2 + C → Dreg

ADDF Add floating-point values src + Rn → Rn

ADDF3 Add floating-point values (3-operand) src1 + src2 → Rn

ADDI Add integers src + Dreg → Dreg

ADDI3 Add integers (3 operand) src1 + src2 + → Dreg

AND Bitwise-logical AND Dreg AND src → Dreg

AND3 Bitwise-logical AND (3-operand) src1 AND src2 → Dreg

ANDN Bitwise-logical AND with complement Dreg AND src → Dreg

ANDN3 Bitwise-logical ANDN (3-operand) src1 AND src2 → Dreg

ASH Arithmetic shift If count ≥ 0:

(Shifted Dreg left by count) → Dreg

Else:

(Shifted Dreg right by |count|) → Dreg

ASH3 Arithmetic shift (3-operand) If count ≥ 0:

(Shifted src left by count) → Dreg

Else:

(Shifted src right by |count|) → Dreg

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

13-11Assembly Language Instructions

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

Bcond Branch conditionally (standard) If cond = true:

If Csrc is a register, Csrc → PC

If Csrc is a value, Csrc + PC → PC

Else, PC + 1 → PC

BcondD Branch conditionally (delayed) If cond = true:

If Csrc is a register, Csrc → PC

If Csrc is a value, Csrc + PC + 3 → PC

Else, PC + 1 → PC

BR Branch unconditionally (standard) Value → PC

BRD Branch unconditionally (delayed) Value → PC

CALL Call subroutine PC + 1 → TOS

Value → PC

CALLcond Call subroutine conditionally If cond = true:

PC + 1 → TOS

If Csrc is a register, Csrc → PC

If Csrc is a value, Csrc + PC → PC

Else, PC + 1 → PC

CMPF Compare floating-point values Set flags on Rn – src

CMPF3 Compare floating-point values

(3-operand)

Set flags on src1 – src2

CMPI Compare integers Set flags on Dreg – src

CMPI3 Compare integers (3-operand) Set flags on src1 – src2

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

 13-12

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

DBcond Decrement and branch conditionally

(standard)

ARn – 1 → ARn

If cond = true and ARn ≥ 0:

If Csrc is a register, Csrc → PC

If Csrc is a value, Csrc + PC + 1 → PC

Else, PC + 1 → PC

DBcondD Decrement and branch conditionally
(delayed)

ARn – 1 → ARn

If cond = true and ARn ≥ 0:

If Csrc is a register, Csrc → PC

If Csrc is a value, Csrc + PC + 3 → PC

Else, PC + 1 → PC

FIX Convert floating-point value to integer Fix (src) → Dreg

FLOAT Convert integer to floating-point value Float(src) → Rn

IACK Interrupt acknowledge Dummy read of src
IACK toggled low, then high

IDLE Idle until interrupt PC + 1 → PC

Idle until next interrupt

IDLE2 Low-power idle Idle until next interrupt stopping internal clocks

LDE Load floating-point exponent src(exponent) → Rn(exponent)

LDF Load floating-point value src → Rn

LDFcond Load floating-point value conditionally If cond = true, src → Rn

Else, Rn is not changed

LDFI Load floating-point value, interlocked Signal interlocked operation src → Rn

LDI Load integer src → Dreg

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

13-13Assembly Language Instructions

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

LDIcond Load integer conditionally If cond = true, src → Dreg

Else, Dreg is not changed

LDII Load integer, interlocked Signal interlocked operation src → Dreg

LDM Load floating-point mantissa src (mantissa) → Rn (mantissa)

LDP Load data page pointer src → data page pointer

LOPOWER Divide clock by 16 H1/16 → H1

LSH Logical shift If count ≥ 0:

(Dreg left-shifted by count) → Dreg

Else:

(Dreg right-shifted by |count|) → Dreg

LSH3 Logical shift (3-operand) If count ≥ 0:

(src left-shifted by count) → Dreg

Else:

(src right-shifted by |count|) → Dreg

MAXSPEED Restore clock to regular speed H1/16 → H1

MPYF Multiply floating-point values src × Rn → Rn

MPYF3 Multiply floating-point value (3-operand) src1 × src2 → Rn

MPYI Multiply integers src × Dreg → Dreg

MPYI3 Multiply integers (3-operand) src1 × src2 → Dreg

NEGB Negate integer with borrow 0 – src – C → Dreg

NEGF Negate floating-point value 0 – src → Rn

NEGI Negate integer 0 – src → Dreg

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

 13-14

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

NOP No operation Modify ARn if specified

NORM Normalize floating-point value Normalize (src) → Rn

NOT Bitwise-logical complement src → Dreg

OR Bitwise-logical OR Dreg OR src → Dreg

OR3 Bitwise-logical OR (3-operand) src1 OR src2 → Dreg

POP Pop integer from stack *SP–– → Dreg

POPF Pop floating-point value from stack *SP–– → Rn

PUSH Push integer on stack Sreg → *++ SP

PUSHF Push floating-point value on stack Rn → *++ SP

RETIcond Return from interrupt conditionally If cond = true or missing:

*SP–– → PC

1 → ST (GIE)

Else, continue

RETScond Return from subroutine conditionally If cond = true or missing:

*SP–– → PC

Else, continue

RND Round floating-point value Round (src) → Rn

ROL Rotate left Dreg rotated left 1 bit → Dreg

ROLC Rotate left through carry Dreg rotated left 1 bit through carry → Dreg

ROR Rotate right Dreg rotated right 1 bit → Dreg

RORC Rotate right through carry Dreg rotated right 1 bit through carry → Dreg

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

13-15Assembly Language Instructions

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

RPTB Repeat block of instructions src → RE

1 → ST (RM)

Next PC → RS

RPTS Repeat single instruction src → RC

1 → ST (RM)

Next PC → RS

Next PC → RE

SIGI Signal, interlocked Signal interlocked operation

Wait for interlock acknowledge

Clear interlock

STF Store floating-point value Rn → Daddr

STFI Store floating-point value, interlocked Rn → Daddr

Signal end of interlocked operation

STI Store integer Sreg → Daddr

STII Store integer, interlocked Sreg → Daddr

Signal end of interlocked operation

SUBB Subtract integers with borrow Dreg – src – C → Dreg

SUBB3 Subtract integers with borrow (3-operand) src1 – src2 – C → Dreg

SUBC Subtract integers conditionally If Dreg – src ≥ 0:

[(Dreg – src) << 1] OR 1 → Dreg

Else, Dreg << 1 → Dreg

SUBF Subtract floating-point values Rn – src → Rn

SUBF3 Subtract floating-point values (3-operand) src1 – src2 → Rn

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Instruction Set Summary

 13-16

Table 13–8. Instruction Set Summary (Continued)

Mnemonic OperationDescription

SUBI Subtract integers Dreg – src → Dreg

SUBI3 Subtract integers (3-operand) src1 – src2 → Dreg

SUBRB Subtract reverse integer with borrow src – Dreg – C → Dreg

SUBRF Subtract reverse floating-point value src – Rn → Rn

SUBRI Subtract reverse integer src – Dreg → Dreg

SWI Software interrupt Perform emulator interrupt sequence

TRAPcond Trap conditionally If cond = true or missing:

Next PC → * ++ SP

Trap vector N → PC

0 → ST (GIE)

Else, continue

TSTB Test bit fields Dreg AND src

TSTB3 Test bit fields (3-operand) src1 AND src2

XOR Bitwise-exclusive OR Dreg XOR src → Dreg

XOR3 Bitwise-exclusive OR (3-operand) src1 XOR src2 → Dreg

Legend: ARn auxiliary register n (AR7–AR0) RE repeat interrupt register
C carry bit RM repeat mode bit
Csrc conditional-branch addressing modes Rn register address (R7–R0)
count shift value (general addressing modes) RS repeat start register
cond condition code SP stack pointer
Daddr destination memory address Sreg register address (any register)
Dreg register address (any register) ST status register
GIE global interrupt enable register src general addressing modes
N any trap vector 0–27 src1 3-operand addressing modes
PC program counter src2 3-operand addressing modes
RC repeat counter register TOS top of stack

Parallel Instruction Set Summary

13-17Assembly Language Instructions

13.3 Parallel Instruction Set Summary

Table 13–9 lists the ’C3x instruction set in alphabetical order. Each table
entry shows the instruction mnemonic, description, and operation. Refer to
Section 13.1 for a functional listing of the instructions and individual instruc-
tion descriptions.

Table 13–9. Parallel Instruction Set Summary

(a) Parallel arithmetic with store instructions

Mnemonic Description Operation

ABSF

|| STF

Absolute value of a floating point |src2| → dst1

|| src3 → dst2

ABSI

|| STI

Absolute value of an integer |src2| → dst1

|| src3 → dst2

ADDF3

|| STF

Add floating-point value src1 + src2 → dst1

|| src3 → dst2

ADDI3

|| STI

Add integer src1 + src2 → dst1

|| src3 → dst2

AND3

|| STI

Bitwise-logical AND src1 AND src2 → dst1

|| src3 → dst2

ASH3

|| STI

Arithmetic shift If count ≥ 0:

(src2 << count) → dst1

|| src3 → dst2

Else:

(src2 >> |count|) → dst1

|| src3 → dst2

FIX

|| STI

Convert floating-point value to integer Fix (src2) → dst1

|| src3 → dst2

FLOAT

|| STF

Convert integer to floating-point value Float(src2) → dst1

|| src3 → dst2

Legend: count register addr (R7–R0) op3 register addr (R0 or R1)
dst1 register addr (R7–R0) op6 register addr (R2 or R3)
dst2 indirect addr (disp = 0, 1, IR0, IR1) src1 register addr (R7–R0)
op1, op2, op4, and op5 src2 indirect addr (disp = 0, 1, IR0, IR1)

Any two of these operands must be src3 register addr (R7–R0)
specified using register addr; the remaining
two must be specified using indirect.

Parallel Instruction Set Summary

 13-18

Table 13–9. Parallel Instruction Set Summary (Continued)
(a) Parallel arithmetic with store instructions (Continued)

Mnemonic Description Operation

LDF

|| STF

Load floating-point value src2 → dst1

|| src3 → dst2

LDI

|| STI

Load integer src2 → dst1

|| src3 → dst2

LSH3

|| STI

Logical shift If count ≥ 0:

src2 << count → dst1

|| src3 → dst2

Else:

src2 >> |count| → dst1

|| src3 → dst2

MPYF3

|| STF

Multiply floating-point value src1 x src2 → dst1

|| src3 → dst2

MPYI3

|| STI

Multiply integer src1 x src2 → dst1

|| src3 → dst2

NEGF

|| STF

Negate floating-point value 0 – src2 → dst1

|| src3 → dst2

NEGI

|| STI

Negate integer 0 – src2 → dst1

|| src3 → dst2

NOT

|| STI

Complement src1 → dst1

|| src3 → dst2

OR3

|| STI

Bitwise-logical OR src1 OR src2 → dst1

|| src3 → dst2

STF

|| STF

Store floating-point value src1 → dst1

|| src3 → dst2

STI

|| STI

Store integer src1 → dst1

|| src3 → dst2

Legend: count register addr (R7–R0) op3 register addr (R0 or R1)
dst1 register addr (R7–R0) op6 register addr (R2 or R3)
dst2 indirect addr (disp = 0, 1, IR0, IR1) src1 register addr (R7–R0)
op1, op2, op4, and op5 src2 indirect addr (disp = 0, 1, IR0, IR1)

Any two of these operands must be src3 register addr (R7–R0)
specified using register addr; the remaining
two must be specified using indirect.

Parallel Instruction Set Summary

13-19Assembly Language Instructions

Table 13–9. Parallel Instruction Set Summary (Continued)

(a) Parallel arithmetic with store instructions (Continued)

Mnemonic Description Operation

SUBF3

|| STF

Subtract floating-point value src1 – src2 → dst1

|| src3 → dst2

SUBI3

|| STI

Subtract integer src1 – src2 → dst1

|| src3 → dst2

XOR3

|| STI

Bitwise-exclusive OR src1 XOR src2 → dst1

|| src3 → dst2

(b) Parallel load instructions

Mnemonic Description Operation

LDF

|| LDF

Load floating-point value src2 → dst1

|| src4 → dst2

LDI

|| LDI

Load integer src2 → dst1

|| src4 → dst2

(c) Parallel multiply and add/subtract instructions

Mnemonic Description Operation

MPYF3

|| ADDF3

Multiply and add floating-point value op1 x op2 → op3

|| op4 + op5 → op6

MPYF3

|| SUBF3

Multiply and subtract floating-point value op1 x op2 → op3

|| op4 – op5 → op6

MPYI3

|| ADDI3

Multiply and add integer op1 x op2 → op3

|| op4 + op5 → op6

MPYI3

|| SUBI3

Multiply and subtract integer op1 x op2 → op3

|| op4 – op5 → op6

Legend: count register addr (R7–R0) op3 register addr (R0 or R1)
dst1 register addr (R7–R0) op6 register addr (R2 or R3)
dst2 indirect addr (disp = 0, 1, IR0, IR1) src1 register addr (R7–R0)
op1, op2, op4, and op5 src2 indirect addr (disp = 0, 1, IR0, IR1)

Any two of these operands must be src3 register addr (R7–R0)
specified using register addr; the remaining
two must be specified using indirect.

Group Addressing Mode Instruction Encoding

 13-20

13.4 Group Addressing Mode Instruction Encoding

The six addressing types (covered in Section 6.1, Addressing Types, on
page 6-2) form these four groups of addressing modes:

� General addressing modes (G)
� 3-operand addressing modes (T)
� Parallel addressing modes (P)
� Conditional-branch addressing modes (B)

13.4.1 General Addressing Modes

Instructions that use the general addressing modes are general-purpose
instructions, such as ADDI, MPYF, and LSH. Such instructions usually have
this form:

dst operation src → dst

In the syntax, the destination operand is signified by dst and the source operand
by src; operation defines an operation to be performed on the operands using the
general addressing modes. Bits 31–29 are 0, indicating general addressing
mode instructions. Bits 22 and 21 specify the general addressing mode (G) field,
which defines how bits 15–0 are to be interpreted for addressing the src operand.

Options for bits 22 and 21 (G field) are as follows:

G Mode

0 0 Register (all CPU registers unless specified otherwise)

0 1 Direct

1 0 Indirect

1 1 Immediate

If the src and dst fields contain register specifications, the value in these
fields contains the CPU register addresses as defined by Table 13–10. For
the general addressing modes, the following values of ARn are valid:

ARn, 0 ≤ n ≤ 7

Group Addressing Mode Instruction Encoding

13-21Assembly Language Instructions

Figure 13–1 shows the encoding for the general addressing modes. The notation
modn indicates the modification field that goes with the ARn field. Refer to
Table 13–10 on page 13-22 for further information.

Figure 13–1. Encoding for General Addressing Modes

G Destination Source Operands

31 29 28 23 22 21 20 16 15 11 10 8 7 5 4 0

0 0 0 operation 0 0 dst 0 0 0 0 0 0 0 0 0 0
0

src

0 0 0 operation 0 1 dst direct

0 0 0 operation 1 0 dst modn ARn disp

0 0 0 operation 1 1 dst immediate

Group Addressing Mode Instruction Encoding

 13-22

Table 13–10. Indirect Addressing

(a) Indirect addressing with displacement

Mod Field Syntax Operation Description

00000 *+ARn(disp) addr = ARn + disp With predisplacement add

00001 *–ARn(disp) addr = ARn – disp With predisplacement subtract

00010 *++ARn(disp) addr = ARn + disp
ARn = ARn + disp

With predisplacement add and modify

00011 *––ARn(disp) addr = ARn – disp
ARn = ARn – disp

With predisplacement subtract and modify

00100 *ARn++(disp) addr = ARn
ARn = ARn + disp

With postdisplacement add and modify

00101 *ARn––(disp) addr = ARn
ARn = ARn – disp

With postdisplacement subtract and modify

00110 *ARn++(disp)% addr = ARn
ARn = circ(ARn + disp)

With postdisplacement add and circular modify

00111 *ARn––(disp)% addr = ARn
ARn = circ(ARn – disp)

With postdisplacement subtract and circular modify

(b) Indirect addressing with index register IR0

Mod Field Syntax Operation Description

01000 *+ARn(IR0) addr = ARn + IR0 With preindex (IR0) add

01001 *–ARn(IR0) addr = ARn – IR0 With preindex (IR0) subtract

01010 *++ARn(IR0) addr = ARn + IR0
ARn = ARn + IR0

With preindex (IR0) add and modify

01011 *––ARn(IR0) addr = ARn – IR0
ARn = ARn – IR0

With preindex (IR0) subtract and modify

01100 *ARn++(IR0) addr = ARn
ARn = ARn + IR0

With postindex (IR0) add and modify

01101 *ARn––(IR0) addr= ARn
ARn = ARn – IR0

With postindex (IR0) subtract and modify

01110 *ARn++(IR0)% addr = ARn
ARn = circ(ARn + IR0)

With postindex (IR0) add and circular modify

01111 *ARn––(IR0)% addr = ARn
ARn = circ(ARn– IR0)

With postindex (IR0) subtract and circular modify

Legend: addr memory address ++ add and modify
ARn auxiliary registers AR0–AR7 –– subtract and modify
circ() address in circular addressing % where circular addressing is performed
disp displacement IRn index register IR0 or IR1

Group Addressing Mode Instruction Encoding

13-23Assembly Language Instructions

Table 13–10. Indirect Addressing (Continued)

(c) Indirect addressing with index register IR1

Mod Field Syntax Operation Description

10000 *+ARn(IR1) addr = ARn + IR1 With preindex (IR1) add

10001 *–ARn(IR1) addr = ARn – IR1 With preindex (IR1) subtract

10010 *++ARn(IR1) addr = ARn + IR1
ARn = ARn + IR1

With preindex (IR1) add and modify

10011 *––ARn(IR1) addr = ARn – IR1
ARn = ARn – IR1

With preindex (IR1) subtract and modify

10100 *ARn++(IR1) addr = ARn
ARn = ARn + IR1

With postindex (IR1) add and modify

10101 *ARn––(IR1) addr = ARn
ARn = ARn – IR1

With postindex (IR1) subtract and modify

10110 *ARn++(IR1)% addr = ARn
ARn = circ(ARn + IR1)

With postindex (IR1) add and circular modify

 10111 *ARn––(IR1)% addr = ARn
ARn = circ(ARn – IR1)

With postindex (IR1) subtract and circular modify

(d) Indirect addressing (special cases)

Mod Field Syntax Operation Description

11000 *ARn addr = ARn Indirect

11001 *ARn++(IR0)B addr = ARn

ARn = B(ARn + IR0)

With postindex (IR0) add

and bit-reversed modify

Legend: addr memory address circ() address in circular addressing
ARn auxiliary registers AR0–AR7 ++ add and modify by one
B where bit-reversed addressing is performed % where circular addressing is performed
B() bit-reversed address IRn index register IR0 or IR1

–– subtract and modify by one

Group Addressing Mode Instruction Encoding

 13-24

13.4.2 3-Operand Addressing Modes

Instructions that use the 3-operand addressing modes, such as ADDI3, LSH3,
CMPF3, or XOR3, usually have this form:

src1 operation src2 → dst

where the destination operand is signified by dst and the source operands by
src1 and src2; operation defines an operation to be performed.

Note:

The 3 can be omitted from a 3-operand instruction mnemonic.

Bits 31–29 are set to the value of 001, indicating 3-operand addressing
mode instructions. Bits 22 and 21 specify the 3-operand addressing mode
(T) field, which defines how bits 15–0 are to be interpreted for addressing
the SRC operands. Bits 15–8 define the SRC1 address; bits 7–0 define the
SRC2 address. Options for bits 22 and 21 (T) are as follows:

T src 1 addressing modes src 2 addressing modes

0 0 Register mode
(any CPU register)

Register mode
(any CPU register)

0 1 Indirect mode
(disp = 0, 1, IR0, IR1)

Register mode
(any CPU register)

1 0 Register mode
(any CPU register)

Indirect mode
(disp = 0, 1, IR0, IR1)

1 1 Indirect mode
(disp = 0, 1, IR0, IR1)

Indirect mode
(disp = 0, 1, IR0, IR1)

Figure 13–2 shows the encoding for 3-operand addressing. If the src1 and
src2 fields both modify the same auxiliary register, both addresses are correctly
generated. However, only the value created by the src1 field is saved in the
auxiliary register specified. The assembler issues a warning if you specify this
condition.

Group Addressing Mode Instruction Encoding

13-25Assembly Language Instructions

The following values of ARn and ARm are valid:

ARn,0 ≤ n ≤ 7
ARm,0 ≤ m ≤ 7

The notation modm or modn indicates the modification field that goes with the
ARm or ARn field, respectively. Refer to Table 13–10 on page 13-22 for further
information.

In indirect addressing of the 3-operand addressing mode, displacements (if used)
are allowed to be 0 or 1, and the index registers (IR0 and IR1) can be used. The
displacement of 1 is implied and is not explicitly coded in the instruction word.

Figure 13–2. Encoding for 3-Operand Addressing Modes

T Destination src 1 src 2

31 28 27 23 22 21 20 16 15 13 12 11 10 8 7 5 4 3 2 0

0 0 1 operation 0 0 dst 0 0 0 src1 0 0 0 src2

0 0 1 operation 0 1 dst modn ARn 0 0 0 src2

0 0 1 operation 1 0 dst 0 0 0 src1 modn ARn

0 0 1 operation 1 1 dst modn ARn modm ARm

13.4.3 Parallel Addressing Modes

Instructions that use parallel addressing, indicated by || (two vertical bars), allow
the most parallelism possible. The destination operands are indicated as d1
and d2, signifying dst1 and dst2, respectively (see Figure 13–3). The source
operands, signified by src1 and src2, use the extended-precision registers.
Operation refers to the parallel operation to be performed.

Figure 13–3. Encoding for Parallel Addressing Modes

31 30 29 26 25 24 23 22 21 19 18 16 15 11 10 8 7 3 2 0

1 0 operation P d1 d2 src1 src2 modn ARn modm ARm

The parallel addressing mode (P) field specifies how the operands are to be
used, that is, whether they are source or destination. The specific relation-
ship between the P field and the operands is detailed in the description of the
individual parallel instructions. However, the operands are always encoded
in the same way. Bits 31 and 30 are set to the value of 10, indicating parallel
addressing mode instructions. Bits 25 and 24 specify the parallel addressing
mode (P) field, which defines how to interpret bits 21–0 for addressing the src
operands. Bits 21–19 define the src1 address, bits 18–16 define the src2

Group Addressing Mode Instruction Encoding

 13-26

address, bits 15–8 the src3 address, and bits 7–0 the src 4 address. The
notations modn and modm indicate which modification field goes with which
ARn or ARm (auxiliary register) field, respectively. The following list describes
the parallel addressing operands:

src1 = Rn 0 ≤ n ≤ 7 (extended-precision registers R0–R7)

src2 = Rn 0 ≤ n ≤ 7 (extended-precision registers R0–R7)

d1 If 0, dst1 is R0. If 1, dst1 is R1.

d2 If 0, dst2 is R2. If 1, dst2 is R3.

P 0 ≤ P ≤ 3

src3 indirect (disp = 0, 1, IR0, IR1)

src4 indirect (disp = 0, 1, IR0, IR1)

As in the 3-operand addressing mode, indirect addressing in the parallel
addressing mode allows for displacements of 0 or 1 and the use of the index
registers (IR0 and IR1). The displacement of 1 is implied and is not explicitly
coded in the instruction word.

In the encoding shown for this mode in Figure 13–3, if the src3 and src4 fields
use the same auxiliary register, both addresses are correctly generated, but
only the value created by the src3 field is saved in the auxiliary register specified.
The assembler issues a warning if you specify this condition.

The encoding of these parallel addressing modes has been extended in the
following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

These addressing mode extensions also allow the use of any CPU register when-
ever an indirect operand is required in src3 and/or src4 operand. Figure 13–4
shows the encoding for extended parallel addressing instructions.

Figure 13–4. Encoding for Extended Parallel Addressing Instructions

31 30 29 28 26 25 24 23 22 21 19 18 16 15 13 12 8 9 5 4 0

1 0 operation P d1 d2 src1 src2 1 1 1 src3 1 1 1 src4

Group Addressing Mode Instruction Encoding

13-27Assembly Language Instructions

13.4.4 Conditional-Branch Addressing Modes

Instructions using the conditional-branch addressing modes (Bcond, BcondD,
CALLcond, DBcond, and DBcondD) can perform a variety of conditional
operations. Bits 31–27 are set to the value of 01101, indicating conditional-branch
addressing mode instructions. Bit 26 is set to 0 or 1; 0 selects DBcond, 1 selects
Bcond. Selection of bit 25 determines the conditional-branch addressing mode
(B). If B = 0, register addressing is used; if B = 1, PC-relative addressing is used.
Bit 21 sets the type of branch: D = 0 for a standard branch or D = 1 for a delayed
branch. The condition field (cond) specifies the condition checked to determine
what action to take, that is, whether to branch (see Table 13–12 on page 13-30
for a list of condition codes). Figure 13–5 shows the encoding for conditional-
branch addressing.

Figure 13–5. Encoding for Conditional-Branch Addressing Modes

(a) DBcond (D)

31 26 25 24 22 21 20 16 15 5 4 0

0 1 1 0 1 1 B ARn D cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 0 1 1 B ARn D cond immediate (PC relative)

(b) Bcond (D)

31 26 25 24 22 21 20 16 15 5 4 0

0 1 1 0 1 0 B 0 0 0 D cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 0 1 0 B 0 0 0 D cond immediate (PC relative)

(c) CALLcond

31 26 25 24 22 21 20 16 15 5 4 0

0 1 1 1 0 0 B 0 0 0 0 cond 0 0 0 0 0 0 0 0 0 0 0 src reg

0 1 1 1 0 0 B 0 0 0 0 cond immediate (PC relative)

Condition Codes and Flags

 13-28

13.5 Condition Codes and Flags

The ’C3x provides 20 condition codes (00000–10100, excluding 01011) that
you can place in the cond field of any of the conditional instructions, such as
RETScond or LDFcond. The conditions include signed and unsigned compari-
sons, comparisons to 0, and comparisons based on the status of individual
condition flags. All conditional instructions can accept the suffix U to indicate
unconditional operation.

Seven condition flags provide information about properties of the result of
arithmetic and logical instructions. The condition flags are stored in the status
register (ST) and are affected by an instruction only when either of the following
two cases occurs:

� The destination register is one of the extended-precision registers
(R7–R0). (This allows for modification of the registers used for addressing
but does not affect the condition flags during computation.)

� The instruction is one of the compare instructions (CMPF, CMPF3, CMPI,
CMPI3, TSTB, or TSTB3). (This makes it possible to set the condition flags
according to the contents of any of the CPU registers.)

The condition flags are modified by most instructions when either of the pre-
ceding conditions is established and either of the following two cases occurs:

� A result is generated when the specified operation is performed to infinite
precision. This is appropriate for compare and test instructions that do not
store results in a register. It is also appropriate for arithmetic instructions
that produce underflow or overflow.

� The output is written to the destination register, as shown in Table 13–11.
This is appropriate for other instructions that modify the condition flags.

Table 13–11. Output Value Formats

Type of Operation Output Format

Floating point 8-bit exponent, one sign bit, 31-bit fraction

Integer 32-bit integer

Logical 32-bit unsigned integer

Figure 13–6 shows the condition flags in the low-order bits of the status register.
Following the figure is a list of status register condition flags with a description
of how the flags are set by most instructions. For specific details of the effect of
a particular instruction on the condition flags, see the description of that instruc-
tion in Section 13.6, Individual Instruction Descriptions, on page 13-32.

Condition Codes and Flags

13-29Assembly Language Instructions

Figure 13–6. Status Register

PRGW
status

(’C32 only)

INT
config

(’C32 only)

Note: xx = reserved bit, read as 0
R = read, W = write

GIE CC CE CF xx RM OVM LUF LV UF N Z V C

R R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

xx

13 16

LUF Latched floating-point underflow condition flag. LUF is set whenever UF
(floating-point underflow flag) is set. LUF can be cleared only by a processor
reset or by modifying it in the status register (ST).

LV Latched overflow conditionfFlag. LV is set whenever V (overflow condition
flag) is set. Otherwise, it is unchanged. LV can be cleared only by a processor
reset or by modifying it in the status register (ST).

UF Floating-point underflow conditionflag. A floating-point underflow occurs
whenever the exponent of the result is less than or equal to –128. If a floating-
point underflow occurs, UF is set, and the output value is set to 0. UF is
cleared if a floating-point underflow does not occur.

N Negative condition flag. Logical operations assign N the state of the MSB
of the output value. For logical operations, V is set to the state of the MSB.
For integer and floating-point operations, N is set if the result is negative and
cleared otherwise. A 0 is positive.

Z Zero condition flag. For logical, integer, and floating-point operations, Z is
set if the output is 0 and cleared otherwise.

V Overflow condition flag. For integer operations, V is set if the result does
not fit into the format specified for the destination (that is, –2 32 ≤ result ≤ 2
32 – 1). Otherwise, V is cleared. For floating-point operations, V is set if the
exponent of the result is greater than 127; otherwise,V is cleared. Logical
operations always clear V.

C Carry flag. When an integer addition is performed, C is set if a carry occurs
out of the bit corresponding to the MSB of the output. When an integer
subtraction is performed, C is set if a borrow occurs into the bit corresponding
to the MSB of the output. Otherwise, for integer operations, C is cleared. The
carry flag is unaffected by floating-point and logical operations. For shift
instructions, this flag is set to the last bit shifted out; for a 0 shift count, this
is set to 0.

Condition Codes and Flags

 13-30

Table 13–12 lists the condition mnemonic, code, description, and flag for each
of the 20 condition codes.

Table 13–12. Condition Codes and Flags

(a) Unconditional compares

Condition Code Description Flag†

U 00000 Unconditional Irrevelant

(b) Unsigned compares

Condition Code Description Flag†

LO
LS
HI
HS
EQ
NE

00001
00010
00011
00100
00101
00110

Lower than
Lower than or same as
Higher than
Higher than or same as
Equal to
Not equal to

C
C OR Z
∼C AND ∼Z
∼C
Z
∼Z

(c) Signed compares

Condition Code Description Flag†

LT
LE
GT
GE
EQ
NE

00111
01000
01001
01010
00101
00110

Less than
Less than or equal to
Greater than
Greater than or equal to
Equal to
Not equal to

N
N OR Z
∼N AND ∼Z
∼N
Z
∼Z

† ∼ = logical complement (not true condition)

Condition Codes and Flags

13-31Assembly Language Instructions

Table 13–12. Condition Codes and Flags (Continued)

(d) Compare to zero

Condition Code Description Flag†

Z
NZ
P
N
NN

00101
00110
01001
00111
01010

Zero
Not zero
Positive
Negative
Non-negative

Z
∼Z
∼N AND ∼Z
N
∼N

(e) Compare to condition flags

Condition Code Description Flag†

NN
N
NZ
Z
NV
V
NUF
UF
NC
C
NLV
LV
NLUF
LUF
ZUF

01010
00111
00110
00101
01100
01101
01110
01111
00100
00001
10000
10001
10010
10011
10100

Non-negative
Negative
Nonzero
Zero
No overflow
Overflow
No underflow
Underflow
No carry
Carry
No latched overflow
Latched overflow
No latched floating-point underflow
Latched floating-point underflow
Zero or floating-point underflow

∼N
N
∼Z
Z
∼V
V
∼UF
UF
∼C
C
∼LV
LV
∼LUF
LUF
Z OR UF

† ∼ = logical complement (not true condition)

Individual Instructions

 13-32

13.6 Individual Instructions

This section contains the individual assembly language instructions for the ’C3x.
The instructions are listed in alphabetical order. Information for each instruction
includes assembler syntax, operation, operands, encoding, description, cycles,
status bits, mode bit, and examples.

Definitions of the symbols and abbreviations, as well as optional syntax forms
allowed by the assembler, precede the individual instruction description section.
Also, an example instruction shows the special format used and explains its
content.

A functional grouping of the instructions, as well as a complete instruction set
summary, can be found in Section 13.1 on page 13-2. Appendix A lists the
opcodes for all of the instructions. Refer to Chapter 6 for information on
memory addressing. Code examples using many of the instructions are
provided in Chapter 1, Software Applications, of the TMS320C3x General-
Purpose Applications User’s Guide.

13.6.1 Symbols and Abbreviations

Table 13–13 lists the symbols and abbreviations used in the individual instruc-
tion descriptions.

Individual Instructions

13-33Assembly Language Instructions

Table 13–13. Instruction Symbols

Symbol Meaning

src
src1
src2
src3
src4

Source operand
Source operand 1
Source operand 2
Source operand 3
Source operand 4

dst
dst1
dst2
disp
cond
count

Destination operand
Destination operand 1
Destination operand 2
Displacement
Condition
Shift count

G
T
P
B

General addressing modes
3-operand addressing modes
Parallel addressing modes
Conditional-branch addressing modes

|x|
x → y
x(man)
x(exp)

Absolute value of x
Assign the value of x to destination y
Mantissa field (sign + fraction) of x
Exponent field of x

op1
|| op2 Operation 1 performed in parallel with operation 2

x AND y
x OR y
x XOR y
∼x

Bitwise-logical AND of x and y
Bitwise-logical OR of x and y
Bitwise-logical XOR of x and y
Bitwise-logical complement of x

x << y
x >> y
*++SP
*SP– –

Shift x to the left y bits
Shift x to the right y bits
Increment SP and use incremented SP as address
Use SP as address and decrement SP

ARn
IRn
Rn
RC
RE
RS
ST

Auxiliary register n
Index register n
Register address n
Repeat count register
Repeat end address register
Repeat start address register
Status register

C
GIE
N
PC
RM
SP

Carry bit
Global interrupt enable bit
Trap vector
Program counter
Repeat mode flag
System stack pointer

Individual Instructions

 13-34

13.6.2 Optional Assembler Syntax

The assembler allows a relaxed syntax form for some instructions. These
optional forms simplify the assembly language so that special-case syntax
can be ignored. A list of the optional syntax forms follows.

� You can omit the destination register on unary arithmetic and logical oper-
ations when the same register is used as a source. For example,

ABSI R0,R0 can be written as ABSI R0

Instructions affected: ABSI, ABSF, FIX, FLOAT, NEGB, NEGF, NEGI,
NORM, NOT, RND

� You can write all 3-operand instructions without the 3. For example,

ADDI3 R0,R1,R2 can be written as ADDI R0,R1,R2

Instructions affected: ADDC3, ADDF3, ADDI3, AND3, ANDN3, ASH3,
LSH3, MPYF3, MPYI3, OR3, SUBB3, SUBF3, SUBI3, XOR3

This also applies to all of the pertinent parallel instructions.

� You can write all 3-operand comparison instructions without the 3. For
example,

CMPI3 R0,*AR0 can be written as CMPI R0,*AR0

Instructions affected: CMPI3, CMPF3, TSTB3

� Indirect operands with an explicit 0 displacement are allowed. In 3-operand
or parallel instructions, operands with 0 displacement are automatically
converted to no-displacement mode. For example:

LDI *+AR0(0),R1 is legal.

Also

ADDI3 *+AR0(0),R1,R2 is equivalent to ADDI3 *AR0,R1,R2

� You can write indirect operands with no displacement, in which case a
displacement of 1 is assumed. For example,

LDI *AR0++(1),R0 can be written as LDI *AR0++,R0

� All conditional instructions accept the suffix U to indicate unconditional
operation. Also, you can omit the U from unconditional short branch
instructions. For example:

BU label can be written as B label

� You can write labels with or without a trailing colon. For example:

label0: NOP
label1 NOP
label2: label assembles to next source line

Individual Instructions

13-35Assembly Language Instructions

� Empty expressions are not allowed for the displacement in indirect mode:

LDI *+AR0(),R0 is not legal.

� You can precede long immediate mode operands (destination of BR and
CALL) with an @ sign:

BR label can be written as BR @label

� You can use the LDP pseudo-op to load a register (usually DP) with the
eight most significant bits (MSBs) of a relocatable address:

LDP addr,REG or LDP @addr,REG

The @ sign is optional.

If the destination register is the DP, you can omit the DP in the operand. LDP
generates an LDI instruction with an immediate operand and a special relo-
cation type.

� You can write parallel instructions in either order. For example:

ADDI can be written as STI
|| STI || ADDI

� You can write the parallel bars indicating part 2 of a parallel instruction
anywhere on the line from column 0 to the mnemonic. For example:

ADDI can be written as ADDI
|| STI || STI

� If the second operand of a parallel instruction is the same as the third (desti-
nation register) operand, you can omit the third operand. This allows you to
write 3-operand parallel instructions that look like normal 2-operand instruc-
tions. For example,

ADDI *AR0,R2,R2 can be written as ADD *AR0,R2
|| MPYI *AR1,R0,R0 || MPYI *AR1,R0

Instructions affected (applies to all parallel instructions that have a register
second operand): ADDI, ADDF, AND, MPYI, MPYF, OR, SUBI, SUBF,
XOR.

� You can write all commutative operations in parallel instructions in either
order. For example, you can write the ADDI part of a parallel instruction in
either of two ways:

ADDI *AR0,R1,R2 or ADDI R1,*AR0,R2

Instructions affected include: parallel instructions containing any of the
following: ADDI, ADDF, MPYI, MPYF, AND, OR, XOR.

Individual Instructions

 13-36

� Use the syntax in Table 13–14 to designate CPU registers in operands.
Note the alternate notation Rn, 0 � n � 27, which is used to designate
any CPU register.

Table 13–14. CPU Register Syntax

Assemblers
Syntax

Alternate
Register Syntax Assigned Function

R0

R1

R2

R3

R4

R5

R6

R7

R0

R1

R2

R3

R4

R5

R6

R7

Extended-precision register

Extended-precision register

Extended-precision register

Extended-precision register

Extended-precision register

Extended-precision register

Extended-precision register

Extended-precision register

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

R8

R9

R10

R11

R12

R13

R14

R15

Auxiliary register

Auxiliary register

Auxiliary register

Auxiliary register

Auxiliary register

Auxiliary register

Auxiliary register

Auxiliary register

DP

IR0

IR1

BK

SP

R16

R17

R18

R19

R20

Data-page pointer

Index register 0

Index register 1

Block-size register

Active stack pointer

ST

IE

IF

IOF

R21

R22

R23

R24

Status register

CPU/DMA interrupt enable

CPU interrupt flags

I/O flags

RS

RE

RC

R25

R26

R27

Repeat start address

Repeat end address

Repeat counter

Individual Instructions

13-37Assembly Language Instructions

13.6.3 Individual Instruction Descriptions

Each assembly language instruction for the ’C3x is described in this section
in alphabetical order. The description includes the assembler syntax, operation,
operands, encoding, description, cycles, status bits, mode bit, and examples.

EXAMPLE Example Instruction

13-38

Syntax INST src, dst

or

INST1 src2, dst1
|| INST2 src3, dst2

Each instruction begins with an assembler syntax expression. You can place
labels either before the command (instruction mnemonic) on the same line or
on the preceding line in the first column. The optional comment field that con-
cludes the syntax is not included in the syntax expression. Space(s) are
required between each field (label, command, operand, and comment fields).

The syntax examples illustrate the common one-line syntax and the two-line
syntax used in parallel addressing. Note that the two vertical bars || that indicate
a parallel addressing pair can be placed anywhere before the mnemonic on the
second line. The first instruction in the pair can have a label, but the second
instruction cannot have a label.

Operation |src | → dst

or

|src2 | → dst1
|| src3 → dst2

The instruction operation sequence describes the processing that occurs when
the instruction is executed. For parallel instructions, the operation sequence is
performed in parallel. Conditional effects of status-register-specified modes are
listed for such conditional instructions as Bcond.

Operands src general-addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

or

src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Operands are defined according to the addressing mode and/or the type
of addressing used. Note that indirect addressing uses displacements and
the index registers. See Chapter 6 for detailed information on addressing.

 Example Instruction EXAMPLE

13-39 Assembly Language Instructions

Opcode

INST1 INST2

31 24 23 16 8 7 015

0 0 0 srcdstG

31 24 23 16 8 7 015

1 1 dst1 src2dst2src30 0 0

or

INST

Encoding examples are shown using general addressing and parallel addressing.
The instruction pair for the parallel addressing example consists of INST1 and
INST2.

Description Instruction execution and its effect on the rest of the processor or memory con-
tents is described. Any constraints on the operands imposed by the processor
or the assembler are discussed. The description parallels and supplements
the information given by the operation block.

Cycles 1

The digit specifies the number of cycles required to execute the instruction.

Status Bits LUF Latched floating-point underflow condition flag. 1 if a
floating-point underflow occurs; unchanged otherwise.

LV Latched overflow condition flag. 1 if an integer or floating-point
overflow occurs; unchanged otherwise.

UF Floating-point underflow condition flag. 1 if a floating-point underflow
occurs; 0 otherwise.

N Negative condition flag. 1 if a negative result is generated; 0 other-
wise. In some instructions, this flag is the MSB of the output.

Z Zero condition flag. 1 if a 0 result is generated; 0 otherwise. For logical
and shift instructions, 1 if a 0 output is generated; 0 otherwise.

V Overflow condition flag. 1 if an integer or floating-point overflow
occurs; 0 otherwise.

C Carry flag. 1 if a carry or borrow occurs; 0 otherwise. For shift instruc-
tions, this flag is set to the value of the last bit shifted out; 0 for a shift
count of 0.

The seven condition flags stored in the status register (ST) are modified by the
majority of instructions only if the destination register is R7–R0. The flags pro-
vide information about the properties of the result or the output of arithmetic
or logical operations.

Mode Bit OVM Overflow mode flag. In general, integer operations are affected by the
OVM bit value (described in Table 3–2 on page 3-6).

EXAMPLE Example Instruction

13-40

Example INST @98AEh,R5

Before Instruction After Instruction

R5 07 6690 0000 R5 00 6690 1000

R5 decimal 2.30562500e+02 R5 decimal 1.80126953e+00

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UV 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098AEh 5CDF 8098AEh 5CDF

0200h 1234 0200h 1234

The sample code presented in the above format shows the effect of the code on
system pointers (for example, DP or SP), registers (for example, R1 or R5),
memory at specific locations, and the seven status bits. The values given for the
registers include the leading 0s to show the exponent in floating-point operations.
Decimal conversions are provided for all register and memory locations. The
seven status bits are listed in the order in which they appear in the assembler and
simulator (see Section 13.5 on page 13-28 and Table 13–12 on page 13-30 for
further information on these seven status bits).

 Absolute Value of Floating Point ABSF

13-41 Assembly Language Instructions

Syntax ABSF src, dst

Operation |src| → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 0 src0 dstG00

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be floating-point numbers.

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

Mode Bit OVM Operation is not affected by OVM bit value.

Example ABSF R4,R7

Before Instruction After Instruction

R4 5C 8000 F971 R4 5C 8000 F971

R7 7D 2511 00AE R7 5C 7FFF 068F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

5.48527255e+37

–9.90337307e+27

9.90337307e+27

–9.90337307e+27

ABSF||STF Parallel ABSF and STF

13-42

Syntax ABSF src2, dst1
|| STF src3, dst2

Operation |src2 | → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 0 1 0 dst1 src2dst20 src30 0 0

Description A floating-point absolute value and a floating-point store are performed in paral-
lel. All registers are read at the beginning and loaded at the end of the execute
cycle. If one of the parallel operations (STF) reads from a register and the opera-
tion being performed in parallel (ABSF) writes to the same register, STF accepts
the contents of the register as input before it is modified by the ABSF.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.
If src3 and dst1 point to the same register, src3 is read before the write to dst1.

An overflow occurs if src (man) = 80000000h and src (exp) = 7Fh. The result
is dst (man) = 7FFFFFFFh and dst (exp) = 7Fh.

Cycles 1

Status Bits LUF Unaffected
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

 Parallel ABSF and STF ABSF||STF

13-43 Assembly Language Instructions

Mode Bit OVM Operation is not affected by OVM bit value.

Example ABSF *++AR3(IR1) ,R4
 STF R4,*–AR7(1)

Before Instruction After Instruction

R4 07 33C0 0000 R4 05 74C0 0000

AR3 80 9800 AR3 8098AF

AR7 80 98C5 AR7 8098C5

IR1 0AF IR1 0AF

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data Memory

8098AF 58B4000 8098AF 58B4000

8098C4 0 8098C4 733C000

1.79750e+02 6.118750e+01

–6.118750e+01 –6.118750e+01

1.79750e+02

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

ABSI Absolute Value of Integer

13-44

Syntax ABSI src, dst

Operation |src| → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 0 src0 dstG10

Description The absolute value of the src operand is loaded into the dst register. The src
and dst operands are assumed to be signed integers.

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is
dst = 7FFFFFFFh. If ST(OVM) = 0, the result is dst = 80000000h.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

Mode Bit OVM Operation is affected by OVM bit value.

 Absolute Value of Integer ABSI

13-45 Assembly Language Instructions

Example 1 ABSI R0,R0
or
ABSI R0

Before Instruction After Instruction

R0 00 FFFF FFCB R0 00 0000 0035–53 53

Example 2 ABSI *AR1,R3

Before Instruction After Instruction

R3 00 0000 0000 R3 00 0000 0035

AR1 00 0020 AR1 00 0020

Data memory

20 0FFFFFFCB 20 0FFFFFFCB –53

53

–53

ABSI||STI Parallel ABSI and STI

13-46

Syntax ABSI src2, dst1

|| STI src3, dst2

Operation |src2 | → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ 1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 0 1 0 dst1 src2dst21 src30 0 0

Description An integer absolute value and an integer store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
If one of the parallel operations (STI) reads from a register and the operation
being performed in parallel (ABSI) writes to the same register, STI accepts the
contents of the register as input before it is modified by the ABSI.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

An overflow occurs if src = 80000000h. If ST(OVM) = 1, the result is dst =
7FFFFFFFh. If ST(OVM) = 0, the result is dst = 80000000h.

Cycles 1

 Parallel ABSI and STI ABSI||STI

13-47 Assembly Language Instructions

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

Mode Bit OVM Operation is affected by OVM bit value.

Example ABSI *–AR5(1),R5
|| STI R1,*AR2 ––(IR1)

Before Instruction After Instruction

R1 00 0000 0042 R1 00 0000 0042

R5 00 0000 0000 R5 00 0000 0035

AR2 80 98FF AR2 80 98F0

AR5 80 99E2 AR5 80 99E2

IR1 0F IR1 0F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098FF 2 8098FF 42

8099E1 0FFFFFFCB 8099E1 0FFFFFFCB

66

–53

2

66

53

–53

66

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

ADDC Add Integer With Carry

13-48

Syntax ADDC src, dst

Operation dst + src + C → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 0 1 src0 dstG0

Description The sum of the dst and src operands and the carry (C) flag is loaded into the
dst register. The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example ADDC R1,R5

Before Instruction After Instruction

R1 00 FFFF 5C25 –41,947 R1 00 FFFF 5C25

R5 00 FFFF 019E –65,122 R5 00 FFFE 5DC4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

–41,947

–107,068

Mode Bit

 Add Integer With Carry, 3-Operand ADDC3

13-49 Assembly Language Instructions

Syntax ADDC3 src2, src1, dst

Operation src1 + src2 + C → dst

Operands src1 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 1 0 0 0 T src10 dst0 src20

Description The sum of the src1 and src2 operands and the carry (C) flag is loaded into
the dst register. The src1, src2, and dst operands are assumed to be signed
integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
U 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

ADDC3 Add Integer With Carry, 3-Operand

13-50

Example 1 ADDC3 *AR5++(IR0),R5,R2
 or
ADDC3 R5,*AR5++(IR0),R2

Before Instruction After Instruction

R2 00 0000 0000 R2 00 0000 0032

R5 00 0000 0066 R5 00 0000 0066

AR5 80 9908 AR5 80 9918

IR0 10 IR0 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 1

Data memory

809908 0FFFFFFCB 809908 0FFFFFFCB–53

102

–53

102

50

Example 2 ADDC3 R2, R7, R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 123F

R2 00 0000 02BC R2 00 0000 02BC

R7 00 0000 0F82 R7 00 0000 0F82

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0

700 700

39703970

4671

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Add Floating-Point Values ADDF

13-51 Assembly Language Instructions

Syntax ADDF src, dst

Operation dst + src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

src

31 2423 16 8 7 015

0 0 0 0 0 1 G1 dst0 0

Description The sum of the dst and src operands is loaded into the dst register. The dst and
src operands are assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

ADDF Add Floating-Point Values

13-52

Example ADDF *AR4++(IR1),R5

Before Instruction After Instruction

R5 05 7980 0000 R5 09 052C 0000

AR 4809800 AR4 80992B

IR 112B IR1 12B

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

86B2800 86B2800

5.3268750e+02

4.7031250e+02 4.7013250e+02

6.23750e+01

809800 809800

 Add Floating Point, 3-Operand ADDF3

13-53 Assembly Language Instructions

Syntax ADDF3 src2, src1, dst

Operation src1 + src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 7)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 7)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 7)
0 1 register (Rn2, 0 ≤ n2 ≤ 7)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 1 T src2src10 dst0 0

Description The sum of the src1 and src2 operands is loaded into the dst register. The src1,
src2, and dst operands are assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

ADDF3 Add Floating Point, 3-Operand

13-54

Example 1 ADDF3 R6,R5,R1
or
ADDF3 R5,R6,R1

Before Instruction After Instruction

R1 00 0000 0000 R1 09 052C 0000

R5 05 7980 0000 R5 05 7980 0000

R6 08 6B28 0000 R6 08 6B28 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

6.23750e+01

4.7031250e+02

5.3268750e+02

6.23750e+01

4.7031250e+02

Example 2 ADDF3 *+AR1(1),*AR7++(IR0),R4

Before Instruction After Instruction

R4 00 0000 0000 R4 07 0DB2 0000

AR1 80 9820 AR1 80 9820

AR7 80 99FO AR7 80 99F8

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UV 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809821h 700F000 809821h 700F000

8099F0h 34C2000 8099F0h 34C2000

1.28940e+02

1.27590e+01

1.41695313e+02

1.28940e+02

1.27590e+01

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel ADDF3 and STF ADDF3||STF

13-55 Assembly Language Instructions

Syntax ADDF3 src2, src1, dst1
|| STF src3, dst2

Operation src1 + src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 0 1 1 dst1 src2src1 dst20 src3

Description A floating-point addition and a floating-point store are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
If one of the parallel operations (STF) reads from a register and the operation
being performed in parallel (ADDF3) writes to the same register, STF accepts
as input the contents of the register before it is modified by the ADDF3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

ADDF3||STF Parallel ADDF3 and STF

13-56

OVM Operation is not affected by OVM bit value.

Example ADDF3 *+AR3(IR1),R2,R5
|| STF R4,*AR2

Before Instruction After Instruction

R2 07 0C80 0000 R2 07 0C80 0000

R4 05 7B40 0000 R4 05 7B40 0000

R5 00 0000 0000 R5 08 2020 0000

AR2 80 98F3 AR2 80 98F3

AR3 80 9800 AR3 80 9800

IR1 0A5 IR1 0A5

LUF 0 LUF 0

LV 0 LV 0

UF 0 UV 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098A5h 733C000 8098A5h 733C000

8098F3h 0 8098F3h 57B4000

1.4050e+02

6.281250e+01

1.79750e+02

1.4050e+02

6.281250e+01

3.20250e+02

1.79750e+02

6.28125e+01

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

 Add Integer ADDI

13-57 Assembly Language Instructions

Syntax ADDI src, dst

Operation dst + src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 0 0 1 G srcdst0 0

Description The sum of the dst and src operands is loaded into the the dst register. The
dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example ADDI R3,R7

Before Instruction After Instruction

R3 00 FFFF FFCB R3 00 FFFF FFCB

R7 35 R7 00 0000 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

–53

53

–53

Mode Bit

ADDI3 Add Integer, 3-Operand

13-58

Syntax ADDI3 <src2 >,<src1 >,<dst >

Operation src1 + src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 0 0 T src2dst src110

Description The sum of the src1 and src2 operands is loaded into the dst register. The src1,
src2, and dst operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

 Add Integer, 3-Operand ADDl3

13-59 Assembly Language Instructions

Example 1 ADDI3 R4,R7,R5

Before Instruction After Instruction

R4 00 0000 00DC R4 00 0000 00DC

R5 00 0000 0010 R5 00 0000 017C

R7 00 0000 00A0 R7 00 0000 00A0

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

220220

 16

160

380

160

Example 2 ADDI3 *–AR3(1),*AR6 ––(IR0),R2

Before Instruction After Instruction

R2 00 0000 0010 R2 00 0000 6598

AR3 80 9802 AR3 80 9802

AR6 80 9930 AR6 80 9918

IR0 18 IR0 18

LUF 0 LUF 0

LV 0 LV 0

UF 0 UV 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809801 2AF8 809801 2AF8

809930 3A98 809930 3A98

16

11,000

15,000

26,000

11,000

15,000

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

ADDI3||STI Parallel ADDI3 and STI

13-60

Syntax ADDI3 src2, src1, dst1
|| STI src3, dst2

Operation src1 + src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 0 0 1 1 1 dst1 src2src1 src3 dst2

Description An integer addition and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle. If one
of the parallel operations (STI) reads from a register and the operation being
performed in parallel (ADDI3) writes to the same register, STI accepts the con-
tents of the register as input before it is modified by the ADDI3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a carry occurs; 0 otherwise

 Parallel ADDl3 and STI ADDl3||STI

13-61 Assembly Language Instructions

OVM Operation is affected by OVM bit value.

Example ADDI3 *AR0––(IR0),R5,R0
 STI R3,*AR7

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 0208

R3 00 0000 0035 R3 00 0000 0035

R5 00 0000 00DC R5 00 0000 00DC

AR0 80 992C AR0 80 9920

AR7 80 983B AR7 80 983B

IR0 OC IR0 OC

LUF 0 LUF 0

LV 0 LV 0

UF 0 UV 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80992C 12C 80992C 12C

80983B 0 80983B 35

53

300 300

53

220 220

53

520

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

AND Bitwise-Logical AND

13-62

Syntax AND src, dst

Operands dst AND src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate (not sign extended)

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 0 1 dst src0 1 G

Description The bitwise-logical AND between the dst and src operands is loaded into the
dst register. The dst and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example AND R1,R2

Before Instruction After Instruction

R1 00 0000 0080 R1 00 0000 0080

R2 00 0000 0AFF R2 00 0000 0080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 1

Mode Bit

 Bitwise-Logical AND, 3-Operand AND3

13-63 Assembly Language Instructions

Syntax AND3 src2, src1, dst

Operation src1 AND src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 0 0 dst src1 src21 1 T

Description The bitwise-logical AND between the src1 and src2 operands is loaded into
the destination register. The src1, src2, and dst operands are assumed to be
unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

AND3 Bitwise-Logical AND, 3-Operand

13-64

Example 1 AND3 *AR0––(IR0),*+AR1,R4

Before Instruction After Instruction

R4 00 0000 0000 R4 00 0000 0020

AR0 80 98F4 AR0 80 98A4

AR1 80 9951 AR1 80 9951

IR0 50 IR0 50

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098F4h 30 8098F4h 30

809952h 123 809952h 123

Example 2 AND3 *–AR5,R7,R4

Before Instruction After Instruction

R4 00 0000 0000 R4 00 0000 0002

R7 00 0000 0002 R7 00 0000 0002

AR5 80 985C AR5 80 985C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80985Bh 0AFF 80985Bh 0AFF

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel AND3 and STI AND3||STI

13-65 Assembly Language Instructions

Syntax AND3 src2, src1, dst1
 STI src3, dst2

Operation src1 AND src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 0 0 0 dst1 src1 src3 dst2 src2

Description A bitwise-logical AND and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. If
one of the parallel operations (STI) reads from a register and the operation be-
ing performed in parallel (AND3) writes to the same register, STI accepts the
contents of the register as input before it is modified by the AND3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

AND3||STI Parallel AND3 and STI

13-66

OVM Operation is not affected by OVM bit value.

Example AND3 *+AR1(IR0),R4,R7
|| STI R3,*AR2

Before Instruction After Instruction

R0 00 0000 0008 R0 00 0000 0008

R3 00 0000 0035 R3 00 0000 0035

R4 00 0000 A323 R4 00 0000 A323

R7 00 0000 0000 R7 00 0000 0003

AR1 80 99F1 AR1 80 99F1

AR2 80 983F AR2 80 983F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8099F9h 5C53 8099F9h 5C53

80983Fh 0 80983Fh 35

53 53

53

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

 Bitwise-Logical AND With Complement ANDN

13-67 Assembly Language Instructions

Syntax ANDN src, dst

Operation dst AND ∼src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate (not sign extended)

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 0 1 dst src1 0 G

Description The bitwise-logical AND between the dst operand and the bitwise-logical com-
plement (∼) of the src operand is loaded into the dst register. The dst and src
operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

ANDN Bitwise-Logical AND With Complement

13-68

Example ANDN @980Ch,R2

Before Instruction After Instruction

R2 00 0000 0C2F R2 00 0000 042D

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80980Ch 0A02 80980Ch 0A02

 Bitwise-Logical ANDN, 3-Operand ANDN3

13-69 Assembly Language Instructions

Syntax ANDN3 src2, src1, dst

Operation src1 AND ∼src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

 src2 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IO0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 0 1 dst src10 0 T src2

Description The bitwise-logical AND between the src1 operand and the bitwise-logical
complement (∼) of the src2 operand is loaded into the dst register. The src1,
src2, and dst operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

ANDN3 Bitwise-Logical ANDN, 3-Operand

13-70

Example 1 ANDN3 R5,R3,R7

Before Instruction After Instruction

R3 00 0000 0C2F R3 00 0000 0C2F

R5 00 0000 0A02 R5 00 0000 0A02

R7 00 0000 0000 R7 00 0000 042D

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Example 2 ANDN3 R1,*AR5++(IR0),R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 0F30

R1 00 0000 00CF R1 00 0000 00CF

AR5 80 9825 AR5 80 982A

IR0 5 IR0 5

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809825h 0FFF 809825h 0FFF

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Arithmetic Shift ASH

13-71 Assembly Language Instructions

Syntax ASH count, dst

Operation If (count ≥ 0):
dst << count → dst

Else:
dst >> |count | → dst

Operands count general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 0 1 dst count1 1 G

Description The seven LSBs of the count operand are used to generate the 2s-comple-
ment shift count of up to 32 bits.

If the count operand is greater than 0, the dst operand is left shifted by the value
of the count operand. Low-order bits that are shifted in are zero filled, and high-
order bits are shifted out through the carry (C) bit.

Arithmetic left shift:

C ← dst ← 0

If the count operand is less than 0, the dst operand is right shifted by the abso-
lute value of the count operand. The high-order bits of the dst operand are sign-
extended as it is right shifted. Low-order bits are shifted out through the C bit.

Arithmetic right shift:

sign of dst → dst → C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count and dst operands are assumed to be signed integers.

Cycles 1

ASH Arithmetic Shift

13-72

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out; 0 for a shift count of 0

OVM Operation is not affected by OVM bit value.

Example 1 ASH R1,R3

Before Instruction After Instruction

R1 00 0000 0010 R1 00 0000 0010

R3 00 000A E000 R3 00 E000 0000

LUF 0 LUF 0

LV 0 LV 1

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

16

Example 2 ASH @98C3h,R5

Before Instruction After Instruction

R5 00 AEC0 0001 R5 00 FFFF FFAE

DP 80 DP 80

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1

Data memory

8098C3h 0FFE8 8098C3h 0FFE8–24 –24

Mode Bit

 Arithmetic Shift, 3-Operand ASH3

13-73 Assembly Language Instructions

Syntax ASH3 count, src, dst

Operation If (count ≥ 0):
src << count → dst

Else:
src >> |count | → dst

Operands count 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

src 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 0 1 dst count0 1 T src

Description The seven LSBs of the count operand are used to generate the 2s-comple-
ment shift count of up to 32 bits.

If the count operand is greater than 0, the src operand is left shifted by the value
of the count operand. Low-order bits that are shifted in are zero filled, and high-
order bits are shifted out through the status register’s C bit.

Arithmetic left shift:

C ← src ← 0

If the count operand is less than 0, the src operand is right shifted by the abso-
lute value of the count operand. The high-order bits of the src operand are sign
extended as they are right shifted. Low-order bits are shifted out through the
C (carry) bit.

Arithmetic right shift:

sign of src → src → C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count, src, and dst operands are assumed to be signed integers.

Cycles 1

ASH3 Arithmetic Shift, 3-Operand

13-74

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out; 0 for a shift count of 0

OVM Operation is not affected by OVM bit value.

Example 1 ASH3 *AR3 ––(1),R5,R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 02B0 0000

R5 00 0000 02B0 R5 00 0000 02B0

AR3 80 9921 AR3 80 9920

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809921h 10 809921h 1016 16

Mode Bit

 Arithmetic Shift, 3-Operand ASH3

13-75 Assembly Language Instructions

Example 2 ASH3 R1,R3,R5

Before Instruction After Instruction

R1 00 FFFF FFF8 R1 00 FFFF FFF8

R3 00 FFFF CB00 R3 00 FFFF CB00

R5 00 0000 0000 R5 00 FFFF FFCB

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

–8 –8

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8.5.2 for the effects of
operand ordering on the cycle count.

ASH3||STI Parallel ASH3 and STI

13-76

Syntax ASH3 count, src2, dst1
|| STI src3, dst2

Operation If (count ≥ 0):
src2 << count → dst1

Else:
src2 >> |count| → dst1

|| src3 → dst2

Operands count register (Rn1, 0 ≤ n1 ≤ 7)

src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 0 0 1 dst1 count src3 dst2 src2

Description The seven LSBs of the count operand register are used to generate the 2s-
complement shift count of up to 32 bits.

If the count operand is greater than 0, the src2 operand is left shifted by the
value of the count operand. Low-order bits shifted in are zero filled, and high-
order bits are shifted out through the C bit.

Arithmetic left shift:

C ← src2 ← 0

If the count operand is less than 0, the src2 operand is right hifted by the abso-
lute value of the count operand. The high-order bits of the src2 operand are
sign extended as they are right shifted. Low-order bits are shifted out through
the C bit.

 Parallel ASH3 and STI ASH3||STI

13-77 Assembly Language Instructions

Arithmetic right shift:

sign of src2 → src2 → C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count and dst operands are assumed to be signed integers.

All registers are read at the beginning and loaded at the end of the execute
cycle. If one of the parallel operations (STI) reads from a register and the oper-
ation being performed in parallel (ASH3) writes to the same register, STI ac-
cepts the contents of the register as input before it is modified by the ASH3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Set to the value of the last bit shifted out; 0 for a shift count of 0

OVM Operation is not affected by OVM bit value.Mode Bit

ASH3||STI Parallel ASH3 and STI

13-78

Example ASH3 R1,*AR6++(IR1),R0
|| STI R5,*AR2

Before Instruction After Instruction

R0 00 0000 0000 R0 00 FFFF FFAE

R1 00 0000 FFE8 R1 00 0000 FFE8

R5 00 0000 0035 R5 00 0000 0035

AR2 80 98A2 AR2 80 98A2

AR6 80 9900 AR6 80 998C

IR1 8C IR1 8C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809900h 0AE000000 809900h 0AE000000

8098A2h 0 8098A2h 35

–24 –24

53

53

53

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Branch Conditionally (Standard) Bcond

13-79 Assembly Language Instructions

Syntax B cond src

Operation If cond is true:
If src is in register-addressing mode (Rn, 0 ≤ n ≤ 27),

src → PC.
If src is in PC-relative mode (label or address),

displacement + PC + 1 → PC.
Else, continue

Operands src conditional-branch addressing modes (B):

0 register
1 PC relative

Opcode

31 24 23 16 8 7 015

0 1 1 0 1 0 0B0 Register or displacement0 0 cond

Description Bcond signifies a standard branch that executes in four cycles. A branch is per-
formed if the condition is true (since a pipeline flush also occurs on a true condi-
tion; see Section 8.2, Pipeline Conflicts, on page 8-4). If the src operand is ex-
pressed in register addressing mode, the contents of the specified register are
loaded into the PC. If the src operand is expressed in PC-relative mode, the
assembler generates a displacement: displacement = label – (PC of branch
instruction + 1). This displacement is stored as a 16-bit signed integer in the
16 LSBs of the branch instruction word. This displacement is added to the PC
of the branch instruction plus 1 to generate the new PC.

The ’C3x provides 20 condition codes that you can use with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

Bcond Branch Conditionally (Standard)

13-80

Example BZ R0

Before Instruction After Instruction

R0 00 0003 FF00 R0 00 0003 FF00

PC 2B00 PC 3 FF00

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0

Note:

If a BZ instruction is executed immediately following a RND instruction with
a 0 operand, the branch is not performed, because the 0 flag is not set. To
circumvent this problem, execute a BZUF instead of a BZ instruction.

 Branch Conditionally (Delayed) BcondD

13-81 Assembly Language Instructions

Syntax B cond D src

Operation If cond is true:
If src is in register-addressing mode (Rn, 0 ≤ n ≤ 27),

src → PC.
If src is in PC-relative mode (label or address),

displacement + PC + 3 → PC.
Else, continue

Operands src conditional-branch addressing modes (B):

0 register
1 PC relative

Opcode

31 24 23 16 8 7 015

0 1 1 0 1 0 0B0 Register or displacement0 1 cond

Description BcondD signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a single-
cycle branch, and the three instructions following BcondD do not affect the
condition.

A branch is performed if the condition is true. If the src operand is expressed
in register-addressing mode, the contents of the specified register are loaded
into the PC. If the src operand is expressed in PC-relative mode, the assembler
generates a displacement: displacement = label – (PC of branch instruction
+ 3). This displacement is stored as a 16-bit signed integer in the 16 LSBs of
the branch instruction. This displacement is added to the PC of the branch in-
struction plus 3 to generate the new PC. The ’C3x provides 20 condition codes
that you can use with this instruction (see Table 13–12 on page 13-30 for a list
of condition mnemonics, condition codes, and flags). Condition flags are set
on the previous instruction only when the destination register is one of the ex-
tended-precision registers (R7–R0) or when one of the compare instructions
(CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

BcondD Branch Conditionally (Delayed)

13-82

Example BNZD 36 (36 = 24h)

Before Instruction After Instruction

PC 0050 PC 0077

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Note:

Delayed branches disable interrupts until the completion of the three instruc-
tions that follow the delayed branch, regardless if the branch is or is not per-
formed. The following instructions cannot be used in the next three instruc-
tions following a delayed branch: Bcond, BcondD, BR, BRD, CALL, CALL-
cond, DBcond, DBcondD, IDLE, IDLE2, RETIcond, RETScond, RPTB,
RPTS, TRAPcond.

 Branch Unconditionally (Standard) BR

13-83 Assembly Language Instructions

Syntax BR src

Operation src → PC

Operands src long-immediate addressing mode

Opcode

31 24 23 16 8 7 015

0 1 1 0 0 000 src

Description BR performs a PC-relative branch that executes in four cycles, since a pipeline
flush also occurs upon execution of the branch (see Section 8.2, Pipeline Con-
flicts, on page 8-4). An unconditional branch is performed. The src operand is
assumed to be a 24-bit unsigned integer. Note that bit 24 = 0 for a standard
branch.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example BR 805Ch

Before Instruction After Instruction

PC 0080 PC 805C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Mode Bit

BRD Branch Unconditionally (Delayed)

13-84

Syntax BRD src

Operation src → PC

Operands src long-immediate addressing mode

Opcode

31 24 23 16 8 7 015

0 1 1 0 0 100 src

Description BRD signifies a delayed branch that allows the three instructions after the
delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch.

An unconditional branch is performed. The src operand is assumed to be a
24-bit unsigned integer. Note that bit 24 = 1 for a delayed branch.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example BRD 2Ch

Before Instruction After Instruction

PC 001B PC 002C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Mode Bit

 Call Subroutine CALL

13-85 Assembly Language Instructions

Syntax CALL src

Operation Next PC → *++SP
src → PC

Operands src long-immediate addressing mode

Opcode

31 24 23 16 8 7 015

0 1 1 0 0 010 src

Description A call is performed. The next PC value is pushed onto the system stack. The
src operand is loaded into the PC. The src operand is assumed to be a 24-bit
unsigned-immediate operand. Since the CALL instruction takes 4 cycles to
execute, the pipeline is flushed.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example CALL 123456h

Before Instruction After Instruction

PC 0005 PC 123456

SP 809801 SP 809802

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809802h 6

Mode Bit

CALLcond Call Subroutine Conditionally

13-86

Syntax CALL cond src

Operation If cond is true:
Next PC → *++SP
If src is in register addressing mode (Rn, 0 ≤ n ≤ 27),

src → PC.
If src is in PC-relative mode (label or address),

displacement + PC + 1 → PC.

 Else, continue

Operands src conditional-branch addressing modes (B):

0 register
1 PC relative

Opcode

31 24 23 16 8 7 015

0 1 1 1 0 B0 Register or displacementcond0 0 00

Description A call is performed if the condition is true. If the condition is true, the next PC
value is pushed onto the system stack. If the src operand is expressed in regis-
ter addressing mode, the contents of the specified register are loaded into the
PC. If the src operand is expressed in PC-relative mode, the assembler gener-
ates a displacement: displacement = label – (PC of call instruction + 1). This
displacement is stored as a 16-bit signed integer in the 16 LSBs of the call in-
struction word. This displacement is added to the PC of the call instruction plus
1 to generate the new PC. This instruction flushes the pipeline as shown in
Example 8–13 on page 8-18.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

Cycles 5

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Call Subroutine Conditionally CALLcond

13-87 Assembly Language Instructions

Example CALLNZ R5

Before Instruction After Instruction

R5 00 0000 0789 R5 00 0000 0789

PC 0123 PC 0789

SP 809835 SP 809836

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809836h 124

CMPF Compare Floating-Point Value

13-88

Syntax CMPF src, dst

Operation dst – src

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 0 0 0 1 0 dst0 0 G src

Description The src operand is subtracted from the dst operand. The result is not loaded
into any register, which allows for nondestructive compares. The dst and src
operands are assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Compare Floating-Point Value CMPF

13-89 Assembly Language Instructions

Example CMPF *+AR4,R6

Before Instruction After Instruction

R6 07 0C80 0000 R6 07 0C80 0000

AR4 80 98F2 AR4 80 98F2

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0

Data memory

8098F3h 070C8000 8098F3h 070C8000

1.4050e+02

1.4050e+02

1.4050e+02

1.4050e+02

CMPF3 Compare Floating-Point Value, 3-Operand

13-90

Syntax CMPF3 src2, src1

Operation src1 – src2

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 7)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 7)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 7)
0 1 register (Rn2, 0 ≤ n2 ≤ 7)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 1 1 0 T src20 0 00 00 src1

Description The src2 operand is subtracted from the src1 operand. The result is not loaded
into any register, which allows for nondestructive compares. The src1 and src2
operands are assumed to be floating-point numbers. Although this instruction
has only two operands, it is designated as a 3-operand instruction because op-
erands are specified in the 3-operand format.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Compare Floating-Point Value, 3-Operand CMPF3

13-91 Assembly Language Instructions

Example CMPF3 *AR2,*AR3––(1)

Before Instruction After Instruction

AR2 80 9831 AR2 80 9831

AR3 80 9852 AR4 80 9851

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809831h 77A7000 809831h 77A7000

809852h 57A2000 809852h 57A2000

2.5044e+02 2.5044e+02

6.253125e+01 6.253125e+01

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

CMPI Compare Integer

13-92

Syntax CMPI src, dst

Operation dst – src

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 1 0 dst0 1 G src

Description The src operand is subtracted from the dst operand. The result is not loaded
into any register, thus allowing for nondestructive compares. The dst and src
operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is not affected by OVM bit value.

Example CMPI R3,R7

Before Instruction After Instruction

R3 00 0000 0898 R3 00 0000 0898

R7 00 0000 03E8 R7 00 0000 03E8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1

2200

1000

2200

1000

Mode Bit

 Compare Integer, 3-Operand CMPI3

13-93 Assembly Language Instructions

Syntax CMPI3 src2, src1

Operation src1 – src2

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 0 1 1 1 T src10 0 0 0 0 src2

Description The src2 operand is subtracted from the src1 operand. The result is not loaded
into any register, which allows for nondestructive compares. The src1 and src2
operands are assumed to be signed integers. Although this instruction has
only two operands, it is designated as a 3-operand instruction because oper-
ands are specified in the 3-operand format.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is not affected by OVM bit value.Mode Bit

CMPI3 Compare Integer, 3-Operand

13-94

Example CMPI3 R7,R4

Before Instruction After Instruction

R4 00 0000 0898 R4 00 0000 0898

R7 00 0000 03E8 R7 00 0000 03E8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

2200

1000

2200

1000

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Decrement and Branch Conditionally (Standard) DBcond

13-95 Assembly Language Instructions

Syntax DB cond ARn, src

Operation ARn – 1 → ARn
If cond is true and ARn ≥ 0 :

If src is in register addressing mode (Rn, 0 ≤ n ≤ 27),
src → PC.

If src is in PC-relative mode (label or address),
displacement + PC + 1 → PC.

Else, continue

Operands src conditional-branch addressing modes (B):

0 register
1 PC relative

ARn register (0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 1 1 0 1 1 B 0 cond Register or displacementARn

Description DBcond signifies a standard branch that executes in four cycles because the
pipeline must be flushed if cond is true. The specified auxiliary register is de-
cremented and a branch is performed if the condition is true and the specified
auxiliary register is greater than or equal to 0. The condition flags are those set
by the last previous instruction that affects the status bits.

The auxiliary register is treated as a 24-bit signed integer. The 8 MSBs are un-
modified by the decrement operation. The comparison of the auxiliary register
uses only the 24 LSBs of the auxiliary register. Note that the branch condition
does not depend on the auxiliary register decrement.

If the src operand is expressed in register addressing mode, the contents of
the specified register are loaded into the PC. If the src operand is expressed
in PC-relative addressing mode, the assembler generates a displacement:
displacement = label – (PC of branch instruction + 1). This integer is stored as
a 16-bit signed integer in the 16 LSBs of the branch instruction word. This dis-
placement is added to the PC of the branch instruction plus 1 to generate the
new PC.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R0–R7) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

DBcond Decrement and Branch Conditionally (Standard)

13-96

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example CMPI 200,R3
DBLT AR3,R2

Before Instruction After Instruction

R2 00 0000 009F R2 00 0000 009F

R3 00 0000 0080 R3 00 0000 0080

AR3 00 0012 AR3 00 0011

PC 005F PC 009F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 1 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

Mode Bit

 Decrement and Branch Conditionally (Delayed) DBcondD

13-97 Assembly Language Instructions

Syntax DB cond D ARn, src

Operation ARn – 1 → ARn
If cond is true and ARn ≥ 0:

If src is in register addressing mode (Rn, 0 ≤ n ≤ 27)
src → PC

If src is in PC-relative mode (label or address)
displacement + PC + 3 → PC.

Else, continue

Operands src conditional-branch addressing modes (B):

0 register
1 PC relative

ARn register (0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 1 1 0 1 1 B 1 cond Register or displacementARn

Description DBcond D signifies a delayed branch that allows the three instructions after
the delayed branch to be fetched before the PC is modified. The effect is a
single-cycle branch. The specified auxiliary register is decremented, and a
branch is performed if the condition is true and the specified auxiliary register
is greater than or equal to 0. The condition flags are those set by the last pre-
vious instruction that affects the status bits. The three instructions following the
DBcondD do not affect the condition.

The auxiliary register is treated as a 24-bit signed integer. The 8 MSBs are un-
modified by the decrement operation. The comparison of the auxiliary register
uses only the 24 LSBs of the auxiliary register. The branch condition does not
depend on the auxiliary register decrement.

If the src operand is expressed in register-addressing mode, the contents of
the specified register are loaded into the PC. If the src is expressed in PC-rela-
tive addressing, the assembler generates a displacement: displacement = la-
bel – (PC of branch instruction + 3). This displacement is added to the PC of
the branch instruction plus 3 to generate the new PC. Note that bit 21 = 1 for
a delayed branch.

The ’C3x provides 20 condition codes that you can use with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

DBcondD Decrement and Branch Conditionally (Delayed)

13-98

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example CMPI 26h,R2
DBZD AR5, $+110h

Before Instruction After Instruction

R2 00 0000 0026 R2 00 0000 0026

AR5 00 0067 AR5 00 0066

PC 0100 PC 0210

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0

Mode Bit

 Floating-Point-to-Integer Conversion FIX

13-99 Assembly Language Instructions

Syntax FIX src, dst

Operation fix(src) → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 1 G dst src0 1 0

Description The floating-point operand src is rounded down to the nearest integral value
less than or equal to floating-point value, and the result is loaded into the dst
register. The src operand is assumed to be a floating-point number and the dst
operand a signed integer.

The exponent field of the dst register (bits 39–32) is not modified.

Integer overflow occurs when the floating-point number is too large to be repre-
sented as a 32-bit 2s-complement integer. In the case of integer overflow, the
result is saturated in the direction of overflow.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

FIX Floating-Point-to-Integer Conversion

13-100

Example FIX R1,R2

Before Instruction After Instruction

R1 0A 2820 0000 R1 0A 2820 0000

R2 00 0000 0000 R2 00 0000 0541

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.3454e+3 13454e+3

1345

 Parallel FIX and STI FIX||STI

13-101 Assembly Language Instructions

Syntax FIX src2, dst1
|| STI src3, dst2

Operation fix(src2) → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 0 1 dst1 src2dst20 src30 0 0

Description A floating-point-to-integer conversion is performed. All registers are read at
the beginning and loaded at the end of the execute cycle. This means that, if
one of the parallel operations (STI) reads from a register, and the operation
being performed in parallel (FIX) writes to the same register, STI accepts the
contents of the register as input before it is modified by FIX.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Integer overflow occurs when the floating-point number is too large to be rep-
resented as a 32-bit 2s-complement integer. In the case of integer overflow,
the result is saturated in the direction of overflow.

Cycles 1

FIX||STI Parallell FIX and STI

13-102

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Example FIX *++AR4(1),R1
|| STI R0,*AR2

Before Instruction After Instruction

R0 00 0000 00DC R0 00 0000 00DC

R1 00 0000 0000 R1 00 0000 00B3

AR2 80 983C AR2 80 983C

AR4 80 98A2 AR4 80 98A3

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098A3h 733C000 8098A3 733C000

80983Ch 0 80983C 0DC

220

1.7950e+02

220

179

1.79750e+02

220

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

 Integer-to-Floating-Point Conversion FLOAT

13-103 Assembly Language Instructions

Syntax FLOAT src, dst

Operation float (src) → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 0 0 1 src0 dstG11

Description The integer operand src is converted to the floating-point value equal to it; the
result is loaded into the dst register. The src operand is assumed to be a signed
integer; the dst operand is assumed to be a floating-point number.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

FLOAT Integer-to-Floating-Point Conversion

13-104

Example FLOAT *++AR2(2),R5

Before Instruction After Instruction

R5 00 034C 2000 R5 00 72E0 0000

AR2 80 9800 AR2 80 9802

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809802 0AE 809802 0AE174

1.27578125e+01 1.74e+02

174

 Parallel FLOAT and STF FLOAT||STF

13-105 Assembly Language Instructions

Syntax FLOAT src2, dst1
|| STF src3, dst2

Operation float(src2) → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 register (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 register (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 0 1 dst1 src2dst21 src30 0 0

Description An integer-to-floating-point conversion is performed. All registers are read at
the beginning and loaded at the end of the execute cycle. If one of the parallel
operations (STF) reads from a register and the operation being performed in
parallel (FLOAT) writes to the same register, then STF accepts the contents
of the register as input before it is modified by FLOAT.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

FLOAT||STF Parallel FLOAT and STF

13-106

Example FLOAT *+AR2(IR0),R6
|| STF R7,*AR1

Before Instruction After Instruction

R6 00 0000 0000 R6 07 2E00 0000

R7 03 4C20 0000 R7 03 4C20 0000

AR1 80 9933 AR1 80 9933

AR2 80 98C5 AR2 80 98C5

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098CD 0AE 8098CD 0AE

809933 0 809933 034C2000

174

1.27578125e+01

1.740e+02

174

1.27578125e+01

1.27578125e+01

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Interrupt Acknowledge IACK

13-107 Assembly Language Instructions

Syntax IACK src

Operation Perform a dummy read operation with IACK = 0.
At end of dummy read, set IACK to 1.

Operands src general addressing modes (G):

0 1 direct
1 0 indirect

Opcode

31 2423 16 8 7 015

0 0 0 1 1 1 src1 G00 0 0 0 0 0

Description A dummy read operation is performed if off-chip memory is specified. IACK is
set to 0, regardless of src location, a half H1 cycle after the beginning of the
decode phase of the IACK instruction. At the first half of the H1 cycle of the
completion of the dummy read, IACK is set to 1. The IACK signal will not be
extended due to multicycle reads with wait states. This instruction can be used
to generate an external interrupt acknowledge. The IACK signal and the ad-
dress can be used to signal interrupt acknowledge to external devices. The
data read by the processor is unused.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

IACK Interrupt Acknowledge

13-108

Example IACK *AR5

Before Instruction After Instruction

IACK 1 IACK 1

PC 300 PC 301

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

 Idle Until Interrupt IDLE

13-109 Assembly Language Instructions

Syntax IDLE

Operation 1 → ST(GIE)
Next PC → PC
Idle until interrupt.

Operands None

Opcode

31 2423 16 8 7 015

0 0 0 0 0 01 01 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description The global-interrupt-enable bit is set, the next PC value is loaded into the PC,
and the CPU idles until an unmasked interrupt is received. When the interrupt
is received, the contents of the PC are pushed onto the active system stack,
the interrupt vector is read, and the interrupt service routine is executed.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example IDLE ; The processor idles until a reset
; or unmasked interrupt occurs.

For correct device operation, the three instructions after a delayed
branch should not be IDLE or IDLE2 instructions.

Mode Bit

IDLE2 Low-Power Idle

13-110

Syntax IDLE2 (supported by: ’LC31, ’C32, ’C30 silicon revision 7.x or
greater, ’C31 silicon revision 5.x or greater)

Operation 1 → ST(GIE)
Next PC → PC
Idle until interrupt.

Operands None

Opcode

31 2423 16 8 7 015

0 0 0 0 0 01 01 0 0 0 0 000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description The IDLE2 instruction serves the same function as IDLE, except that it re-
moves the functional clock input from the internal device. This allows for ex-
tremely low power mode. The PC is incremented once, and the device remains
in an idle state until one of the external interrupts (INT0–3) is asserted.

In IDLE2 mode, the ’C3x devices that support this mode behave as follows:

� The CPU, peripherals, and memory retain their previous states.

� When the device is in the functional (nonemulation) mode, the clocks stop
with H1 high and H3 low.

� The device remains in IDLE2 until one of the four external interrupts
(INT3–INT0) is asserted for at least two H1 cycles. When one of the four
interrupts is asserted, the clocks start after a delay of one H1 cycle. The
clocks can start up in the phase opposite that in which they were stopped
(that is, H1 might start high when H3 was high before stopping, and H3
might start high when H1 was high before stopping). However, the H1 and
H3 clocks remain 180° out of phase with each other.

� During IDLE2 operation, one of the four external interrupts must be as-
serted for at least two H2 cycles to be recognized and serviced by the
CPU. For the processor to recognize only one interrupt when it restarts op-
eration, the interrupt must be asserted for less than three cycles.

� When the device is in emulation mode, the H1 and H3 clocks continue to
run normally, and the CPU operates as if an IDLE instruction had been
executed. The clocks continue to run for correct operation of the emulator.

 Low-Power Idle IDLE2

13-111 Assembly Language Instructions

For correct device operation, the three instructions after a delayed
branch should not be IDLE or IDLE2 instructions.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example IDLE2 ; The processor idles until a reset
; or interrupt occurs.

Mode Bit

LDE Load Floating-Point Exponent

13-112

Syntax LDE src, dst

Operation src(exp) → dst(exp)

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode
31 2423 16 8 7 015

0 0 0 0 0 01 11 dst srcG

Description The exponent field of the src operand is loaded into the exponent field of the
dst register. No modification of the dst register mantissa field is made unless
the value of the exponent loaded is the reserved value of the exponent for 0
as determined by the precision of the src operand. Then the mantissa field of
the dst register is set to 0. The src and dst operands are assumed to be float-
ing-point numbers. Immediate values are evaluated in the short floating-point
format.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Load Floating-Point Exponent LDE

13-113 Assembly Language Instructions

Example LDE R0,R5

Before Instruction After Instruction

R0 02 0005 6F30 R0 02 0005 6F30

R5 0A 056F E332 R5 02 056F E332

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

4.00066337e+00

1.06749648e+03

4.00066337e+00

4.16990814e+00

LDF Load Floating-Point Value

13-114

Syntax LDF src, dst

Operation src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 0 0 0 11 01 dst srcG

Description The src operand is loaded into the dst register. The dst and src operands are
assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example LDF @9800h,R2

Before Instruction After Instruction

R2 00 0000 0000 R2 01 0C52 A000

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809800 010C52A0 809800 010C52A0

2.19254303e+00

2.19254303e+00 2.19254303e+00

Mode Bit

 Load Floating-Point Value Conditionally LDFcond

13-115 Assembly Language Instructions

Syntax LDF cond src, dst

Operation If cond is true:
src → dst.

Else:
dst is unchanged.

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 1 0 0 cond dst srcG

Description If the condition is true, the src operand is loaded into the dst register; otherwise,
the dst register is unchanged. The dst and src operands are assumed to be
floating-point numbers.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Note that an LDFU (load floating-point unconditionally) in-
struction is useful for loading R7–R0 without affecting condition flags. Condi-
tion flags are set on a previous instruction only when the destination register
is one of the extended-precision registers (R7–R0) or when one of the com-
pare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is ex-
ecuted.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDFcond Load Floating-Point Value Conditionally

13-116

Example LDFZ R3,R5

Before Instruction After Instruction

R3 2C FF2C D500 R3 2C FF2C D500

 R5 5F 0000 003E R5 2C FF2C D500

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 1 Z 1

V 0 V 0

C 0 C 0

1.77055560e+13

3.96140824e+28 1.77055560e+13

1.77055560e+13

 Load Floating-Point Value, Interlocked LDFI

13-117 Assembly Language Instructions

Syntax LDFI src, dst

Operation Signal interlocked operation
src → dst

Operands src general addressing modes (G):

0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 0 0 0 11 11 dst srcG

Description The src operand is loaded into the dst register. An interlocked operation is sig-
naled over XF0 and XF1. The src and dst operands are assumed to be floating-
point numbers. Only direct and indirect modes are allowed. See Section 7.4,
Interlocked Operations, on page 7-13 for a detailed description.

Cycles 1 if XF1 = 0 (see Section 7.4 on page 7-13)

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDFI Load Floating-Point Value, Interlocked

13-118

Example LDFI *+AR2,R7

Before Instruction After Instruction

R7 00 0000 0000 R7 05 84C0 0000

AR2 80 98F1 AR2 80 98F1

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098F2h 584C000 8098F2h 584C000–6.28125e+01 –6.28125e+01

–6.28125e+01

 Parallel LDF and LDF LDF||LDF

13-119 Assembly Language Instructions

Syntax LDF src2, dst2
|| LDF src1, dst1

Operation src2 → dst2
|| src1 → dst1

Operands src1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst2 register (Rn2, 0 ≤ n2 ≤ 7)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst2 register (Rn2, 0 ≤ n2 ≤ 7)

Opcode

31 2423 16 8 7 015

1 1 0 0 0 1 dst2 src2src10 dst1 0 0 0

Description Two floating-point loads are performed in parallel. If the LDFs load the same
register, the assembler issues a warning. The result is that of LDF src2, dst2.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDF||LDF Parallel LDF and LDF

13-120

Example LDF *–– AR1(IR0),R7
|| LDF *AR7++(1),R3

Before Instruction After Instruction

R3 00 0000 0000 R0 00 0000 0008

R7 00 0000 0000 R3 05 7B40 0000

AR1 80 985F R7 07 0C80 0000

AR7 80 988A AR1 80 9857

IR0 8 AR7 80 988B

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809857h 70C8000 809857h 70C8000

80988Ah 57B4000 80988Ah 57B4000

1.4050e+02

1.4050e+02

6.281250e+01

6.281250e+01

6.281250e+01

1.4050e+02

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel LDF and STF LDF||STF

13-121 Assembly Language Instructions

Syntax LDF src2, dst1
|| STF src3, dst2

Operation src2 → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 0 1 1 0 dst1 src2dst20 0 0 0 src3

Description A floating-point load and a floating-point store are performed in parallel.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDF||STF Parallel LDF and STF

13-122

Example LDF *AR2–– (1),R1
|| STF R3,*AR4++(IR1)

Before Instruction After Instruction

R1 00 0000 0000 R1 07 0C80 0000

R3 05 7B40 0000 R3 05 7B40 0000

AR2 80 98E7 AR2 80 98E6

AR4 80 9900 AR4 80 9910

IR1 10 IR1 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098E7h 70C8000 8098E7h 70C8000

809900h 0 809900h 57B4000

1.4050e+02

6.28125e+01

1.4050e+02

6.28125e+01

6.28125e+01

1.4050e+02

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Load Integer LDI

13-123 Assembly Language Instructions

Syntax LDI src, dst

Operation src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 1 00 00 dst srcG

Description The src operand is loaded into the dst register. The dst and src operands are
assumed to be signed integers. An alternate form of LDI, LDP, is used to load
the data-page pointer register (DP). See the LDP instruction in Section 13.6.2
Optional Assembler Syntax beginning on page 13-34.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDI Load Integer

13-124

Example LDI *–AR1(IR0),R5

Before Instruction After Instruction

R5 00 0000 03C5 R5 00 0000 0026

AR1 2C AR1 2C

IR0 5 IR0 5

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

27h 26 27h 26

965 38

3838

 Load Integer Conditionally LDIcond

13-125 Assembly Language Instructions

Syntax LDI cond src, dst

Operation If cond is true:
src → dst,

Else:
dst is unchanged.

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 1 0 1 cond dst srcG

Description If the condition is true, the src operand is loaded into the dst register. Other-
wise, the dst register is unchanged. Regardless of the condition, a read of the
src takes place. The dst and src operands are assumed to be signed integers.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Note that an LDIU (load integer unconditionally) instruction
is useful for loading R7–R0 without affecting the condition flags. Condition
flags are set on a previous instruction only when the destination register is one
of the extended-precision registers (R7–R0) or when one of the compare in-
structions (CMPF, CMPF3, CMPI, CMPI3, TSTB, or TSTB3) is executed.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDIcond Load Integer Conditionally

13-126

Example LDIZ *ARO++,R6

Before Instruction After Instruction

R6 00 0000 0FE2 R6 00 0000 0FE2

AR0 80 98F0 AR0 80 98F1

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098F0h 027C 8098F0h 027C

4,066 4,066

636636

Note: Auxiliary Register Arithmetic

The test condition does not affect the auxiliary register arithmetic. (AR
modification always occurs.)

 Load Integer, Interlocked LDII

13-127 Assembly Language Instructions

Syntax LDII src, dst

Operation Signal interlocked operation
src → dst

Operands src general addressing modes (G):

0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 1 00 10 dst srcG

Description The src operand is loaded into the dst register. An interlocked operation is sig-
naled over XF0 and XF1. The src and dst operands are assumed to be signed
integers. Note that only the direct and indirect modes are allowed. See Section
7.4, Interlocked Operations, on page 7-13 for a detailed description.

Cycles 1 if XF = 0 (see Section 7.4 on page 7-13)

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDII Load Integer, Interlocked

13-128

Example LDII @985Fh,R3

Before Instruction After Instruction

R3 00 0000 0000 R3 00 0000 00DC

DP 80 DP 80

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80985Fh 0DC 80985Fh 0DC

 Parallel LDI and LDI LDI||LDI

13-129 Assembly Language Instructions

Syntax LDI src2, dst2
|| LDI src1, dst1

Operation src2 → dst2
|| src1 → dst1

Operands src1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst2 register (Rn2, 0 ≤ n2 ≤ 7)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst2 register (Rn2, 0 ≤ n2 ≤ 7)

Opcode

31 2423 16 8 7 015

1 1 0 0 0 1 dst2 src2src11 dst1 0 0 0

Description Two integer loads are performed in parallel. The assembler issues a warning
if the LDIs load the same register. The result is that of LDI src2, dst2.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDI||LDI Parallel LDI and LDI

13-130

Example LDI *–AR1(1),R7
|| LDI *AR7++(IR0),R1

Before Instruction After Instruction

R1 00 0000 0000 R1 00 0000 02EE

R7 00 0000 0000 R7 00 0000 00FA

AR1 80 9826 AR1 80 9826

AR7 80 98C8 AR7 80 98D8

IR0 10 IR0 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809825h 0FA 809825h 0FA

8098C8h 2EE 8098C8h 2EE

250

750

250

750

750

250

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel LDI and STI LDI||STI

13-131 Assembly Language Instructions

Syntax LDI src2, dst1
|| STI src3, dst2

Operation src2 → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 0 1 1 0 dst1 src2dst21 0 0 0 src3

Description An integer load and an integer store are performed in parallel. If src2 and dst2
point to the same location, src2 is read before the dst2 is written.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

LDI||STI Parallel LDI and STI

13-132

Example LDI *–AR1(1),R2
|| STI R7,*AR5++(IR0)

Before Instruction After Instruction

R2 00 0000 0000 R2 00 0000 00DC

R7 00 0000 0035 R7 00 0000 0035

AR1 80 98E7 AR1 80 98E7

AR5 80 982C AR5 80 9834

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098E6h 0DC 8098E6h 0DC

80982Ch 0 80982Ch 35

220

53

220

53

220

53

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Load Floating-Point Mantissa LDM

13-133 Assembly Language Instructions

Syntax LDM src, dst

Operation src (man) → dst (man)

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 0 0 1 10 00 dst srcG

Description The mantissa field of the src operand is loaded into the mantissa field of the
dst register. The dst exponent field is not modified. The src and dst operands
are assumed to be floating-point numbers. If the src operand is from memory,
the entire memory contents are loaded as the mantissa. If immediate address-
ing mode is used, bits 15–12 of the instruction word are forced to 0 by the as-
sembler.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example LDM 156.75,R2 (156.75 = 071CC00000h)

Before Instruction After Instruction

R2 00 0000 0000 R2 00 1CC0 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.22460938e+00

Mode Bit

LDP Load Data-Page Pointer

13-134

Syntax LDP src, DP

Operation src → data-page pointer

Operands src is the 8 MSBs of the absolute 24-bit source address (src).
The “DP” in the operand is optional.

Opcode

31 2423 16 8 7 015

0 0 0 0 1 00 00 11 1 0 0 0 0 0 0 0 0 0 0 0 0 src

Description This pseudo-op is an alternate form of the LDUI instruction, except that LDP
is always in the immediate addressing mode. The src operand field contains
the eight MSBs of the absolute 24-bit src address (essentially, only
bits 23–16 of src are used). These eight bits are loaded into the eight LSBs
of the data-page pointer.

The eight LSBs of the pointer are used in direct addressing as a pointer to the
page of data being addressed. There is a total of 256 pages, each page 64K
words long. Bits 31–8 of the pointer are reserved and should be kept set to 0.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example LDP @809900h, DP
or
LDP @809900h

Before Instruction After Instruction

DP 065 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Mode Bit

 Divide Clock by 16 LOPOWER

13-135 Assembly Language Instructions

Syntax LOPOWER (supported by: ’LC31 and ’C32, ’C31 silicon
revision 5.0 or greater, ’C30 silicon revision 7.0
or greater)

Operation H1 → H1/16

Operands None

Opcode

31 23 0

0 0 0 1 0 00 10 00 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0

Description The device continues to execute instructions, but at the reduced rate of the
CLKIN frequency divided by 16 (that is, in LOPOWER mode, a ’C3x device that
supports this mode with a CLKIN frequency of 32 MHz performs in the same
way as a 2-MHz ’C3x device, which has an instruction-cycle time of 1000 ns).
This allows for low-power operation.

The ’C3x CPUs slow down during the read phase of the LOPOWER instruc-
tion. To exit the LOPOWER power-down mode, invoke the MAXSPEED
instruction (opcode = 1080 0000 h). The ’C3x resumes full-speed operation
during the read phase of the MAXSPEED instruction.

Do not run the IDLE2 instruction in the LOPOWER mode.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example LOPOWER ; The processor slows down operation to
; 1/16th of the H1 clock.

Mode Bit

LSH Logical Shift

13-136

Syntax LSH count, dst

Operation If count ≥ 0:
dst << count → dst

Else:
dst >> |count | → dst

Operands count general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 1 10 10 dst countG

Description The seven LSBs of the count operand are used to generate the 2s-comple-
ment shift count. If the count operand is greater than 0, the dst operand is left
shifted by the value of the count operand. Low-order bits shifted in are zero
filled, and high-order bits are shifted out through the carry (C) bit.

Logical left shift:

C ← dst ← 0

If the count operand is less than 0, the dst is right shifted by the absolute value
of the count operand. The high-order bits of the dst operand are zero filled as
they are shifted to the right. Low-order bits are shifted out through the C bit.

Logical right shift:

0 → dst → C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count operand is assumed to be a signed integer, and the dst operand is as-
sumed to be an unsigned integer.

 Logical Shift LSH

13-137 Assembly Language Instructions

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the last bit shifted out; 0 for a shift count of 0

OVM Operation is not affected by OVM bit value.

Example 1 LSH R4,R7

Before Instruction After Instruction

R4 00 0000 0018 R4 00 0000 0018

R7 00 0000 02AC R7 00 AC00 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

24 24

Example 2 LSH *–AR5(IR1),R5

Before Instruction After Instruction

R5 00 12C0 0000 R5 00 0001 2C00

AR5 80 9908 AR5 80 9908

IR0 4 IR0 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809904h 0FFFFFFF4 809904h 0FFFFFFF4–12 –12

Mode Bit

LSH3 Logical Shift, 3-Operand

13-138

Syntax LSH3 count, src, dst

Operation If count ≥ 0:
src << count → dst

Else:
src >> |count | → dst

Operands src 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

count 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 2423 16 8 7 015

0 0 1 0 0 00 01 dst srcT count

Description The seven LSBs of the count operand are used to generate the 2s-comple-
ment shift count.

If the count operand is greater than 0, a copy of the src operand is left shifted
by the value of the count operand, and the result is written to the dst. (The src
is not changed.) Low-order bits shifted in are zero filled, and high-order bits are
shifted out through the carry (C) bit.

Logical left shift:

C ← src ← 0

If the count operand is less than 0, the src operand is right shifted by the abso-
lute value of the count operand. The high-order bits of the dst operand are 0-
filled as they are shifted to the right. Low-order bits are shifted out through the
C bit.

Logical right shift:

0 → src → C

If the count operand is 0, no shift is performed, and the C bit is set to 0. The
count operand is assumed to be a signed integer. The src and dst operands
are assumed to be unsigned integers.

 Logical Shift, 3-Operand LSH3

13-139 Assembly Language Instructions

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the last bit shifted out; 0 for a shift count of 0;

unaffected if dst is not R7–R0

OVM Operation is not affected by OVM bit value.

Example 1 LSH3 R4,R7,R2

Before Instruction After Instruction

R2 00 0000 0000 R2 00 AC00 0000

R4 00 0000 0018 R4 00 0000 0018

R7 00 0000 02AC R7 00 0000 02AC

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

24 24

Mode Bit

LSH3 Logical Shift, 3-Operand

13-140

Example 2 LSH3 *–AR4(IR1),R5,R3

Before Instruction After Instruction

R3 00 0000 0000 R3 00 0001 2C00

R5 00 12C0 0000 R5 00 12C0 0000

AR4 80 9908 AR4 80 9908

IR1 4 IR1 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809904h 0FFFFFFF4 809904h 0FFFFFFF4–12 –12

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel LSH3 and STI LSH3||STI

13-141 Assembly Language Instructions

Syntax LSH3 count, src2, dst1
|| STI src3, dst2

Operation If count ≥ 0:
src2 << count → dst1

Else:
src2 >> |count | → dst1

|| src3 → dst2

Operands count register (Rn1, 0 ≤ n1 ≤ 7)
src1 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn3, 0 ≤ n3 ≤ 7)
src2 register (Rn4, 0 ≤ n4 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 0 1 1 1 dst1 src2dst20 count src3

Description The seven LSBs of the count operand are used to generate the 2s-comple-
ment shift count.

If the count operand is greater than 0, a copy of the src2 operand is left shifted
by the value of the count operand, and the result is written to the dst1. (The
src2 is not changed.) Low-order bits shifted in are zero filled, and high-order
bits are shifted out through the carry (C) bit.

Logical left shift:

C ← src2 ← 0

If the count operand is less than 0, the src2 operand is right shifted by the abso-
lute value of the count operand. The high-order bits of the dst operand are 0-
filled as they are shifted to the right. Low-order bits are shifted out through the
C bit.

LSH3||STI Parallel LSH3 and STI

13-142

Logical right shift:

0 → src2 → C

If the count operand is 0, no shift is performed, and the carry bit is set to 0.

The count operand is assumed to be a 7-bit signed integer, and the src2 and
dst1 operands are assumed to be unsigned integers. All registers are read at
the beginning and loaded at the end of the execute cycle. This means that
if one of the parallel operations (STI) reads from a register and the operation
being performed in parallel (LSH3) writes to the same register, STI accepts as
input the contents of the register before it is modified by the LSH3.

If src2 and dst2 point to the same location, src2 is read before dst2 is written.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the last bit shifted out; 0 for a shift count of 0

OVM Operation is affected by OVM bit value.Mode Bit

 Parallel LSH3 and STI LSH3||STI

13-143 Assembly Language Instructions

Example 1 LSH3 R2,*++AR3(1),R0
|| STI R4,*–AR5

Before Instruction After Instruction

R0 00 0000 0000 R0 00 AC00 0000

R2 00 0000 0018 R2 00 0000 0018

R4 00 0000 00DC R4 00 0000 00DC

AR3 80 98C2 AR3 80 98C3

AR5 80 98A3 AR5 80 98A3

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098C3h 0AC 8098C3h 0AC

8098A2h 0 8098A2h 0DC

24 24

220 220

220

LSH3||STI Parallel LSH3 and STI

13-144

Example 2 LSH3 R7,*AR2 –– (1),R2
|| STI R0,*+AR0(1)

Before Instruction After Instruction

R0 00 0000 012C R0 00 0000 012C

R2 00 0000 0000 R2 00 0002 C000

R7 00 FFFF FFF4 R7 00 FFFF FFF4

AR0 80 98B7 AR0 80 98B7

AR2 80 9863 AR2 80 9862

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809863h 2C000000 809863h 2C000000

8098B8h 0 8098B8h 12C

300 300

–12 –12

300

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Restore Clock to Regular Speed MAXSPEED

13-145 Assembly Language Instructions

Syntax MA XSPEED (supported by ’C31, ’C32, ’C31 silicon revision 5.0
or greater, ’C30 silicon revision 7.0 or greater)

Operation H1/16 → H1

Operands None

Opcode

31 23 16 8 7 015

0 0 0 1 0 00 10 0 0 00 0 0 00 0 0 00 0 0 00 0 00 0 0 00

Description Exits LOPOWER power-down mode (invoked by LOPOWER instruction with
opcode 10800001h). The ’LC31 or ’C32 resumes full-speed operation during
the read phase of the MAXSPEED instruction.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example MAXSPEED ; The processor resumes full-speed operation.

Mode Bit

MPYF Multiply Floating-Point Value

13-146

Syntax MPYF src, dst

Operation dst × src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 0 0 1 01 00 dstG src

Description The product of the dst and src operands is loaded into the dst register. The src
operand is assumed to be a single-precision floating-point number, and the dst
operand is an extended-precision floating-point number.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Example MPYF R0,R2

Before Instruction After Instruction

R0 07 0C80 0000 R0 07 0C80 0000

R2 03 4C20 0000 R2 0A 600F 2000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.27578125e+01

1.4050e+02

1.79247266e+03

1.4050e+02

Mode Bit

 Multiply Floating-Point Value, 3-Operand MPYF3

13-147 Assembly Language Instructions

Syntax MPYF3 src2, src1, dst

Operation src1 × src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 7)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 7)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 7)
0 1 register (Rn2, 0 ≤ n2 ≤ 7)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 2423 16 8 7 015

0 0 1 0 0 00 11 dst src2T src1

Description The product of the src1 and src2 operands is loaded into the dst register. The
src1 and src2 operands are assumed to be single-precision floating-point
numbers, and the dst operand is an extended-precision floating-point number.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

MPYF3 Multiply Floating-Point Value, 3-Operand

13-148

Example 1 MPYF3 R0,R7,R1

Before Instruction After Instruction

R0 05 7B40 0000 R0 05 7B40 0000

R1 00 0000 0000 R1 0D 306A 3000

R7 07 33C0 0000 R7 07 33C0 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.79750e+02

6.281250e+01

1.12905469e+04

6.281250e+01

1.79750e+02

Example 2 MPYF3 *+AR2(IR0),R7,R2
or
MPYF3 R7,*+AR2(IR0),R2

Before Instruction After Instruction

R2 00 0000 0000 R2 0D 09E4 A000

R7 05 7B40 0000 R7 05 7B40 0000

AR2 80 9800 AR2 80 9800

IR0 12A IR0 12A

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80992Ah 70C8000 80992Ah 70C8000

8.82515625e+03

6.281250e+01

1.4050e+02

6.281250e+01

1.4050e+02

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel MPYF3 and ADDF3 MPYF3||ADDF3

13-149 Assembly Language Instructions

Syntax MPYF3 srcA, srcB, dst1
|| ADDF3 srcC, srcD, dst2

Operation srcA × srcB → dst1
|| srcC + srcD → dst2

Operands srcA
srcB
srcC
srcD

Any two indirect (disp = 0, 1 IR0, IR1)
Any two register (0 � Rn � 7)

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0–255, IR0, IR1)

P parallel addressing modes (0 ≤ P ≤ 3)

MPYF3||ADDF3 Parallel MPYF3 and ADDF3

13-150

This instruction’s operands have been augmented in the following
devices:

� ’C31 silicon version 6.0 or greater
� ’C32 silicon version 2.0 or greater

srcA, srcB, srcC, srcD can be one of the following combinations:

Register
(0 � Rn � 7)

Indirect
(disp = 0, 1, IR0, IR1) Any CPU Register

2 2 –

2 1 1

2 – 2

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1) or any CPU register
src4 indirect (disp = 0, 1, IR0, IR1) or any CPU register

P parallel addressing modes (0 ≤ P ≤ 3)

Version 4.7 or earlier of TMS320 floating-point code-generation tools

P srcA srcB srcD srcC
00 src4 × src3, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src3 + src4
11 src3 × src1, src2 + src4

Version 5.0 or later

P srcA srcB srcD srcC
00 src3 × src4, src1 + src2
01 src3 × src1, src4 + src2

 Parallel MPYF3 and ADDF3 MPYF3||ADDF3

13-151 Assembly Language Instructions

10 src1 × src2, src3 + src4
11 src3 × src1, src2 + src4

Opcode

31 24 23 16 8 7 015

1 0 0 0 0 0 src4src3P src1 src2d1 d2

Description A floating-point multiplication and a floating-point addition are performed in
parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. If one of the parallel operations (MPYF3) reads from a register
and the operation being performed in parallel (ADDF3) writes to the same reg-
ister, then MPYF3 accepts the contents of the register as input before it is mo-
dified by the ADDF3.

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded as
register. The assignment of the source operands srcA – srcD to the
src1 – src4 fields varies, depending on the combination of addressing modes
used, and the P field is encoded accordingly.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1 (see Note: Cycle Count)

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 0
Z 0
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

MPYF3||ADDF3 Parallel MPYF3 and ADDF3

13-152

Example MPYF3 *AR5++(1),* ––AR1(IR0),R0
|| ADDF3 R5,R7,R3

Note: Cycle Count

One cycle if:

� src3 and src4 are in internal memory
� src3 is in internal memory and src4 is in external memory

Two cycles if:

� src3 is in external memory and src4 is in internal memory
� src3 and src4 are in external memory

For more information see Section 8.5, Clocking Memory Accesses, on page
8-24.

Before Instruction After Instruction

R0 00 0000 0000 R0 04 6718 0000

R3 00 0000 0000 R3 08 2020 0000

R5 07 33C0 0000 R5 07 33C0 0000

R7 07 0C80 0000 R7 07 0C80 0000

AR1 80 98A8 AR1 80 98A4

AR5 80 98C5 AR5 80 98C6

IR0 4 IR0 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098C5h 34C0000 8098C5h 34C0000

8098A4h 1110000 8098A4h 1110000

2.88867188e+01

6.281250e+01

2.265625e+00

3.20250e+02

1.79750e+02

1.4050e+02

1.2750e+01

1.79750e+02

1.4050e+02

1.2750e+01

2.265625e+00

 Parallel MPYF3 and STF MPYF3||STF

13-153 Assembly Language Instructions

Syntax MPYF3 src2, src1, dst
|| STF src3, dst2

Operation src1 × src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn3, 0 ≤ n3 ≤ 7)
src3 register (Rn4, 0 ≤ n4 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 1 1 dst1 src2dst21 src1 src3

Description A floating-point multiplication and a floating-point store are performed in paral-
lel. All registers are read at the beginning and loaded at the end of the execute
cycle. If one of the parallel operations (MPYF3) writes to a register and the op-
eration being performed in parallel (STF) reads from the same register, then
STF accepts the contents of the register as input before it is modified by the
MPYF3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

MPYF3||STF Parallel MPYF3 and STF

13-154

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; 0 unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Example MPYF3 *–AR2(1),R7,R0
|| STF R3,*AR0 –– (IR0)

Before Instruction After Instruction

R0 00 0000 0000 R0 0D 09E4 A000

R3 08 6B28 0000 R3 08 6B28 0000

R7 05 7B40 0000 R7 05 7B40 0000

AR0 80 9860 AR0 80 9858

AR2 80 982B AR2 80 982B

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80982Ah 70C8000 80982Ah 70C8000

809860h 0 809860h 86B280000

8.82515625e+03

6.281250e+01

4.7031250e+02

1.4050e+02

4.7031250e+02

1.4050e+02

4.7031250e+02

6.281250e+01

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

 Parallel MPYF3 and SUBF3 MPYF3||SUBF3

13-155 Assembly Language Instructions

Syntax MPYF3 srcA, srcB, dst1
|| SUBF3 srcC, srcD, dst2

Operation srcA × srcB → dst1
|| srcD – srcC → dst2

Operands srcA
srcB
srcC
srcD

Any two register (0 � Rn � 7)

Any two indirect (disp = 0, 1, IR0, IR1)

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)

P parallel addressing modes (0 ≤ P ≤ 3)

MPYF3||ADDF3 Parallel MPYF3 and ADDF3

13-156

This instruction’s operands have been augmented in the following
devices:

� ’C31 silicon version 6.0 or greater
� ’C32 silicon version 2.0 or greater

srcA, srcB, srcC, srcD can be one of the following combinations:

Register
(0 � Rn � 7)

Indirect
(disp = 0, 1, IR0, IR1) Any CPU Register

2 2 –

2 1 1

2 – 2

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1) or any CPU register
src4 indirect (disp = 0, 1, IR0, IR1) or any CPU register

P parallel addressing modes (0 ≤ P ≤ 3)

Version 4.7 or earlier of TMS320 floating-point code-generation tools

P srcA srcB srcD srcC

00 src4 × src3, src1 – src2
01 src3 × src1, src4 – src2
10 src1 × src2, src3 – src4
11 src3 × src1, src2 – src4

Version 5.0 or later

P srcA srcB srcD srcC

00 src3 × src4, src1 – src2
01 src3 × src1, src4 – src2
10 src1 × src2, src3 – src4
11 src3 × src1, src2 – src4

 Parallel MPYF3 and SUBF3 MPYF3||SUBF3

13-157 Assembly Language Instructions

Opcode

31 24 23 16 8 7 015

1 0 0 0 0 1 src4src3P src1 src2d1 d2

Description A floating-point multiplication and a floating-point subtraction are performed
in parallel. All registers are read at the beginning and loaded at the end of the
execute cycle. If one of the parallel operations (MPYF3) reads from a register
and the operation being performed in parallel (SUBF3) writes to the same reg-
ister, MPYF3 accepts as input the contents of the register before it is modified
by the SUBF3.

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded regis-
ter. The assignment of the source operands srcA – srcD to the src1 – src4
fields varies, depending on the combination of addressing modes used, and
the P field is encoded accordingly.

Cycles 1

Note: Cycle Count

One cycle if:

� src3 and src4 are in internal memory
� src3 is in internal memory and src4 is in external memory

Two cycles if:

� src3 is in external memory and src4 is in internal memory
� src3 and src4 are in external memory

For more information see Section 8.5, Clocking Memory Accesses, on page
8-24.

MPYF3||SUBF3 Parallel MPYF3 and SUBF3

13-158

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 0
Z 0
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Example MPYF3 R5,*++AR7(IR1),R0
|| SUBF3 R7,*AR3 –– (1),R2
or

MPYF3 *++AR7(IR1), R5,R0
|| SUBF3 R7,*AR3 –– (1),R2

Before Instruction After Instruction

R0 00 0000 0000 R0 04 6718 0000

R2 00 0000 0000 R2 05 E300 0000

R5 03 4C00 0000 R5 03 4C00 0000

R7 07 33C0 0000 R7 07 33C0 0000

AR3 80 98B2 AR3 80 98B1

AR7 80 9904 AR7 80 990C

IR1 8 IR1 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80990Ch 1110000 80990Ch 1110000

8098B2h 70C8000 8098B2h 70C8000

1.79750e+02

1.2750e+01

1.4050e+02 1.4050e+02

2.88867188e+01

–3.9250e+01

2.250e+00 2.250e+00

1.2750e+01

1.79750e+02

Mode Bit

 Multiply Integer MPYI

13-159 Assembly Language Instructions

Syntax MPYI src, dst

Operation dst × src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode
31 2423 16 8 7 015

0 0 0 0 1 01 10 dstG src

Description The product of the dst and src operands is loaded into the dst register. The src
and dst operands, when read, are assumed to be 24-bit signed integers. The
result is assumed to be a 48-bit signed integer. The output to the dst register
is the 32 LSBs of the result.

Integer overflow occurs when any of the 16 MSBs of the 48-bit result differs
from the MSB of the 32-bit output value.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

MPYI Multiply Integer

13-160

Example MPYI R1,R5

Before Instruction After Instruction

R1 00 0033 C251 R1 00 0033 C251

R5 00 0078 B600 R5 00 E21D 9600

LUF 0 LUF 0

LV 0 LV 1

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 1

C 0 C 0

3,392,081

7,910,912 –501,377,536

3,392,081

 Multiply Integer, 3-Operand MPYI3

13-161 Assembly Language Instructions

Syntax MPYI3 src2, src1, dst

Operation src1 × src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 any CPU register
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 any CPU register
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 any CPU register
0 1 any CPU register
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 10 01 dstT src1 src2

Description The product of the src1 and src2 operands is loaded into the dst register. The
src1 and src2 operands are assumed to be 24-bit signed integers. The result
is assumed to be a signed 48-bit integer. The output to the dst register is the
32 LSBs of the result.

Integer overflow occurs when any of the 16 MSBs of the 48-bit result differs
from the MSB of the 32-bit output value.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

MPYI3 Multiply Integer, 3-Operand

13-162

Example 1 MPYI3 *AR4,*–AR1(1),R2

Before Instruction After Instruction

R2 00 0000 0000 R2 00 0000 94AC

AR1 80 98F3 AR1 80 98F3

AR4 80 9850 AR4 80 9850

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809850h 0AD 809850h 0AD

8098F2h 0DC 8098F2h 0DC

173

38,060

220

173

220

Example 2 MPYI3 * –– AR4(IR0),R2,R7

Before Instruction After Instruction

R2 00 0000 00C8 R2 00 0000 00C8

R7 00 0000 0000 R7 00 0000 2710

AR4 80 99F8 AR4 80 99F0

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8099F0h 32 8099F0h 32

200 200

50 50

10,000

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

 Parallel MPYI3 and ADDI3 MPYI3||ADDI3

13-163 Assembly Language Instructions

Syntax MPYI3 srcA, srcB, dst1
|| ADDI3 srcC, srcD, dst2

Operation srcA × srcB → dst1
|| srcD + srcC → dst2

Operands srcA
srcB
srcC
srcD

Any two indirect (disp = 0, 1, IR0, IR1)
Any two register (0 � Rn � 7)

srcA, srcB, srcC, srcD can be one of the following combinations:

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)

P parallel addressing modes (0 ≤ P ≤ 3)

MPYI3||ADDI3 Parallel MPYI3 and ADDI3

13-164

This instruction’s operands have been augmented in the following
devices:

� ’C31 silicon version 6.0 or greater
� ’C32 silicon version 2.0 or greater

srcA, srcB, srcC, srcD can be one of the following combinations:

Register
(0 � Rn � 7)

Indirect
(disp = 0,1,IR0,IR1) Any CPU Register

2 2 –

2 1 1

2 – 2

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1) or any CPU register
src4 indirect (disp = 0, 1, IR0, IR1) or any CPU register

P parallel addressing modes (0 ≤ P ≤ 3)

Version 4.7 or earlier of TMS320 floating-point code-generation tools

P srcA srcB srcD srcC
00 src4 × src3, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src4 + src4
11 src3 × src1, src2 + src4

Version 5.0 or later

P srcA srcB srcD srcC
00 src3 × src4, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src3 + src4
11 src3 × src1, src2 + src4

 Parallel MPYI3 and ADDI3 MPYI3||ADDI3

13-165 Assembly Language Instructions

Opcode

31 2423 16 8 7 015

1 0 0 0 1 0 P src4src3src1 src2d1 d2

Description An integer multiplication and an integer addition are performed in parallel. All
registers are read at the beginning and loaded at the end of the execute cycle.
This means that if one of the parallel operations (MPYI3) reads from a register
and the operation being performed in parallel (ADDI3) writes to the same reg-
ister, MPYI3 accepts the contents of the register as input before it is modified
by the ADDI3.

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded as
register. The assignment of the source operands srcA – srcD to the
src1 – src4 fields varies, depending on the combination of addressing modes
used, and the P field is encoded accordingly. To simplify processing when the
order is not significant, the assembler may change the order of operands in
commutative operations.

Cycles 1 (see Note: Cycle Count on page 13–167)

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 0
Z 0
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Example MPYI3 R7,R4,R0
|| ADDI3 *–AR3,*AR5 ––(1),R3

Mode Bit

MPYl3||ADDl3 Parallel MPYl3 and ADD13

13-166

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 07D0

R3 00 0000 0000 R3 00 0000 0000

R4 00 0000 0064 R4 00 0000 0064

R7 00 0000 0014 R7 00 0000 0014

AR3 80 981F AR3 80 981F

AR5 80 996E AR5 80 996D

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80981Eh 0FFFFFFCB 80981Eh 0FFFFFFCB

80996Eh 35 80996Eh 35

100

2000

–53 –53

100

53

20 20

53

Note: Cycle Count

One cycle if:

� src3 and src4 are in internal memory
� src3 is in internal memory and src4 is in external memory

Two cycles if:

� src3 is in external memory and src4 is in internal memory
� src3 and src4 are in external memory

For more information see Section 8.5, Clocking Memory Accesses, on page
8-24.

 Parallel MPYI3 and STI MPYI3||STI

13-167 Assembly Language Instructions

Syntax MPYI3 src2, src1, dst1
|| STI src3, dst2

Operation src1 × src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn3, 0 ≤ n3 ≤ 7)
src3 register (Rn4, 0 ≤ n4 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 1 0 0 0 dst1 src2dst20 src1 src3

Description An integer multiplication and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle. If
one of the parallel operations (STI) reads from a register and the operation be-
ing performed in parallel (MPYI3) writes to the same register, STI accepts as
input the contents of the register before it is modified by the MPYI3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Integer overflow occurs when any of the 16 MSBs of the 48-bit result differ from
the MSB of the 32-bit output value.

Cycles 1

MPYI3||STI Parallel MPYl3 and STI

13-168

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Example MPYI3 *++AR0(1),R5,R7
|| STI R2,*–AR3(1)

Before Instruction After Instruction

R2 00 0000 00DC R2 00 0000 00DC

R5 00 0000 0032 R5 00 0000 0032

R7 00 0000 0000 R7 00 0000 2710

AR0 80 995A AR0 80 995B

AR3 80 982F AR3 80 982F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80995Bh 0C8 80995Bh 0C8

80982Eh 0 80982Eh ODC

220 220

200

10000

50 50

220

200

Note: Cycle Count

See Section 8.5.2, Data Loads and Stores, on page 8-24 for the effects of
operand ordering on the cycle count.

Mode Bit

 Parallel MPYI3 and SUBI3 MPYI3||SUBI3

13-169 Assembly Language Instructions

Syntax MPYI3 srcA, srcB, dst1
|| SUBI3 srcC, srcD, dst2

Operation srcA × srcB → dst1
|| srcD – srcC → dst2

Operands srcA
srcB
srcC
srcD

Any two indirect (disp = 0, 1, IR0, IR1)
Any two register (0 � Rn � 7)

srcA, srcB, srcC, srcD can be one of the following combinations:

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1)
src4 indirect (disp = 0, 1, IR0, IR1)

P parallel addressing modes (0 ≤ P ≤ 3)

MPYI3||SUBI3 Parallel MPYI3 and SUBI3

13-170

This instruction’s operands have been augmented in the following
devices:

� ’C31 silicon version 6.0 or greater
� ’C32 silicon version 2.0 or greater

srcA, srcB, srcC, srcD can be one of the following combinations:

Register
(0 � Rn � 7)

Indirect
(disp = 0, 1, IR0, IR1) Any CPU Register

2 2 –

2 1 1

2 – 2

dst1 register (d1):
0 = R0
1 = R1

dst2 register (d2):
0 = R2
1 = R3

src1 register (Rn, 0 ≤ n ≤ 7)
src2 register (Rn, 0 ≤ n ≤ 7)
src3 indirect (disp = 0, 1, IR0, IR1) or any CPU register
src4 indirect (disp = 0, 1, IR0, IR1) or any CPU register

P parallel addressing modes (0 ≤ P ≤ 3)

Version 4.7 or earlier of TMS320 floating-point code-generation tools

P srcA srcB srcD srcC
00 src4 × src3, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src4 + src4
11 src3 × src1, src2 + src4

 Parallel MPYI3 and SUBI3 MPYI3||SUBI3

13-171 Assembly Language Instructions

Version 5.0 or later

P srcA srcB srcD srcC
00 src3 × src4, src1 + src2
01 src3 × src1, src4 + src2
10 src1 × src2, src3 + src4
11 src3 × src1, src2 + src4

Opcode

31 24 23 16 8 7 015

1 0 0 0 1 1 P src4src3src1 src2d1 d2

Description An integer multiplication and an integer subtraction are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. If one of the parallel operations (MPYI3) reads from a register and the
operation being performed in parallel (SUBI3) writes to the same register,
MPYI3 accepts the contents of the register as input before it is modified by the
SUBI3.

Any combination of addressing modes can be coded for the four possible
source operands as long as two are coded as indirect and two are coded as reg-
ister. The assignment of the source operands srcA – srcD to the src1 – src4
fields varies, depending on the combination of addressing modes used, and the
P field is encoded accordingly. To simplify processing when the order is not sig-
nificant, the assembler may change the order of operands in commutative op-
erations.

Integer overflow occurs when any of the 16 MSBs of the 48-bit result differs
from the MSB of the 32-bit output value.

Cycles 1 (see Note: Cycle Count on page 13–173)

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 1 if an integer underflow occurs; 0 otherwise
N 0
Z 0
V 1 if an integer overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.

Example MPYI3 R2,*++AR0(1),R0
|| SUBI3 *AR5 ––(IR1),R4,R2

Mode Bit

MPYI3||SUBI3 Parallel MPYI3 and SUBI3

13-172

or
MPYI3 *++AR0(1),R2,R0

|| SUBI3 *AR5 ––(IR1),R4,R2

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 1324

R2 00 0000 0032 R2 00 0000 0320

R4 00 0000 07D0 R4 00 0000 07D0

AR0 80 98E3 AR0 80 98E4

AR5 80 99FC AR5 80 99F0

IR1 0C IR1 0C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098E4h 62 8098E4h 62

8099FCh 4B0 8099FCh 4B0

2000

4900

98

2000

50 800

1200

98

1200

Note: Cycle Count

One cycle if:

� src3 and src4 are in internal memory
� src3 is in internal memory and src4 is in external memory

Two cycles if:

� src3 is in external memory and src4 is in internal memory
� src3 and src4 are in external memory

For more information see Section 8.5, Clocking Memory Accesses, on page
8-24.

 Negative Integer With Borrow NEGB

13-173 Assembly Language Instructions

Syntax NEGB src, dst

Operation 0 – src – C → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 11 00 dstG src

Description The difference of the 0, src, and C operands is loaded into the dst register. The
dst and src are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example NEGB R5,R7

Before Instruction After Instruction

R5 00 FFFF FFCB R5 00 FFFF FFCB

R7 00 0000 0000 R7 00 0000 0034

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 1

–53–53

52

Mode Bit

NEGF Negate Floating-Point Value

13-174

Syntax NEGF src, dst

Operation 0 – src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 11 10 dstG src

Description The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be floating-point numbers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

 Negate Floating-Point Value NEGF

13-175 Assembly Language Instructions

Example NEGF *++AR3(2),R1

Before Instruction After Instruction

R1 05 7B40 0025 R1 07 F380 0000

AR3 80 9800 AR3 80 9802

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809802h 70C8000 809802h 70C8000

6.28125006e+01 –1.4050e+02

1.4050e+021.4050e+02

NEGF||STF Parallel NEGF and STF

13-176

Syntax NEGF src2, dst1
|| STF src3, dst2

Operation 0 – src2 → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 1 0 0 0 dst1 src2dst21 src30 0 0

Description A floating-point negation and a floating-point store are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. This means that if one of the parallel operations (STF) reads from a reg-
ister and the operation being performed in parallel (NEGF) writes to the same
register, STF accepts the contents of the register as input before it is modified
by the NEGF.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Parallel NEGF and STF NEGF||STF

13-177 Assembly Language Instructions

Example NEGF *AR4–– (1),R7
|| STF R2,*++AR5(1)

Before Instruction After Instruction

R2 07 33C0 0000 R2 07 33C0 0000

R7 00 0000 0000 R7 05 84C0 0000

AR4 80 98E1 AR4 80 98E0

AR5 80 9803 AR5 80 9804

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

 Data memory

8098E1h 57B400000 8098E1h 57B4000

809804h 0 809804h 733C000

6.281250e+01

1.79750e+02

–6.281250e+01

1.79750e+02

1.79750e+02

6.281250e+01

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

NEGI Negate Integer

13-178

Syntax NEGI src, dst

Operation 0 – src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 00 01 dstG src

Description The difference of the 0 and src operands is loaded into the dst register. The
dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example NEGI 174,R5 (174 = 0AEh)

Before Instruction After Instruction

R5 00 0000 00DC R5 00 FFFF FF52

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1

–174220

Mode Bit

 Parallel NEGI and STI NEGI||STI

13-179 Assembly Language Instructions

Syntax NEGI src2, dst1
|| STI src3, dst2

Operation 0 – src2 → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 1 0 0 1 dst1 src2dst20 src30 0 0

Description An integer negation and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle. If one
of the parallel operations (STI) reads from a register and the operation being
performed in parallel (NEGI) writes to the same register, STI accepts the con-
tents of the register as input before it is modified by the NEGI.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

NEGI||STI Parallel NEGI and STI

13-180

Example NEGI *–AR3,R2
|| STI R2,*AR1++

Before Instruction After Instruction

R2 00 0000 0019 R2 00 FFFF FF24

AR1 80 98A5 AR1 80 98A6

AR3 80 982F AR3 80 982F

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1

Data memory

80982Eh 0DC 80982Eh 0DC

8098A5h 0 8098A5h 19

25

220

–220

220

25

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 No Operation NOP

13-181 Assembly Language Instructions

Syntax NOP src

Operation No ALU or multiplier operations.
ARn is modified if src is specified in indirect mode.

Operands src general addressing modes (G):

0 0 register(no operation)
1 0 indirect (modify ARn, 0 ≤ n ≤ 7)

(disp = 0–255, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 00 11 srcG 0 0 000

Description If the src operand is specified in the indirect mode, the specified addressing
operation is performed, and a dummy memory read occurs. If the src operand
is omitted, no operation is performed.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example 1 NOP

Before Instruction After Instruction

PC 3A PC 3B

Example 2 NOP *AR3 –– (1)

Before Instruction After Instruction

AR3 80 9900 AR3 80 98FF

PC 5 PC 6

Mode Bit

NORM Normalize

13-182

Syntax NORM src, dst

Operation norm (src) → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 10 01 dst srcG

Description The src operand is assumed to be an unnormalized floating-point number; that
is, the implied bit is set equal to the sign bit. The dst is set equal to the normal-
ized src operand with the implied bit removed. The dst operand exponent is
set to the src operand exponent minus the size of the left shift necessary to
normalize the src. The dst operand is assumed to be a normalized floating-
point number.

If src (exp) = –128 and src (man) = 0, then dst = 0, Z = 1, and UF = 0.

If src (exp) = –128 and src (man) ≠ 0, then dst = 0, Z = 0, and UF = 1.

For all other cases of the src, if a floating-point underflow occurs, then
dst (man) is forced to 0 and dst (exp) = –128.

If src (man) = 0, then dst (man) = 0 and dst (exp) = –128.

Refer to Section 5.7, Normalization Using the NORM Instruction, on page 5-37
for more information.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV Unaffected
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Normalize NORM

13-183 Assembly Language Instructions

Example NORM R1,R2

Before Instruction After Instruction

R1 04 0000 3AF5 R1 04 0000 3AF5

R2 07 0C80 0000 R2 F2 6BD4 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.12451613e – 04

NOT Bitwise-Logical Complement

13-184

Syntax NOT src, dst

Operation ∼src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst any CPU register

Opcode

31 2423 16 8 7 015

0 0 0 0 1 10 11 dst srcG

Description The bitwise-logical complement of the src operand is loaded into the dst regis-
ter. The complement is formed by a logical NOT of each bit of the src operand.
The dst and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

 Bitwise-Logical Complement NOT

13-185 Assembly Language Instructions

Example NOT @982Ch,R4

Before Instruction After Instruction

R4 00 0000 0000 R4 00 FFFF A1D0

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80982Ch 5E2F 80982Ch 5E2F

NOT||STI Parallel NOT and STI

13-186

Syntax NOT src2, dst1
|| STI src3, dst2

Operation ∼src2 → dst1
|| src3 → dst2

Operands src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn1, 0 ≤ n1 ≤ 7)
src3 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 1 0 0 1 dst1 src2dst21 src30 0 0

Description A bitwise-logical NOT and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (NOT) writes to the same register, STI
accepts the contents of the register as input before it is modified by the NOT.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Parallel NOT and STI NOT||STI

13-187 Assembly Language Instructions

Example NOT *+AR2,R3
|| STI R7,* ––AR4 (IR1)

Before Instruction After Instruction

R3 00 0000 0000 R3 00 FFFF F3D0

R7 00 0000 00DC R7 00 0000 00DC

AR2 80 99CB AR2 80 99CB

AR4 80 9850 AR4 80 9840

IR1 10 IR1 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8099CCh 0C2F 8099CCh 0C2F

809840h 0 809840h 0DC

220 220

220

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

OR Bitwise-Logical OR

13-188

Syntax OR src, dst

Operation dst OR src → dst

Operands src general addressing modes (G):

0 0 any CPU register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate (not sign-extended)

dst any CPU register

Opcode
31 24 23 16 8 7 015

0 0 0 1 0 00 00 dst srcG

Description The bitwise-logical OR between the src and dst operands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Bitwise-Logical OR OR

13-189 Assembly Language Instructions

Example OR *++AR1(IR1),R2

Before Instruction After Instruction

R2 00 1256 0000 R2 00 1256 2BCD

AR1 80 9800 AR1 80 9804

IR1 4 IR1 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809804h 2BCD 809804h 2BCD

OR3 Bitwise-Logical OR, 3-Operand

13-190

Syntax OR3 src2, src1, dst

Operation src1 OR src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 10 11 dst src2T src1

Description The bitwise-logical OR between the src1 and src2 operands is loaded into the
dst register. The src1, src2, and dst operands are assumed to be unsigned in-
tegers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Bitwise-Logical OR, 3-Operand OR3

13-191 Assembly Language Instructions

Example OR3 *++AR1(IR1),R2,R7

Before Instruction After Instruction

R2 00 1256 0000 R2 00 1256 0000

R7 00 0000 0000 R7 0 1256 2BCD

AR1 80 9800 AR1 80 9804

IR1 4 IR1 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809804h 2BCD 809804h 2BCD

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

OR3||STI Parallel OR3 and STI

13-192

Syntax OR3 src2, src1, dst1
|| STI src3, dst2

Operation src1 OR src2 → dst1
| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 0 1 00 src1 src2dst21 dst1 src3

A bitwise-logical OR and an integer store are performed in parallel. All registers
are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (OR3) writes to the same register, then STI
accepts the contents of the register as input before it is modified by the OR3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

 Parallel OR3 and STI OR3||STI

13-193 Assembly Language Instructions

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example OR3 *++AR2,R5,R2
|| STI R6,*AR1 ––

Before Instruction After Instruction

R2 00 0000 0000 R2 00 0080 9800

R5 00 0080 0000 R5 00 0080 0000

R6 00 0000 00DC R6 00 0000 00DC

AR1 80 9883 AR1 80 9882

AR2 80 9830 AR2 80 9831

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809831h 9800 809831h 9800

809883h 0 809883h 0DC 220

220220

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

Mode Bit

POP Pop Integer

13-194

Syntax POP dst

Operation *SP–– → dst

Operands dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 01 01 dst10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description The top of the current system stack is popped and loaded into the dst register
(32 LSBs). The top of the stack is assumed to be a signed integer. The POP
is performed with a postdecrement of the stack pointer. The exponent bits of
an extended-precision register (R7–R0) are left unmodified.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example POP R3

Before Instruction After Instruction

R3 00 0000 12DA R3 00 FFFF 0DA4

SP 809856 SP 809855

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809856h FFFF0DA4 809856h FFFF0DA4

4,826 –62,044

–62,044–62,044

Mode Bit

 Pop Floating-Point Value POPF

13-195 Assembly Language Instructions

Syntax POPF dst

Operation *SP–– → dst1

Operands dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 01 11 dst 00 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Description The top of the current system stack (32 MSBs) is popped and loaded into the
dst register. The top of the stack is assumed to be a floating-point number. The
POP is performed with a postdecrement of the stack pointer. The eight LSBs
of an extended-precision register (R7–R0) are zero-filled.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
UF 0
LV Unaffected
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example POPF R4

Before Instruction After Instruction

R4 02 5D2E 0123 R4 5F 2C13 0200

SP 80984A SP 809849

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80984Ah 5F2C1302 80984Ah 5F2C1302

6.91186578e+00

5.32544007e+28

5.32544007e+28

5.32544007e+28

Mode Bit

PUSH PUSH Integer

13-196

Syntax PUSH src

Operation src → *++SP

Operands src register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 11 01 src 00 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Description The contents of the src register (32 LSBs) are pushed on the current system
stack. The src is assumed to be a signed integer. The PUSH is performed with
a preincrement of the stack pointer. The integer or mantissa portion of an ex-
tended-precision register (R7–R0) is saved with this instruction.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example PUSH R6

Before Instruction After Instruction

R6 02 5C12 8081 R6 02 5C12 8081

SP 8098AE SP 8098AF

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098AFh 0 8098AFh 5C128081

633,415,688

1,544,716,417–62,044

633,415,688

Mode Bit

 PUSH Floating-Point Value PUSHF

13-197 Assembly Language Instructions

Syntax PUSHF src

Operation src → *++SP

Operands src register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 0 1 11 11 src 00 1 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Description The contents of the src register (32 MSBs) are pushed on the current system
stack. The src is assumed to be a floating-point number. The PUSH is per-
formed with a preincrement of the stack pointer. The eight LSBs of the mantis-
sa are not saved. (Note the difference in R2 and the value on the stack in the
example below.)

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example PUSHF R2

Before Instruction After Instruction

R2 02 5C12 8081 R2 02 5C12 8081

SP 809801 SP 809802

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809802h 0 809802h 025C1280

6.87725854e+00

6.87725830e+00

6.87725854e+00

Mode Bit

RETIcond Return From Interrupt Conditionally

13-198

Syntax RETI cond

Operation If cond is true:
*SP – – → PC
1 → ST (GIE).

Else, continue.

Operands None

Opcode

31 24 23 16 8 7 015

0 1 1 1 1 00 00 cond 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Description A conditional return is performed. If the condition is true, the top of the stack
is popped to the PC, and a 1 is written to the global interrupt enable (GIE) bit
of the status register. This has the effect of enabling all interrupts for which the
corresponding interrupt enable bit is a 1.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Return From Interrupt Conditionally RETIcond

13-199 Assembly Language Instructions

Example RETINZ

Before Instruction After Instruction

PC 0456 PC 0123

SP 809830 SP 80982F

ST 0 ST 2000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809830h 123 809830h 123

RETScond Return From Subroutine Conditionally

13-200

Syntax RETS cond

Operation If cond is true:
*SP– – → PC.
Else, continue.

Operands None

Opcode

31 2423 16 8 7 015

0 1 1 1 1 00 10 cond 00 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0

Description A conditional return is performed. If the condition is true, the top of the stack
is popped to the PC.

The ’C3x provides 20 condition codes that you can use with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Return From Subroutine Conditionally RETScond

13-201 Assembly Language Instructions

Example RETSGE

Before Instruction After Instruction

PC 0123 PC 0456

SP 80983C SP 80983B

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80983Ch 456 80983Ch 456

RND Round Floating-Point Value

13-202

Syntax RND src, dst

Operation rnd(src) → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 10 00 dst srcG

Description The result of rounding the src operand is loaded into the dst register.The src
operand is rounded to the nearest single-precision floating-point value. If the
src operand is exactly halfway between two single-precision values, it is
rounded to the most positive value.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs or the src operand is 0;

0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z Unaffected
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is affected by OVM bit value.Mode Bit

 Round Floating-Point Value RND

13-203 Assembly Language Instructions

Example RND R5,R2

Before Instruction After Instruction

R2 00 0000 0000 R2 07 33C1 6F00

R5 07 33C1 6EEF R5 07 33C1 6EEF

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

1.79755599e+021.79755599e+02

1.79755600e+02

Note: BZUF Instruction

If a BZ instruction is executed immediately following an RND instruction with
a 0 operand, the branch is not performed because the zero flag is not set.
To circumvent this problem, execute a BZUF instruction instead of a BZ
instruction.

ROL Rotate Left

13-204

Syntax ROL dst

Operation dst left-rotated 1 bit → dst

Operands dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 10 10 dst1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description The contents of the dst operand are left rotated one bit and loaded into the dst
register. This is a circular rotation, with the MSB simultaneously transferred
into the carry (C) bit and the LSB.

Rotate left:

C dst

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit; unaffected

if dst is not R7 – R0

OVM Operation is not affected by OVM bit value.

Example ROL R3

Before Instruction After Instruction

R3 00 8002 5CD4 R3 00 0004 B9A9

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1

Mode Bit

 Rotate Left Through Carry ROLC

13-205 Assembly Language Instructions

Syntax ROLC dst

Operation dst left-rotated one bit through carry bit → dst

Operands dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 01 00 dst1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Description The contents of the dst operand are left rotated one bit through the carry (C)
bit and loaded into the dst register. The MSB is rotated to the carry bit at the
same time the carry bit is transferred to the LSB.

Rotate left through carry bit:

C dst

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit; if dst is not

R7–R0, then C is shifted into the dst but not changed

OVM Operation is not affected by OVM bit value.

Example 1 ROLC R3

Before Instruction After Instruction

R3 00 0000 0420 R3 00 0000 0841

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0

Mode Bit

ROLC Rotate Left Through Carry

13-206

Example 2 ROLC R3

Before Instruction After Instruction

R3 00 8000 4281 R3 00 0000 8502

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1

 Rotate Right ROR

13-207 Assembly Language Instructions

Syntax ROR dst

Operation dst right-rotated one bit through carry bit → dst

Operands dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 01 10 dst1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Description The contents of the dst operand are right rotated one bit and loaded into the
dst register. The LSB is rotated into the carry (C) bit and also transferred into
the MSB.

Rotate right:

Cdst

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit; unaffected

if dst is not R7–R0

OVM Operation is not affected by OVM bit value.

Example ROR R7

Before Instruction After Instruction

R7 00 0000 0421 R7 00 8000 0210

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 1

Mode Bit

RORC Rotate Right Through Carry

13-208

Syntax RORC dst

Operation dst right-rotated one bit through carry bit → dst

Operands dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 11 00 dst1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Description The contents of the dst operand are right rotated one bit through the status reg-
ister’s carry (C) bit. This could be viewed as a 33-bit shift. The carry bit value
is rotated into the MSB of the dst, while at the same time the dst LSB is rotated
into the carry bit.

Rotate right through carry bit:

dstC

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Set to the value of the bit rotated out of the high-order bit; if dst is not

R7 – R0, then C is shifted in but not changed

OVM Operation is not affected by OVM bit value.

Example RORC R4

Before Instruction After Instruction

R4 00 8000 0081 R4 00 4000 0040

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 1 N 0

Z 0 Z 0

V 0 V 0

C 0 C 1

Mode Bit

 Repeat Block RPTB

13-209 Assembly Language Instructions

Syntax RPTB src

Operation src → RE
1 → ST (RM)
Next PC → RS

Operands src long-immediate addressing mode

Opcode
31 24 23 16 8 7 015

0 1 1 0 0 001 src

Description RPTB allows a block of instructions to be repeated RC register + 1 times with-
out any penalty for looping. This instruction activates the block repeat mode
of updating the PC. The src operand is a 24-bit unsigned immediate value that
is loaded into the repeat end-address (RE) register. A 1 is written into the re-
peat mode bit of status register ST (RM) to indicate that the PC is being up-
dated in the repeat mode. The address of the next instruction is loaded into the
repeat start-address (RS) register.

RE should be greater than or equal to RS (RE � RS). Otherwise, the code
does not repeat, even though the RM bit remains set to 1.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

RPTB Repeat Block

13-210

Example RPTB 127h

Before Instruction After Instruction

PC 0123 PC 0124

RE 0 RE 127

RS 0 RS 124

ST 0 ST 100

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Because the block-repeat modes modify the program counter, no
other instruction can modify the program counter at the same time.
The following two rules apply:

Rule 1: The last instruction in the block (or the only instruction in a
block of size 1) cannot be a B cond , BR, DBcond , CALL,
CALL cond , TRAPcond , RETIcond , RETScond , IDLE, IDLE2,
RPTB, or RPTS. Example 7–3 on page 7-6 shows an
incorrectly placed standard branch.

Rule 2: None of the last four instructions at the bottom of the block
(or the only instruction in a block of size 1) can be a
Bcond D, BRD, or DB cond D. Example 7–4 on page 7-7
shows an incorrectly placed delayed branch.

If either rule is violated, the PC will be undefined.

 Repeat Single Instruction RPTS

13-211 Assembly Language Instructions

Syntax RPTS src

Operation src → RC
1 → ST (RM)
1 → S
Next PC → RS
Next PC → RE

Operands src general addressing modes (G):

0 0 register
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 11 10 1 srcG 1 1 10

Description The RPTS instruction allows you to repeat a single instruction src + 1 times
without any penalty for looping. Fetches can also be made from the instruction
register (IR), thus avoiding repeated memory access.

The src operand is loaded into the repeat counter (RC). A 1 is written into the
repeat mode bit of the status register ST (RM). A 1 is also written into the re-
peat single bit (S). This indicates that the program fetches are to be performed
only from the instruction register. The next PC is loaded into the repeat end-ad-
dress (RE) register and the repeat start-address (RS) register.

For the immediate mode, the src operand is assumed to be an unsigned inte-
ger and is not sign extended.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

RPTS Repeat Single Instruction

13-212

Example RPTS AR5

Before Instruction After Instruction

AR5 00 00FF AR5 00 00FF

PC 0123 PC 0124

RC 0 RC 0FF

RE 0 RE 124

RS 0 RS 124

ST 0 ST 100

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Because the block-repeat modes modify the program counter, no
other instruction can modify the program counter at the same time.
Therefore, the repeated instruction cannot be a B cond , BR,
DBcond , CALL, CALL cond , TRAPcond , RETIcond , RETScond ,
IDLE, IDLE2, RPTB, or RPTS. If this rule is violated, the PC will be
undefined.

Note:

The RPTS instruction cannot be interrupted because instruction fetches are
halted.

 Signal, Interlocked SIGI

13-213 Assembly Language Instructions

Syntax SIGI

Operation Signal interlocked operation.
Wait for interlock acknowledge.
Clear interlock.

Operands None

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 01 01 0 0 000 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0

Description An interlocked operation is signaled over XF0 and XF1. After the interlocked
operation is acknowledged, the interlocked operation ends. SIGI ignores the
external ready signals. Refer to Section 7.4, Interlocked Operations, on page
7-13 for detailed information.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example SIGI ; The processor sets XF0 to 0, idles
; until XF1 is set to 0, and then
; sets XF0 to 1.

Mode Bit

STF Store Floating-Point Value

13-214

Syntax STF src, dst

Operation src → dst

Operands src register (Rn, 0 ≤ n ≤ 7)

dst general addressing modes (G):

0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

Opcode

31 2423 16 8 7 015

0 0 0 1 0 00 01 srcG dst

Description The src register is loaded into the dst memory location. The src and dst oper-
ands are assumed to be floating-point numbers.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example STF R2,@98A1h

Before Instruction After Instruction

R2 05 2C50 1900 R2 05 2C50 1900

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098A1h 0 8098A1h 52C5019

4.30782204e+01

4.30782204e+01

4.30782204e+01

Mode Bit

 Store Floating-Point Value, Interlocked STFI

13-215 Assembly Language Instructions

Syntax STFI src, dst

Operation src → dst
Signal end of interlocked operation.

Operands src register (Rn, 0 ≤ n ≤ 7)

dst general addressing modes (G):

0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 00 11 srcG dst

Description The src register is loaded into the dst memory location. An interlocked opera-
tion is signaled over pins XF0 and XF1. The src and dst operands are assumed
to be floating-point numbers. Refer to Section 7.4, Interlocked Operations, on
page 7-13 for detailed information.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example STFI R3,*–AR4

Before Instruction After Instruction

R3 07 33C0 0000 R3 07 33C0 0000

AR4 80 993C AR4 80 993C

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80993Bh 0 80993Bh 733C000

1.79750e+02

1.79750e+02

1.79750e+02

Mode Bit

STFI Store Floating-Point Value, Interlocked

13-216

Note:

The STFI instruction is not interruptible because it completes when ready is
signaled. See Section 7.4, Interlocked Operations, on page 7-13.

 Parallel Store Floating-Point Value STF||STF

13-217 Assembly Language Instructions

Syntax STF src2, dst2
|| STF src1, dst1

Operation src2 → dst2
|| src1 → dst1

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
dst1 indirect (disp = 0, 1, IR0, IR1)
src2 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
dst1 indirect (disp = 0, 1, IR0, IR1)
src2 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1) or any CPU register

Opcode
31 24 23 16 8 7 015

1 1 0 0 0 00 0 0 src10 dst1 dst2src2

Description Two STF instructions are executed in parallel. Both src1 and src2 are assumed
to be floating-point numbers.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

STF||STF Parallel Store Floating-Point Value

13-218

Example STF R4,*AR3 ––
|| STF R3,*++AR5

Before Instruction After Instruction

R3 07 33C0 0000 R3 07 33C0 0000

R4 07 0C80 0000 R4 07 0C80 0000

AR3 80 9835 AR3 80 9834

AR5 80 99D2 AR5 80 99D3

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809835h 0 809835h 070C8000

8099D3h 0 8099D3h 0733C000

1.79750e+02

1.4050e+02

1.79750e+02

1.4050e+02

1.4050e+02

1.79750e+02

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 Store Integer STI

13-219 Assembly Language Instructions

Syntax STI src, dst

Operation src → dst

Operands src register (Rn, 0 ≤ n ≤ 27)

dst general addressing modes (G):

0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 10 01 srcG dst

Description The src register is loaded into the dst memory location. The src and dst oper-
ands are assumed to be signed integers.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example STI R4,@982Bh

Before Instruction After Instruction

R4 00 0004 2BD7 R4 00 0004 2BD7

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80982Bh 0E5FC 80982Bh 42BD758,876

273,367 273,367

273,367

Mode Bit

STII Store Integer, Interlocked

13-220

Syntax STII src, dst

Operation src → dst
Signal end of interlocked operation

Operands src register (Rn, 0 ≤ n ≤ 27)

dst general addressing modes (G):
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)

Opcode

31 2423 16 8 7 015

0 0 0 1 0 10 11 srcG dst

Description The src register is loaded into the dst memory location. An interlocked opera-
tion is signaled over pins XF0 and XF1. The src and dst operands are assumed
to be signed integers. Refer to Section 7.4, Interlocked Operations, on page
7-13 for detailed information.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.

Example STII R1,@98AEh

Before Instruction After Instruction

R1 00 0000 078D R1 00 0000 078D

DP 080 DP 080

Data memory

8098AEh 25C 8098AEh 78D

Note:

The STII instruction is not interruptible because it completes when ready is
signaled. See Section 7.4, Interlocked Operations, on page 7-13.

Mode Bit

 Parallel STI and STI STI||STI

13-221 Assembly Language Instructions

Syntax STI src2, dst2
|| STI src1, dst1

Operation src2 → dst2
|| src1 → dst1

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
dst1 indirect (disp = 0, 1, IR0, IR1)
src2 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented on the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
dst1 indirect (disp = 0, 1, IR0, IR1)
src2 register (Rn2, 0 ≤ n2 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1) or any CPU register

Opcode

31 24 23 16 8 7 015

1 1 0 0 0 0 src2 dst2dst11 src10 0 0

Description Two integer stores are performed in parallel. If both stores are executed to the
same address, the value written is that of STI src2, dst2.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

STI||STI Parallel STI and STI

13-222

Example STI R0,*++AR2(IR0)
|| STI R5,*AR0

Before Instruction After Instruction

R0 00 0000 00DC R0 00 0000 00DC

R5 00 0000 0035 R5 00 0000 0035

AR0 80 98D3 AR0 80 98D3

AR2 80 9830 AR2 80 9838

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809838h 0 809838h 0DC

8098D3h 0 8098D3h 35

53

220 220

53

53

220

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 Subtract Integer With Borrow SUBB

13-223 Assembly Language Instructions

Syntax SUBB src, dst

Operation dst – src – C → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 01 11 dstG src

Description The difference of the dst, src, and C operands is loaded into the dst register.
The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example SUBB *AR5++(4),R5

Before Instruction After Instruction

R5 00 0000 00FA R5 00 0000 0032

AR5 80 9800 AR5 80 9804

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0

Data memory

809800h 0C7 809800h 0C7199

250 50

199

Mode Bit

SUBB3 Subtract Integer With Borrow, 3-Operand

13-224

Syntax SUBB3 src2, src1, dst

Operation src1 – src2 – C → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 01 01 dstT src1 src2

Description The difference among the src1 and src2 operands and the C flag is loaded into
the dst register. The src1, src2, and dst operands are assumed to be signed
integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

 Subtract Integer With Borrow, 3-Operand SUBB3

13-225 Assembly Language Instructions

Example SUBB3 R5,*AR5++(IR0),R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 0032

R5 00 0000 00C7 R5 00 0000 00C7

AR5 80 9800 AR5 80 9804

IR0 4 IR0 4

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0

Data memory

809800h 0FA 809800h 0FA250

50

199199

250

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

SUBC Subtract Integer Conditionally

13-226

Syntax SUBC src, dst

Operation If (dst – src ≥ 0):
(dst – src << 1) OR 1 → dst

Else:
dst << 1 → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 11 01 dstG src

Description The src operand is subtracted from the dst operand. The dst operand is loaded
with a value dependent on the result of the subtraction. If (dst – src) is greater
than or equal to 0, then (dst – src) is left-shifted one bit, the least significant
bit is set to 1, and the result is loaded into the dst register. If (dst – src) is less
than 0, dst is left-shifted one bit and loaded into the dst register. The dst and
src operands are assumed to be unsigned integers.

You can use SUBC to perform a single step of a multi-bit integer division. See
the TMS320C3x General Purpose Applications Guide for a detailed descrip-
tion.

Cycles 1

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Subtract Integer Conditionally SUBC

13-227 Assembly Language Instructions

Example 1 SUBC @98C5h,R1

Before Instruction After Instruction

R1 00 0000 04F6 R1 00 0000 00C9

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098C5h 492 8098C5h 492

201

1170

1270

1170

Example 2 SUBC 3000,R0 (3000 = 0BB8h)

Before Instruction After Instruction

R0 00 0000 07D0 R0 00 0000 0FA0

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

40002000

SUBF Subtract Floating-Point Value

13-228

Syntax SUBF src, dst

Operation dst – src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 1 0 11 11 dstG src

Description The difference between the dst operand and the src operand is loaded into the
dst register. The dst and src operands are assumed to be floating-point num-
bers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Subtract Floating-Point Value SUBF

13-229 Assembly Language Instructions

Example SUBF *AR0–– (IR0),R5

Before Instruction After Instruction

R5 07 33C0 0000 R5 05 1D00 0000

AR0 80 9888 AR0 80 9808

IR0 80 IR0 80

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809888h 70C8000 809888h 70C8000

3.9250e+01

1.4050e+02 1.4050e+02

1.79750000e+02

SUBF3 Subtract Floating-Point Value, 3-Operand

13-230

Syntax SUBF3 src2, src1, dst

Operation src1 – src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 7)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 7)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 7)
0 1 register (Rn2, 0 ≤ n2 ≤ 7)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 01 11 dstT src1 src2

Description The difference between the src1 and src2 operands is loaded into the dst reg-
ister. The src1, src2, and dst operands are assumed to be floating-point num-
bers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Subtract Floating-Point Value, 3-Operand SUBF3

13-231 Assembly Language Instructions

Example 1 SUBF3 *AR0–– (IR0),*AR1,R4

Before Instruction After Instruction

R4 00 0000 0000 R4 05 1D00 0000

AR0 80 9888 AR0 80 9808

AR1 80 9851 AR1 80 9851

IR0 80 IR0 80

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809888h 70C8000 809888h 70C8000

809851h 733C000 809851h 733C000

3.9250e+01

1.4050e+02 1.4050e+02

1.79750e+02 1.79750e+02

Example 2 SUBF3 R7,R0,R6

Before Instruction After Instruction

R0 03 4C20 0000 R0 03 4C20 0000

R6 00 0000 0000 R6 05 B7C8 0000

R7 05 7B40 0000 R7 05 7B40 0000

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0

1.27578125e+01

6.281250e+01

–5.00546875e+01

1.27578125e+01

6.281250e+01

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

SUBF3||STF Parallel SUBF3 and STF

13-232

Syntax SUBF3 src1, src2, dst1
|| STF src3, dst2

Operation src2 – src1 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 1 0 1 dst110 src3src1 dst2 src2

Description A floating-point subtraction and a floating-point store are performed in parallel.
All registers are read at the beginning and loaded at the end of the execute
cycle. If one of the parallel operations (STF) reads from a register and the oper-
ation being performed in parallel (SUBF3) writes to the same register, STF ac-
cepts the contents of the register as input before it is modified by the SUBF3.

If src3 and dst1 point to the same location, src3 is read before the write to dst1.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Parallel SUBF3 and STF SUBF3||STF

13-233 Assembly Language Instructions

Example SUBF3 R1,*–AR4(IR1),R0
|| STF R7,*+AR5(IR0)

Before Instruction After Instruction

R0 00 0000 0000 R0 06 1B60 0000

R1 05 7B40 0000 R1 05 7B40 0000

R7 07 33C0 0000 R7 07 33C0 0000

AR4 80 98B8 AR4 80 98B8

AR5 80 9850 AR5 80 9850

IR0 10 IR0 10

IR1 8 IR1 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8098B0h 70C8000 8098B0h 70C8000

809860h 0 809860h 733C000

7.768750e+01

1.4050e+02 1.4050e+02

1.79750e+02

1.79750e+02

6.28125e+01

1.79750e+02

6.28125e+01

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

SUBI Subtract Integer

13-234

Syntax SUBI src, dst

Operation dst – src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 1 00 00 dstG src

Description The difference between the dst operand and the src operand is loaded into the
dst register. The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example SUBI 220,R7

Before Instruction After Instruction

R7 00 0000 0226 R7 00 0000 014A

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

330550

Mode Bit

 Subtract Integer, 3-Operand SUBI3

13-235 Assembly Language Instructions

Syntax SUBI3 src2, src1, dst

Operation src1 – src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 11 01 dstT src1 src2

Description The difference between the src1 operand and the src2 operand is loaded into
the dst register. The src1, src2, and dst operands are assumed to be signed
integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

SUBI3 Subtract Integer, 3-Operand

13-236

Example 1 SUBI3 R7,R2,R0

Before Instruction After Instruction

R0 00 0000 0000 R0 00 0000 0032

R2 00 0000 0866 R2 00 0000 0866

R7 00 0000 0834 R7 00 0000 0834

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 1

Z 0 Z 0

V 0 V 0

C 0 C 0

50

2100

2150

2100

2150

Example 2 SUBI3 *–AR2(1),R4,R3

Before Instruction After Instruction

R3 00 0000 0000 R3 00 0000 014A

R4 00 0000 0226 R4 00 0000 0226

AR2 80 985E AR2 80 985E

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80985Dh 0DC 80985Dh 0DC220

550

330

550

220

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 Parallel SUBI3 and STI SUBI3||STI

13-237 Assembly Language Instructions

Syntax SUBI3 src1, src2, dst1
|| STI src3, dst2

Operation src2 – src1 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

1 1 1 0 1 0 dst11 src1 dst2 src2src3

Description An integer subtraction and an integer store are performed in parallel. All regis-
ters are read at the beginning and loaded at the end of the execute cycle. This
means that if one of the parallel operations (STI) reads from a register and the
operation being performed in parallel (SUBI3) writes to the same register, STI
accepts the contents of the register as input before it is modified by the SUBI3.

If src3 and dst1 point to the same location, src3 is read before the write to dst1.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.Mode Bit

SUBI3||STI Parallel SUBI3 and STI

13-238

Example SUBI3 R7,*+AR2(IR0),R1
|| STI R3,*++AR7

Before Instruction After Instruction

R1 00 0000 0000 R1 00 0000 00C8

R3 00 0000 0035 R3 00 0000 0035

R7 00 0000 0014 R7 00 0000 0014

AR2 80 982F AR2 80 982F

AR7 80 983B AR7 80 983C

IR0 10 IR0 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80983Fh 0DC 80983Fh 0DC

80983Ch 0 80983Ch 35

53

200

53

220

2020

220

53

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 Subtract Reverse Integer With Borrow SUBRB

13-239 Assembly Language Instructions

Syntax SUBRB src, dst

Operation src – dst – C → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 2423 16 8 7 015

0 0 0 1 1 00 10 dstG src

Description The difference of the src, dst, and C operands is loaded into the dst register.
The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example SUBRB R4,R6

Before Instruction After Instruction

R4 00 0000 03CB R4 00 0000 03CB

R6 00 0000 0258 R6 00 0000 0172

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 1 C 0

600

971

370

971

Mode Bit

SUBRF Subtract Reverse Floating-Point Value

13-240

Syntax SUBRF src, dst

Operation src – dst → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 7)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 7)

Opcode

31 24 23 16 8 7 015

0 0 0 1 1 10 00 dstG src

Description The difference between the src operand and the dst operand is loaded into the
dst register. The dst and src operands are assumed to be floating-point num-
bers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF 1 if a floating-point underflow occurs; unchanged otherwise
LV 1 if a floating-point overflow occurs; unchanged otherwise
UF 1 if a floating-point underflow occurs; 0 otherwise
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if a floating-point overflow occurs; 0 otherwise
C Unaffected

OVM Operation is not affected by OVM bit value.

Example SUBRF @9905h,R5

Before Instruction After Instruction

R5 05 7B40 0000 R5 06 69E0 0000

DP 080 DP 080

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

 Data memory

809905h 733C000 809905h 733C000 1.79750e+02

6.281250e+01 1.16937500e+02

1.79750e+02

Mode Bit

 Subtract Reverse Integer SUBRI

13-241 Assembly Language Instructions

Syntax SUBRI src, dst

Operation src – dst → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode
31 24 23 16 8 7 015

0 0 0 1 1 10 10 dstG src

Description The difference between the src operand and the dst operand is loaded into the
dst register. The dst and src operands are assumed to be signed integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV 1 if an integer overflow occurs; unchanged otherwise
UF 0
N 1 if a negative result is generated; 0 otherwise
Z 1 if a 0 result is generated; 0 otherwise
V 1 if an integer overflow occurs; 0 otherwise
C 1 if a borrow occurs; 0 otherwise

OVM Operation is affected by OVM bit value.

Example SUBRI *AR5++(IR0),R3

Before Instruction After Instruction

R3 00 0000 00DC R3 00 0000 014A

AR5 80 9900 AR5 80 9908

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809900h 226 809900h 226550

330

550

220

Mode Bit

SWI Software Interrupt

13-242

Syntax SWI

Operation Performs an emulation interrupt

Operands None

Opcode

31 2423 16 8 7 015

0 1 1 0 0 01 01 0 0 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Description The SWI instruction performs an emulator interrupt. This is a reserved instruc-
tion and should not be used in normal programming.

Cycles 4

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Trap Conditionally TRAPcond

13-243 Assembly Language Instructions

Syntax TRAP cond N

Operation 0 → ST(GIE)
If cond is true:

Next PC → *++SP,
Trap vector N → PC.

Else:

Set ST(GIE) to original state.
Continue.

Operands N (0 ≤ N ≤ 31)

Opcode

31 2423 16 8 7 015

0 1 1 1 0 00 01 cond0 0 0 0 0 0 0 0 0 0 0 0 1 N + 20h

Description Interrupts are disabled globally when 0 is written to ST(GIE). If the condition
is true, the contents of the PC are pushed onto the system stack, and the PC
is loaded with the contents of the specified trap vector (N). If the condition is
not true, ST(GIE) is set to its value before the TRAPcond instruction changes
it.

The ’C3x provides 20 condition codes that can be used with this instruction
(see Table 13–12 on page 13-30 for a list of condition mnemonics, condition
codes, and flags). Condition flags are set on a previous instruction only when
the destination register is one of the extended-precision registers (R7–R0) or
when one of the compare instructions (CMPF, CMPF3, CMPI, CMPI3, TSTB,
or TSTB3) is executed.

Cycles 5

Status Bits LUF Unaffected
LV Unaffected
UF Unaffected
N Unaffected
Z Unaffected
V Unaffected
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

TRAPcond Trap Conditionally

13-244

Example TRAPZ 16

Before Instruction After Instruction

PC 0123 PC 0010

SP 809870 SP 809871

ST 0 ST 0

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

Trap V.16 10 809871h 124

 Test Bit Fields TSTB

13-245 Assembly Language Instructions

Syntax TSTB src, dst

Operation dst AND src

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 0 1 1 01 00 dstG src

Description The bitwise-logical AND of the dst and src operands is formed, but the result
is not loaded in any register. This allows for nondestructive compares. The dst
and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

TSTB Test Bit Fields

13-246

Example TSTB *–AR4(1),R5

Before Instruction After Instruction

R5 00 0000 0898 R5 00 0000 0898

AR4 80 99C5 AR4 80 99C5

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0

Data memory

8099C4h 767 8099C4h 767

2200 2200

1895 1895

 Test Bit Fields, 3-Operand TSTB3

13-247 Assembly Language Instructions

Syntax TSTB3 src2, src1

Operation src1 AND src2

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 127)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 24 23 16 8 7 015

0 0 1 0 0 11 11 T src10 0 0 0 0 src2

Description The bitwise-logical AND between the src1 and src2 operands is formed but is
not loaded into any register. This allows for nondestructive compares. The
src1 and src2 operands are assumed to be unsigned integers. Although this
instruction has only two operands, it is designated as a 3-operand instruction
because operands are specified in the 3-operand format.

Cycles 1

Status Bits These condition flags are modified for all destination registers (R27–R0).

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

TSTB3 Test Bit Fields, 3-Operand

13-248

Example 1 TSTB3 *AR5 –– (IR0),*+AR0(1)

Before Instruction After Instruction

AR0 80 992C AR0 80 992C

AR5 80 9885 AR5 80 9805

IR0 80 IR0 80

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 1

V 0 V 0

C 0 C 0

Data memory

809885h 898 809885h 898

80992Dh 767 80992Dh 767

2200 2200

1895 1895

Example 2 TSTB3 R4,*AR6 –– (IR0)

Before Instruction After Instruction

R4 00 0000 FBC4 R4 00 0000 FBC4

AR6 80 99F8 AR6 80 99F0

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

8099F8h 1568 8099F8h 1568

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

 Bitwise-Exclusive OR XOR

13-249 Assembly Language Instructions

Syntax XOR src, dst

Operation dst XOR src → dst

Operands src general addressing modes (G):

0 0 register (Rn, 0 ≤ n ≤ 27)
0 1 direct
1 0 indirect (disp = 0–255, IR0, IR1)
1 1 immediate

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 2423 16 8 7 015

0 0 0 1 1 01 10 dstG src

Description The bitwise-exclusive OR of the src and dst operands is loaded into the dst
register. The dst and src operands are assumed to be unsigned integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example XOR R1,R2

Before Instruction After Instruction

R1 00 000F FA32 R1 00 000F F412

R2 00 000F F5C1 R2 00 0000 0FF3

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Mode Bit

XOR3 Bitwise-Exclusive OR, 3-Operand

13-250

Syntax XOR3 src2, src1, dst

Operation src1 XOR src2 → dst

Operands src1 3-operand addressing modes (T):

0 0 register (Rn1, 0 ≤ n1 ≤ 27)
0 1 indirect (disp = 0, 1, IR0, IR1)
1 0 register (Rn1, 0 ≤ n1 ≤ 27)
1 1 indirect (disp = 0, 1, IR0, IR1)

src2 3-operand addressing modes (T):

0 0 register (Rn2, 0 ≤ n2 ≤ 27)
0 1 register (Rn2, 0 ≤ n2 ≤ 27)
1 0 indirect (disp = 0, 1, IR0, IR1)
1 1 indirect (disp = 0, 1, IR0, IR1)

dst register (Rn, 0 ≤ n ≤ 27)

Opcode

31 24 23 16 8 7 015

0 0 1 0 1 00 00 dstT src1 src2

Description The bitwise-exclusive OR between the src1 and src2 operands is loaded into
the dst register. The src1, src2, and dst operands are assumed to be unsigned
integers.

Cycles 1

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.Mode Bit

 Bitwise-Exclusive OR, 3-Operand XOR3

13-251 Assembly Language Instructions

Example 1 XOR3 *AR3++(IR0),R7,R4

Before Instruction After Instruction

R4 00 0000 0000 R4 00 0000 A53C

R7 00 0000 FFFF R7 00 0000 FFFF

AR3 80 9800 AR3 80 9810

IR0 10 IR0 10

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809800h 5AC3 809800h 5AC3

Example 2 XOR3 R5,*–AR1(1),R1

Before Instruction After Instruction

R1 00 0000 0000 R1 00 0000 0F33

R5 00 000F FA32 R5 00 000F FA32

AR1 80 9826 AR1 80 9826

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

809825h 0FF5C1 809825h 0FF5C1

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

XOR3||STI Parallel XOR3 and STI

13-252

Syntax XOR3 src2, src1, dst1
|| STI src3, dst2

Operation src1 XOR src2 → dst1
|| src3 → dst2

Operands src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1)
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

This instruction’s operands have been augmented in the following devices:

� ’C31 silicon revision 6.0 or greater
� ’C32 silicon revision 2.0 or greater

src1 register (Rn1, 0 ≤ n1 ≤ 7)
src2 indirect (disp = 0, 1, IR0, IR1) or any CPU register
dst1 register (Rn2, 0 ≤ n2 ≤ 7)
src3 register (Rn3, 0 ≤ n3 ≤ 7)
dst2 indirect (disp = 0, 1, IR0, IR1)

Opcode

31 2423 16 8 7 015

1 1 1 0 1 1 dst1 src1 dst2 src2src3

Description A bitwise-exclusive XOR and an integer store are performed in parallel. All reg-
isters are read at the beginning and loaded at the end of the execute cycle. If
one of the parallel operations (STI) reads from a register and the operation be-
ing performed in parallel (XOR3) writes to the same register, STI accepts as
input the contents of the register before it is modified by the XOR3.

If src2 and dst2 point to the same location, src2 is read before the write to dst2.

Cycles 1

 Parallel XOR3 and STI XOR3||STI

13-253 Assembly Language Instructions

Status Bits These condition flags are modified only if the destination register is R7–R0.

LUF Unaffected
LV Unaffected
UF 0
N MSB of the output
Z 1 if a 0 output is generated; 0 otherwise
V 0
C Unaffected

OVM Operation is not affected by OVM bit value.

Example XOR3 *AR1++,R3,R3
|| STI R6,*–AR2(IR0)

Before Instruction After Instruction

R3 00 0000 0085 R3 00 0000 0000

R6 00 0000 00DC R6 00 0000 00DC

AR1 80 987E AR1 80 987F

AR2 80 98B4 AR2 80 98B4

IR0 8 IR0 8

LUF 0 LUF 0

LV 0 LV 0

UF 0 UF 0

N 0 N 0

Z 0 Z 0

V 0 V 0

C 0 C 0

Data memory

80987Eh 85 80987Eh 85

8098ACh 0 8098ACh 0DC

220

220

220

Note: Cycle Count

See subsection 8.5.2, Data Loads and Stores, on page 8-24 for the effects
of operand ordering on the cycle count.

Mode Bit

13-254

A-1

Appendix A

Instruction Opcodes

The opcode fields for all TMS320C3x instructions are shown in Table A–1. Bits
in the table marked with a hyphen are defined in the individual instruction
descriptions (see Chapter 13, Assembly Language Instructions). Table A–1,
along with the instruction descriptions, fully defines the instruction words. The
opcodes are listed in numerical order. Note that an undefined operation may
occur if an illegal opcode is executed. (An Illegal opcode can only be generated
by the misuse of the TMS320 floating-point software tools, by an error in the
ROM code, or by a defective RAM.)

Appendix A

Instruction Opcodes

A-2

Table A–1. TMS320C3x Instruction Opcodes

Instruction 31 30 29 28 27 26 25 24 23

ABSF 0 0 0 0 0 0 0 0 0

ABSI 0 0 0 0 0 0 0 0 1

ADDC 0 0 0 0 0 0 0 1 0

ADDF 0 0 0 0 0 0 0 1 1

ADDI 0 0 0 0 0 0 1 0 0

AND 0 0 0 0 0 0 1 0 1

ANDN 0 0 0 0 0 0 1 1 0

ASH 0 0 0 0 0 0 1 1 1

CMPF 0 0 0 0 0 1 0 0 0

CMPI 0 0 0 0 0 1 0 0 1

FIX 0 0 0 0 0 1 0 1 0

FLOAT 0 0 0 0 0 1 0 1 1

IDLE 0 0 0 0 0 1 1 0 0

IDLE2 0 0 0 0 0 1 1 0 0

LDE 0 0 0 0 0 1 1 0 1

LDF 0 0 0 0 0 1 1 1 0

LDFI 0 0 0 0 0 1 1 1 1

LDI 0 0 0 0 1 0 0 0 0

LDII 0 0 0 0 1 0 0 0 1

LDM 0 0 0 0 1 0 0 1 0

LDP 0 0 0 0 1 0 0 0 0

LSH 0 0 0 0 1 0 0 1 1

LOPOWER 0 0 0 1 0 0 0 0 1

MAXSPEED 0 0 0 1 0 0 0 0 1

MPYF 0 0 0 0 1 0 1 0 0

† The opcode is the same for standard and delayed instructions.

 Instruction Opcodes

A-3 Instruction Opcodes

Table A–1. TMS320C3x Instruction Opcodes (Continued)

Instruction 232425262728293031

MPYI 0 0 0 0 1 0 1 0 1

NEGB 0 0 0 0 1 0 1 1 0

NEGF 0 0 0 0 1 0 1 1 1

NEGI 0 0 0 0 1 1 0 0 0

NOP 0 0 0 0 1 1 0 0 1

NORM 0 0 0 0 1 1 0 1 0

NOT 0 0 0 0 1 1 0 1 1

POP 0 0 0 0 1 1 1 0 0

POPF 0 0 0 0 1 1 1 0 1

PUSH 0 0 0 0 1 1 1 1 0

PUSHF 0 0 0 0 1 1 1 1 1

OR 0 0 0 1 0 0 0 0 0

RND 0 0 0 1 0 0 0 1 0

ROL 0 0 0 1 0 0 0 1 1

ROLC 0 0 0 1 0 0 1 0 0

ROR 0 0 0 1 0 0 1 0 1

RORC 0 0 0 1 0 0 1 1 0

RPTS 0 0 0 1 0 0 1 1 1

STF 0 0 0 1 0 1 0 0 0

STFI 0 0 0 1 0 1 0 0 1

STI 0 0 0 1 0 1 0 1 0

STII 0 0 0 1 0 1 0 1 1

SIGI 0 0 0 1 0 1 1 0 0

SUBB 0 0 0 1 0 1 1 0 1

SUBC 0 0 0 1 0 1 1 1 0

SUBF 0 0 0 1 0 1 1 1 1

SUBI 0 0 0 1 1 0 0 0 0

† The opcode is the same for standard and delayed instructions.

Instruction Opcodes

A-4

Table A–1. TMS320C3x Instruction Opcodes (Continued)

Instruction 232425262728293031

SUBRB 0 0 0 1 1 0 0 0 1

SUBRF 0 0 0 1 1 0 0 1 0

SUBRI 0 0 0 1 1 0 0 1 1

TSTB 0 0 0 1 1 0 1 0 0

XOR 0 0 0 1 1 0 1 0 1

IACK 0 0 0 1 1 0 1 1 0

ADDC3 0 0 1 0 0 0 0 0 0

ADDF3 0 0 1 0 0 0 0 0 1

ADDI3 0 0 1 0 0 0 0 1 0

AND3 0 0 1 0 0 0 0 1 1

ANDN3 0 0 1 0 0 0 1 0 0

ASH3 0 0 1 0 0 0 1 0 1

CMPF3 0 0 1 0 0 0 1 1 0

CMPI3 0 0 1 0 0 0 1 1 1

LSH3 0 0 1 0 0 1 0 0 0

MPYF3 0 0 1 0 0 1 0 0 1

MPYI3 0 0 1 0 0 1 0 1 0

OR3 0 0 1 0 0 1 0 1 1

SUBB3 0 0 1 0 0 1 1 0 0

SUBF3 0 0 1 0 0 1 1 0 1

SUB13 0 0 1 0 0 1 1 1 0

TSTB3 0 0 1 0 0 1 1 1 1

XOR3 0 0 1 0 1 0 0 0 0

LDFcond 0 1 0 0 – – – – –

LDIcond 0 1 0 1 – – – – –

BR(D)† 0 1 1 0 0 0 0 – –

CALL 0 1 1 0 0 0 1 – –

† The opcode is the same for standard and delayed instructions.

 Instruction Opcodes

A-5 Instruction Opcodes

Table A–1. TMS320C3x Instruction Opcodes (Continued)

Instruction 232425262728293031

RPTB 0 1 1 0 0 1 0 – –

SWI 0 1 1 0 0 1 1 – –

Bcond(D)† 0 1 1 0 1 0 – – –

DBcond(D)† 0 1 1 0 1 1 – – –

CALLcond 0 1 1 1 0 0 – – –

TRAPcond 0 1 1 1 0 1 0 – –

RETIcond 0 1 1 1 1 0 0 0 0

RETScond 0 1 1 1 1 0 0 0 1

MPYF3||ADDF3 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

–

–

–

–

MPYF3||SUBF3 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

–

–

–

–

MPYI3||ADDI3 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

1

0

1

–

–

–

–

MPYI3||SUBI3 1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

–

–

–

–

STF||STF 1 1 0 0 0 0 0 – –

STI||STI 1 1 0 0 0 0 1 – –

LDF||LDF 1 1 0 0 0 1 0 – –

LDI||LDI 1 1 0 0 0 1 1 – –

ABSF||STF 1 1 0 0 1 0 0 – –

† The opcode is the same for standard and delayed instructions.

Instruction Opcodes

A-6

Table A–1. TMS320C3x Instruction Opcodes (Continued)

Instruction 232425262728293031

ABSI||STI 1 1 0 0 1 0 1 – –

ADDF3||STF 1 1 0 0 1 1 0 – –

ADDI3||STI 1 1 0 0 1 1 1 – –

AND3||STI 1 1 0 1 0 0 0 – –

ASH3||STI 1 1 0 1 0 0 1 – –

FIX||STI 1 1 0 1 0 1 0 – –

FLOAT||STF 1 1 0 1 0 1 1 – –

LDF||STF 1 1 0 1 1 0 0 – –

LDI||STI 1 1 0 1 1 0 1 – –

LSH3||STI 1 1 0 1 1 1 0 – –

MPYF3||STF 1 1 0 1 1 1 1 – –

MPYI3||STI 1 1 1 0 0 0 0 – –

NEGF||STF 1 1 1 0 0 0 1 – –

NEGI||STI 1 1 1 0 0 1 0 – –

NOT||STI 1 1 1 0 0 1 1 – –

OR3||STI 1 1 1 0 1 0 0 – –

SUBF3||STF 1 1 1 0 1 0 1 – –

SUBI3||STI 1 1 1 0 1 1 0 – –

XOR3||STI 1 1 1 0 1 1 1 – –

Reserved for reset,
traps, and interrupts

0 1 1 1 1 1 1 1 1

† The opcode is the same for standard and delayed instructions.

B-1

Appendix A

TMS320C31 Boot Loader Source Code

This appendix contains the source code for the ’C31 boot loader.

Appendix B

TMS320C31 Boot Loader Source Code

B-2

**

* C31BOOT – TMS320C31 BOOT LOADER PROGRAM

* (C) COPYRIGHT TEXAS INSTRUMENTS INC., 1990

*

* NOTE: 1. AFTER DEVICE RESET, THE PROGRAM IS SET TO WAIT FOR

* THE EXTERNAL INTERRUPTS. THE FUNCTION SELECTION OF

* THE EXTERNAL INTERRUPTS IS AS FOLLOWS:

* –––

* INTERRUPT PIN | FUNCTION

* –––––––––––––––|–––––––––––––––––––––––––––––––––––

* 0 | EPROM boot loader from 1000H

* –––––––––––––––|–––––––––––––––––––––––––––––––––––

* 1 | EPROM boot loader from 400000H

* –––––––––––––––|–––––––––––––––––––––––––––––––––––

* 2 | EPROM boot loader from FFF000H

* –––––––––––––––|–––––––––––––––––––––––––––––––––––

* 3 | Serial port 0 boot loader

* –––

*

* 2. THE EPROM BOOT LOADER LOADS WORD, HALFWORD, OR BYTE-

* WIDE PROGRAMS TO SPECIFIED LOCATIONS. THE

* 8 LSBs OF FIRST MEMORY SPECIFY THE MEMORY WIDTH OF

* THE EPROM. IF THE HALFWORD OR BYTE-WIDE PROGRAM IS

* SELECTED, THE LSBs ARE LOADED FIRST, FOLLOWED BY THE MSBs.

* THE FOLLOWING WORD CONTAINS THE CONTROL WORD FOR

* THE LOCAL MEMORY REGISTER. THE PROGRAM BLOCKS FOLLOW.

* THE FIRST TWO WORDS OF EACH PROGRAM BLOCK CONTAIN

* THE BLOCK SIZE AND MEMORY ADDRESS TO BE LOADED INTO.

* WHEN THE ZERO BLOCK SIZE IS READ, THE PROGRAM BLOCK

* LOADING IS TERMINATED. THE PC WILL BRANCH TO THE

* STARTING ADDRESS OF THE FIRST PROGRAM BLOCK.

*

* 3. IF SERIAL PORT 0 IS SELECTED FOR BOOT LOADING, THE

* PROCESSOR WILL WAIT FOR THE INTERRUPT FROM THE

* RECEIVE SERIAL PORT 0 AND PERFORM THE DOWNLOAD.

* AS WITH THE EPROM LOADER, PROGRAMS CAN BE LOADED

* INTO DIFFERENT MEMORY BLOCKS. THE FIRST TWO WORDS OF EACH

* PROGRAM BLOCK CONTAIN THE BLOCK SIZE AND MEMORY ADDRESS

* TO BE LOADED INTO. WHEN THE ZERO BLOCK SIZE IS READ,

* PROGRAM BLOCK LOADING IS TERMINATED. IN OTHER WORDS,

* IN ORDER TO TERMINATE THE PROGRAM BLOCK LOADING,

* A ZERO HAS TO BE ADDED AT THE END OF THE PROGRAM BLOCK.

* AFTER THE BOOT LOADING IS COMPLETED, THE PC WILL BRANCH

* TO THE STARTING ADDRESS OF THE FIRST PROGRAM BLOCK.

*

**

 TMS320C31 Boot Loader Source Code

B-3 TMS320C31 Boot Loader Source Code

.global check

.sect ”vectors”

reset .word check

int0 .word 809FC1h

int1 .word 809FC2h

int2 .word 809FC3h

int3 .word 809FC4h

xint0 .word 809FC5h

rint0 .word 809FC6h

.word 809FC7h

.word 809FC8h

tint0 .word 809FC9h

tint1 .word 809FCAh

dint .word 809FCBh

.word 809FCCh

.word 809FCDh

.word 809FCEh

.word 809FCFh

.word 809FD0h

.word 809FD1h

.word 809FD2h

.word 809FD3h

.word 809FD4h

.word 809FD5h

.word 809FD6h

.word 809FD7h

.word 809FD8h

.word 809FD9h

.word 809FDAh

.word 809FDBh

.word 809FDCh

.word 809FDDh

.word 809FDEh

.word 809FDFh

trap0 .word 809FE0h
trap1 .word 809FE1h
trap2 .word 809FE2h
trap3 .word 809FE3h
trap4 .word 809FE4h
trap5 .word 809FE5h
trap6 .word 809FE6h
trap7 .word 809FE7h
trap8 .word 809FE8h
trap9 .word 809FE9h
trap10 .word 809FEAh

TMS320C31 Boot Loader Source Code

B-4

trap11 .word 809FEBh
trap12 .word 809FECh
trap13 .word 809FEDh
trap14 .word 809FEEh
trap15 .word 809FEFh
trap16 .word 809FF0h
trap17 .word 809FF1h
trap18 .word 809FF2h
trap19 .word 809FF3h
trap20 .word 809FF4h
trap21 .word 809FF5h
trap22 .word 809FF6h
trap23 .word 809FF7h
trap24 .word 809FF8h
trap25 .word 809FF9h
trap26 .word 809FFAh
trap27 .word 809FFBh

.word 809FFCh

.word 809FFDh

.word 809FFEh

.word 809FFFh

.space 5

check: LDI 4040h,AR0 ; load peripheral mem. map

LSH 9,AR0 ; start addr. 808000h
LDI 404Ch,SP ; initialize stack pointer to
LSH 9,SP ; ram0 addr. 809800h
LDI 0,R0 ; set start address flag off

intloop TSTB 8,IF ; test for ext int3
BNZ serial ; on int3 go to serial

LDI 8,AR1 ; load 001000h / 2^9 –> AR1
TSTB 1,IF ; test for int0
BNZ eprom_load ; branch to eprom_load if int0 = 1

LDI 2000h,AR1 ; load 400000h / 2^9 –> AR1
TSTB 2,IF ; test for int1
BNZ eprom_load ; branch to eprom_load if int1 = 1

LDI 7FF8h,AR1 ; load FFF000h / 2^9 –> AR1
TSTB 4,IF ; test for int2
BZ intloop ; if no intX go to intloop

eprom_load LSH 9,AR1 ; eprom address = AR1 * 2^9
LDI *AR1++(1),R1 ; load eprom mem. width

LDI sub_w,AR3 ; full–word size subroutine
; address –> AR3

LSH 26,R1 ; test bit 5 of mem. width word
BN load0 ; if ’1’ start PGM loading

; (32 bits width)

 TMS320C31 Boot Loader Source Code

B-5 TMS320C31 Boot Loader Source Code

NOP *AR1++(1) ; jump last half word from mem. word
LDI sub_h,AR3 ; half word size subroutine

; address –> AR3
LSH 1,R1 ; test bit 4 of mem. width word
BN load0 ; if ’1’ start PGM loading

; (16 bits width)

LDI sub_b,AR3 ; byte size subroutine address –> AR3
ADDI 2,AR1 ; jump last 2 bytes from mem. word

load0 CALLU AR3 ; load new word
; according to mem. width

STI R1,*+AR0(64h) ; set primary bus control

load2 CALLU AR3 ; load new word according to
; mem. width

LDI R1,RC ; set block size for repeat loop
CMPI 0,RC ; if 0 block size start PGM
BZ AR2
SUBI 1,RC ; block size –1

CALLU AR3 ; load new word according to
; mem. width

LDI R1,AR4 ; set destination address
LDI R0,R0 ; test start address loaded flag
LDIZ R1,AR2 ; load start address if flag off
LDI –1,R0 ; set start & dest. address flag on
SUBI 1,AR3 ; sub address with loop

CALLUAR3 ; load new word according to
; mem. width

LDI 1,R0 ; set dest. address flag off
ADDI 1,AR3 ; sub address without loop
BR load2 ; jump to load a new block

; when loop completed

.space 1

serial LDI sub_s,AR3 ; serial words subroutine
; address –> AR3

LDI 111h,R1 ; R1 = 0000111h
STI R1,*+AR0(43h) ; set CLKR,DR,FSR as serial port pins
LDI 0A30h,R2
LSH 16,R2 ; R2 = A300000h
STI R2,*+AR0(40h) ; set serial port global

; ctrl. register
BR load2 ; jump to load 1st block

.space 29

loop_s RPTB load_s ; PGM load loop
sub_s TSTB 20h,IF

BZ sub_s ; wait for receive buffer full
AND 0FDFh,IF ; reset interrupt flag

TMS320C31 Boot Loader Source Code

B-6

LDI *+AR0(4Ch),R1
LDI R0,R0 ; test load address flag
BNN end_s

load_s STI R1,*AR4++(1) ; store new word to dest. address
end_s RETSU ; return from subroutine

.space 22

loop_h RPTB load_h ; PGM load loop
sub_h LDI *AR1++(1),R1 ; load LSB half word

AND 0FFFFh,R1
LDI *AR1++(1),R2 ; load MSB half word
LSH 16,R2
OR R2,R1 ; R1 = a new 32-bit word
LDI R0,R0 ; test load address flag
BNN end_h

load_h STI R1,*AR4++(1) ; store new word to dest. address
end_h RETSU ; return from subroutine

.space 26

loop_w RPTB load_w ; PGM load loop
sub_w LDI *AR1++(1),R1 ; read a new 32-bit word

LDI R0,R0 ; test load address flag
BNN end_w

load_w STI R1,*AR4++(1) ; store new word to dest. address
end_w RETSU ; return from subroutine

.space 14

loop_b RPTB load_b ; PGM load loop
sub_b LDI *AR1++(1),R1

AND 0FFh,R1 ; load 1st byte (LSB)
LDI *AR1++(1),R2
AND 0FFh,R2
LSH 8,R2
OR R2,R1 ; load 2nd byte
LDI *AR1++(1),R2
AND 0FFh,R2
LSH 16,R2
OR R2,R1 ; load 3rd byte
LDI *AR1++(1),R2 ; load 4th byte (MSB)

LSH 24,R2
OR R2,R1 ; R1 = a new 32-bit word
LDI R0,R0 ; test load address flag
BNN end_b

load_b STI R1,*AR4++(1) ; store new word to dest. address
end_b RETSU ; return from subroutine

.space 1

.end

C-1

Appendix A

TMS320C32 Boot Loader Source Code

This appendix includes a description of the ’C32 boot loader sequence of
events and a listing of its source code.

Topic Page

C.1 Boot-Loader Source Code Description C-2.

C.2 Boot-Loader Source Code Listing C-4.

Appendix C

Boot-Loader Source Code Description

C-2

C.1 Boot-Loader Source Code Description

Figure C–1 shows the boot loader program flow chart. The boot loader pro-
gram starts by initializing three registers: AR7, SP, and IR0. These registers
hold the peripheral bus memory map register base address, the timer counter
register (used as a stack), and a flag that indicates the first block, respectively.
Then, the program checks for serial port boot load or memory boot load mode
by processing the bit fields set in the interrupt flag register (IF). For a serial port
boot load, the program initializes the serial port for 32-bit fixed-burst-mode
reads with an externally generated serial port clock and FSR.

For a memory boot load, AR3 is set to the boot source address, AR2 points
to the boot source strobe control register, and R2 contains the value that is
stored in this strobe control register. The boot loader also sets the bit field I/
OXF0 of the I/O flag register (IOF) if the handshake mode was selected. Then
the boot loader reads the first word of the boot source program. This 32-bit
word indicates the boot memory width and the boot load program stores this
value in R5. AR0 points to the read_mc routine that performs this read.

After reading the memory width word, the boot loader reads IOSTRB, STRB0,
and STRB1 control register values of the source program. These values are
temporarily saved in the DMA source address register, DMA destination ad-
dress register, and DMA transfer counter registers, respectively. Then, the
program reads the block size with the read_mc routine. If the block size is 0,
the boot loader restores the values of IOSTRB, STRB0, and STRB1 previously
saved and branches to the destination address of the first block loaded and
begins program execution. If the block size is not 0, the boot loader stores the
block size in the BK register. This is used as a counter in a repeat block (RPTB)
to transfer all the data or program in that block.

For each block, the boot loader reads the destination address and the destina-
tion strobe control word. The program stores the destination address in the
AR5 register. The destination strobe control word includes the destination
strobe identification, the contents of the destination strobe control register
(includes memory width and data size). The boot loader extracts this informa-
tion from the destination control word and stores the destination strobe-control
register memory-mapped address in the AR4 register, the contents of the des-
tination strobe control register in the R4 register, and the source data size in
the R3 register. The boot loader sets the AR1 register to the appropriate read
routine read_s0 for serial port boot load and read_mb for memory boot load.
The read routine uses these registers to control the transfer of a block of data
or program.

 Boot-Loader Source Code Description

C-3 TMS320C32 Boot Loader Source Code

Figure C–1. Boot-Loader Flow Chart

Start

Initialize registers:
AR7, SP, IR0

Serial
boot?

Serial initialize
serial global

control register

Destination
address: AR3

Destination strobe
pointer: AR4

Destination strobe
value: R4

Destination data
size: R3

Block size RC

Memory control word
read routine: AR0

Memory width: R5

Process interrupts
INT0, INT1, INT2

Process memory
width word

Read and store
strobe values

Select read
 routine

Interrupt flag IF

Block
size=0?

Tr
an

sf
er

 o
ne

 b
lo

ck
 o

f d
at

a
or

 p
ro

gr
am

Memory block read
routine: AR1

Memory width:
R5

Boot source
address: AR3

Handshake mode:
IOF

Read destination
address

Read destination
strobe

Read block size

Boot strobe
pointer: AR2

Restore strobe
values previously

saved

Start
program execution

Yes

Yes

No

No

Boot strobe value:
R2

Boot-Loader Source Code Listing

C-4

C.2 Boot-Loader Source Code Listing

**
* C32BOOT – TMS320C32 BOOT LOADER PROGRAM (143 words) March–96
* (C) COPYRIGHT TEXAS INSTRUMENTS INCORPORATED, 1994 v.27
==
*
* NOTE:
*
* 1. Following device reset, the program waits for an external interrupt.
* The interrupt type determines the initial address from which the boot
* loader will start loading the boot table to the destination memory:
*

EPROM,XF0/XF1

EPROM,XF0/XF1

EPROM,XF0/XF1

EPROM

EPROM

EPROM

900000h (STRB1) ASYNC

810000h (IOSTRB) ASYNC

1000h (STRB0) ASYNC

80804Ch (sport0 Rx)

900000h (STRB1)

810000h (IOSTRB)

1000h (STRB0)

INTERRUPT PIN BOOT TABLE START ADDRESS BOOT SOURCE

INT0

INT1

INT2

INT3

INT0 and INT3

INT1 and INT3

INT2 and INT3

SERIAL

*
*
*
*
*
*
*
*
*
*
*
*
*
*

* If INT3 is asserted together with (INT2 or INT1 or INT0) following reset,
* that indicates that the boot table is to be read asynchronously from EPROM
* using pins XF0 and XF1 for handshaking. The handshaking protocol assumes
* that the data ready signal generated by the host arrives through pin XF1.
* The data acknowledge signal is output from the C32 on pin XF0.Both signals
* are active low. The C32 will continuously toggle the IACK signal while
* waiting for the host to assert data ready signal (pin XF1).
*
* 2. The boot operation involves transfer of one or more source blocks from the
* boot media to the destination memory. The block structure of the boot table
* serves the purpose of distributing the source data/program among different
* memory spaces. Each block is preceded by several 32-bit control words de
* scribing the block contents to the boot loader program.
*
* 3. When loading from serial port, the boot loader reads the source data/program
* and writes it to the destination memory. There is only one way to read the
* serial port. When loading from EPROM, however, there are 4 ways to read and
* assemble the source contents, depending on the width of boot memory and the
* size of the program/data being transferred. Because there is a possibility
* that reads and writes can span the same STRB space the boot loader loads the
* appropriate STRB control registers before each read and write.
*
* 4. If the boot source is EPROM whose physical width is less than 32 bits, the
* physical interface of the EPROM device(s) to the processor should be the
* same as that of the 32-bit interface. (This involves a specific connection
* to C32’s strobe and address signals). The reason for such arrangement is

 Boot-Loader Source Code Listing

C-5 TMS320C32 Boot Loader Source Code

* that to function properly, the boot loader program always expects 32-bit
* data from 32-bit wide memory during the boot load operation. Valid boot
* EPROM widths are : 1, 2, 4, 8, 16 and 32 bits.
*
* 5. A single source block cannot cross STRB boundaries. For example, its
* destination cannot overlap STRB0 space and IOSTRB space. Additionally, all
* of the destination addresses of a single source block should reside in
* physical memory of the same width. It is also not permitted to mix prg and
* data in the same source block.
*
* 6. The boot loader stops boot operation when it finds 0 in the block size
* control word. Therefore, each boot table should always end with a 0,
* prompting the boot loader to branch to the first address of the first block
* and start program execution from that location.
*
==
* C32 boot loader program register assignments, and altered mem locations
==
*
* AR7 – peripheral memory map IOF – XF0 (handshake O)
* AR0 – read cntrl data subr pointer IOF – XF1 (handshake I)
* AR1 – read block data/prg subr pointer
*
* R2 – read STRB value R4 – write STRB value
* AR2 – read STRB pointer AR4 – write STRB pointer
* AR3 – read data/prg pointer AR5 – write data/prg pointer
*
* read ––> R1 ––> write
*
* IR0 – EXEC start flag stack – 808024h – TIM0 cnt reg
* IR1 – EXEC start address 808028h – TIM0 per reg
* IOSTRB – 808004h – DMA0 dst reg
* R3 – data SIZE STRB0 – 808006h – DMA0 dst reg
* R5 – mem WIDTH STRB1 – 808008h – DMA0 cnt reg
*
* R6 – memory read value AR6,R7,R0,BK – scratch registers
*
==

reset .word start ; reset vector
 .space 44h ; program starts @45h

==

* Init registers : 808000h ––> AR7, 808023h ––> SP, –1 ––> IR0
==

start LDI 4040h,AR7 ; load peripheral memory map
 LSH 9,AR7 ; base address = 808000h
 LDI 23h,SP ; initialize stack pointer to
 OR AR7,SP ; 808023h (timer counter – 1)
 LDI –1,IR0 ; reset exec start addr flag

==

Boot-Loader Source Code Listing

C-6

* Test for INT3 and, if set exclusively, proceed with serial boot load. Else,
* load AR3 with 1000h if INT0, 810000h if INT1 900000h if INT2. Also load ,
* appropriate boot strobe pointer ––> AR2 and force the boot strobe value to
* reflect 32bit memory width. If (INT0 or INT1 or INT2) and INT3, turn on the
* handshake mode.
==
wait1 LDI IF,R0
 AND 0Fh,R0 ; clean
 CMPI 8,R0 ; test for INT3
 BEQ serial ;*******; serial boot load mode
 LDI AR7,AR2

 ADDI 60h,AR2 ; 808060h (IOSTRB) ––> AR2
 TSTB 2,R0 ; test for INT1
 LDINZ 4080h,AR3 ; 810000h / 2**9
 BNZ exit3 ;*******;

 ADDI 4,AR2 ; 808064h (STRB0) ––> AR2
 TSTB 1,R0 ; test for INT0
 LDINZ 8,AR3 ; 001000h / 2**9
 BNZ exit3 ;*******;

 ADDI 4,AR2 ; 808068h (STRB1) ––> AR2
 TSTB 4,R0 ; test for INT2
 LDINZ 4800h,AR3 ; 900000h / 2**9
 BZ wait1 ;*******;

exit3 TSTB 8,R0 ;*; test#1 – INT3 asserted
 BZ exit2 ;*; test#2 – INXF1 low (not used)
 TSTB 80h,IOF ;*; enable handshake mode if
 LDI 6,IOF ;*; test#1 passed

exit2 LDI 0Fh,R2
 LSH 16,R2 ; force boot data size to 32
 OR *AR2,R2 ; force boot mem width to 32
 STI R2,*AR2
 LSH 9,AR3 ; boot mem start addr ––> AR3
* xx000001 – 1 bit
*== xx000010 – 2 bit
* Process MEMORY WIDTH control word (32 bits long) xx000100 – 4 bit
*== xx001000 – 8 bit
* xx010000 – 16 bit
* xx100000 – 32 bit
 LDI read_mc,AR0 ; use memory to read cntrl words
 ; read_mc ––> AR0
 LDI 1,R5 ; mem width = 1 (init)
 LDI 32,AR6 ; mem reads = 32 (init)
 CALLU read_m ; read memory once (1st read)

loop2 TSTB 1,R6
 BNZ label4
 LSH –1,R6 ; look at next bit
 LSH –1,AR6 ; decr mem reads
 LSH 1,R5 ; incr mem width ––> R5
 BU loop2 ;*******;

 Boot-Loader Source Code Listing

C-7 TMS320C32 Boot Loader Source Code

label4 SUBI 2,AR6
 CMPI 0,AR6 ; set flags
 BN strobes ;*******; total # of mem reads = 32/R5
label5 CALLU read_m ; read memory once
 DBU AR6,label5 ;****;

==
* Read and save IOSTRB, STRB0 & STRB1 (to be loaded at end of boot load)
==

strobes CALLU AR0
 STI R1,*+AR7(4) ; IOSTRB ––> (DMA src)
 CALLU AR0
 STI R1,*+AR7(6) ; STRB0 ––> (DMA dst)
 CALLU AR0
 STI R1,*+AR7(8) ; STRB1 ––> (DMA cnt)

*==
* Process block size (# of bytes, half–words, or words after STRB cntrl)
==

block CALLU AR0 ; read boot memory cntrl word
 LDI R1,R1 ; is this the last block ?
 BNZ label2 ;*******; no, go around

 LDI *+AR7(4),R0 ; (DMA src)
 STI R0,*+AR7(60h) ; restore IOSTRB
 LDI *+AR7(6),R0 ; (DMA dst)
 STI R0,*+AR7(64h) ; restore STRB0
 LDI *+AR7(8),R0 ; (DMA cnt)
 STI R0,*+AR7(68h) ; restore STRB1
 BU IR1 ;*******; branch to start of program

label2 LDI R1,RC ; setup transfer loop
 SUBI 1,RC ; RC – 1 ––> RC

==
* Process block destination address, save start address of first block
==

 CALLU AR0 ; read boot memory cntrl word
 LDI R1,AR5 ; set dest addr ––> AR5
 CMPI 0,IR0 ; look at EXEC start addr flag
 LDINZ AR5,IR1 ; if –1, EXEC start addr ––> IR1
 LDINZ 0,IR0 ; set EXEC start addr flag

==
* (For internal destination, this word should be 0 or 60h. The first case will
* result in 0 ––> DMA cntrl reg, in second case 0 ––> IOSTRB reg).
* Process block destination strobe control (sss...sss 0110 xx00)
*== strb value ==== 00 – IOSTRB
* 01 – STRB0

Boot-Loader Source Code Listing

C-8

 CALLU AR0 ; 10 – STRB1
 LDI R1,R4
 AND 6Ch,R1 ; dest mem strb pntr ––> AR4
 OR3 AR7,R1,AR4

 LSH –8,R4 ; dest memory strobe ––> R4

 LDI R4,R3
 LSH –16,R3
 AND 3,R3 ; dest data size ––> R3
 TSTB 0Ch,R1 ; (IOSTRB case)
 LDIZ 3,R3

==
* Look at R5 and choose serial or memory read for block data/program
==

 CMPI 0,R5
 LDIEQ read_s0,AR1 ; read serial port0
 LDINE read_mb,AR1 ; read memory

==
* Transfer one block of data or program
==

 RPTB loop4
 CALLU AR1 ; read data/prg
 STI R4,*AR4 ; set write strobe
 NOP ; pipeline
loop4 STI R1,*AR5++ ; write data/prg!!!!!!!!!!
 BU block ;*******; process next block

==
* Load R5 with 0, load read_s0 to AR0 and initialize serial port_0
==

serial LDI read_s0,AR0 ; use serial to read cntrl words
 LDI 0,R5 ; memory WIDTH = serial
 LDI 0,R ; dummy
 LDI AR7,AR2 ; dummy

 LDI 111h,R0 ; 0000111h ––> R0
 STI R0,*+AR7(43h) ; set CLKR,DR,FSR as serial
 LDI 0A30h,R7 ; port pins
 LSH 16,R7 ; A300000h ––> R7
 STI R7,*+AR7(40h) ; set serial global cntrl reg
 BU strobes ;*******; process first block

==
* Read a single value from serial or boot memory. The number of
* memory reads depends on mem WIDTH and data SIZE. R1 returns the
* read value. (Serial sim: NOP ––> BZ read_s0 & LDI @4000H,R1 ––> LDI
* *+AR7(4Ch),R1)
==

 Boot-Loader Source Code Listing

C-9 TMS320C32 Boot Loader Source Code

read_s0 TSTB 20h,IF ; look at RINT0 flag
 BZ read_s0 ; wait for receive buffer full
 AND 0FDFh,IF ; reset interrupt flag
 LDI *+AR7(4Ch),R1 ; read data ––> R1
 RETSU
*––
read_mc LDI 3,R3 ; data size = 32, 3 ––> R3

read_mb LDI 1,BK ; 00000001 (ex: mem width=8)
 LSH R5,BK ; 00000100
 SUBI 1,BK ; 000000FF = mask ––> BK

 LDI R3,AR6 ; 0 – 1 000 EXPAND
 ADDI 1,AR6 ; 1 – 10 000 DATA ––> AR6
 LSH 3,AR6 ; 11 – 100 000 SIZE
 LDI R5,R0
loop3 CMPI 1,R0
 BEQ exit1 ; DATA SIZE
 LSH –1,R0 ; ––––––––– – 1 ––> AR6
 LSH –1,AR6 ; MEM WIDTH
 BU loop3 ;*******;
exit1 SUBI 1,AR6

 LDI 0,R0 ; init shift value
 LDI 0,R1 ; init accumulator
loop1 ADDI 3,SP ; 808027h ––> SP
 CALLU read_m ; read memory once ––> R6
 SUBI 3,SP ; 808024h ––> SP
 AND3 R6,BK,R7 ; apply mask
 LSH R0,R7 ; shift
 OR R7,R1 ; accumulate ––> R1
 ADDI R5,R0 ; increment shift value
 DBU AR6,loop1 ;*****; decrement #of chunks ––> AR6
 RETSU

==
* Perform a single memory read from the source boot table. Handshake enabled if
* IOXF0 bit of IOF reg is set, disabled when reset. IACK will pulse continuously
* if handshake enabled and data not ready (to achieve zero–glue interface when
* connecting to a C40 comm-port)
==

read_m TSTB 2,IOF ; handshake mode enabled ?
 STI R2,*AR2 ; set read strobe !!!!!!!!!!!!!
 BNZ loop5 ; yes, jump over
 LDI *AR3++,R6 ; no, just read memory & return
 RETSU
*–– (C40)
loop5 IACK *AR7 ;*; intrnl dummy read pulses IACK
 TSTB 80h,IOF ;*; wait for data ready
 BNZ loop5 ;*; (XF1 low from host)

 LDI *AR3++,R6 ;*; read memory once ––> R6

Boot-Loader Source Code Listing

C-10

 LDI 2,IOF ;*; assert data acknowledge
 ;*; (XF0 low to host)

loop6 TSTB 80h,IOF ;*; wait for data not ready
 BZ loop6 ;*; (XF1 high from host)

 LDI 6,IOF ;*; deassert data acknowledge
 ;*; (XF0 high to host)
 RETSU

==

D-1

Appendix A

Glossary

A

A0–A23: External address pins for data/program memory or I/O devices.
These pins are on the primary bus.

address: The location of program code or data stored in memory.

addressing mode: The method by which an instruction interprets its oper-
ands to acquire the data it needs.

ALU: Arithmetic logic unit. The part of the CPU that performs arithmetic and
logic operations.

analog-to-digital (A/D) converter: A converter with internal sample-and-
hold circuitry used to translate an analog signal to a digital signal.

ARAU: Auxiliary-register arithmetic unit. A 32-bit ALU used to calculate indi-
rect addresses using the auxiliary registers as inputs and outputs.

arithmetic logic unit (ALU): The part of the CPU that performs arithmetic
and logic operations.

auxiliary registers (ARn): A set of registers used primarily in address gen-
eration.

auxiliary-register arithmetic unit (ARAU): Auxiliary-register arithmetic
unit. A 32-bit ALU used to calculate indirect addresses using the auxiliary
registers as inputs and outputs.

B

bit-reversed addressing: Accessing data from memory, registers, and the
instruction word by reversing several bits of an address in order to speed
processing of algorithms, such as Fourier transforms.

Appendix D

Glossary

D-2

BK: Block-size register. A 32-bit register used by the ARAU in circular ad-
dressing to specify the data block size.

boot loader: An on-chip code that loads and executes programs received
from a host processor through standard memory devices (including
EPROM), with and without handshake, or through the serial port to RAM
at power up.

C
carry bit: A bit in the status register (ST) used by the ALU for extended arith-

metic operations and accumulator shifts and rotates. The carry bit can
be tested by conditional instructions.

circular addressing: Accessing data from memory, registers, and the
instruction word by using an auxiliary register to cycle through a range
of addresses to create a circular buffer in memory.

context save/restore : A save/restore of system status (status registers, ac-
cumulator, product register, temporary register, hardware stack, and
auxiliary registers, etc.) when the device enters/exits a subroutine such
as an interrupt service routine.

CPU: Central processing unit. The unit that coordinates the functions of a
processor.

CPU cycle: The time it takes the CPU to go through one logic phase (during
which internal values are changed) and one latch phase (during which
the values are held constant).

ICPU interrupt flag register (IF): A register that contains CPU, serial ports,
timer, and DMA interrupt flags.

cycle: See CPU cycle.

D
D0–D31: External data-bus pins that transfer data between the processor

and external data/program memory or I/O devices. See also LD0–LD31.

data-address generation logic: Circuitry that generates the addresses for
data-memory reads and writes. This circuitry can generate one address
per machine cycle. See also program address generation logic.

data-page pointer: A 32-bit register used as the 8 most significant bits
(MSBs) in addresses generated using direct addressing.

 Glossary

D-3 Glossary

data size: The number of bits (8, 16, or 32) used to represent a particular
number.

decode phase: The phase of the pipeline in which the instruction is decoded
(identified).

DMA coprocessor: A peripheral that transfers the contents of memory loca-
tions independently of the processor (except for initialization).

DMA controller: See DMA coprocessor.

DP: See data-page pointer.

dual-access RAM : Memory that can be accessed twice in a single clock
cycle. For example, code that can read from and write to a RAM in one
clock cycle.

E

external interrupt: A hardware interrupt triggered by a pin.

extended-precision floating-point format: A 40-bit representation of a
floating-point number with a 32-bit mantissa and an 8-bit exponent.

extended-precision register: A 40-bit register used primarily for extended-
precision floating-point calculations. Floating-point operations use bits
39–0 of an extended-precision register. Integer operations, however, use
only bits 31–0.

F

FIFO buffer: First-in, first-out buffer. A portion of memory in which data is
stored and then retrieved in the same order in which it was stored. Thus,
the first word stored in this buffer is retrieved first.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

hit: A condition in which, when the processor fetches an instruction, the
instruction is available in the cache.

Glossary

D-4

I

IACK: Interrupt acknowledge signal. An output signal indicating that an in-
terrupt has been received and that the program counter is fetching the
interrupt vector that will force the processor into an interrupt service rou-
tine.

IE: See internal interrupt enable register.

I/O flag (IOF) register: Controls the function (general-purpose I/O or inter-
rupt) of the external pins. It also contains timer/DMA interrupt flags.

index registers: Two 32-bit registers (IR0 and IR1) that are used by the
ARAU for indexing an address.

internal interrupt: A hardware interrupt caused by an on-chip peripheral.

internal interrupt enable register: A register (in the CPU register file) that
determines whether the CPU or DMA responds to interrupts from exter-
nal interrupt pins, the serial ports, the timers, and the DMA coprocessor.

interrupt: A signal sent to the CPU that (when not masked) forces the CPU
into an ISR. This signal can be triggered by an external device, an on-
chip peripheral, or an instruction (TRAP, for example).

interrupt acknowledge (IACK): A signal indicating that an interrupt has
been received and that the program counter is fetching the interrupt vec-
tor location.

interrupt-trap table pointer (ITTP): A bit field in the status register that indi-
cates the starting location (base address) of the interrupt-trap vector
table. The base address is formed by left-shifting the value of the ITTP
bit field by 8 bits.

ISR: Interrupt service routine. A module of code that is executed in
response to a hardware or software interrupt.

ITTP: See interrupt-trap table pointer.

L

LSB : Least significant bit. The lowest-order bit in a word.

 Glossary

D-5 Glossary

M

machine cycle: See CPU cycle.

mantissa: A component of a floating-point number consisting of a fraction
and a sign bit. The mantissa represents a normalized fraction whose
binary point is shifted by the exponent.

maskable interrupt : A hardware interrupt that can be enabled or disabled
through software.

memory-mapped register: One of the on-chip registers that point to ad-
dresses in memory. Some memory-mapped registers point to data
memory, and somepoint to input/output memory.

memory width: The number of bits that can be stored in a single external
memory address.

MFLOPS: Millions of floating point operations per second. A measure of
floating-point processor speed that counts of the number of floating-point
operations made per second. Also called megaflops.

microcomputer mode: A mode in which the on-chip ROM (boot loader) is
enabled. This mode is selected via the MP/MCBL pin.

microprocessor mode: A mode in which the on-chip ROM is disabled. This
mode is selected via the MP/MCBL pin. See also MP/MC pin.

MIPS: Million instructions per second.

miss: A condition in which, when the processor fetches an instruction, it is
not available in the cache.

MSB: Most significant bit. The highest-order bit in a word.

multiplier: A device that generates the product of two numbers.

N

NMI: Nonmaskable interrupt. A hardware interrupt that uses the same logic
as the maskable interrupts but cannot be masked.

Glossary

D-6

O

overflow flag (OV) bit: A status bit that indicates whether or not an arithme-
tic operation has exceeded the capacity of the corresponding register.

P

PC: Program counter. A register that contains the address of the next
instruction to be fetched.

peripheral bus: A bus that is used by the CPU to communicate to the DMA
coprocessor, communication ports, and timers.

pipeline : A method of executing instructions in an assembly-line fashion.

R

RC: See repeat counter register.

read/write (R/W) pin: A memory-control signal that indicates the direction
of transfer when communicating to an external device.

register file: A bank of registers.

repeat-counter (RC) register: A 32-bit register in the CPU register file that
specifies the number of times to repeat a block of code when performing
a block repeat.

repeat mode: A zero-overhead method for repeating the execution of a
block of code. Using repeat modes allows time-critical sections of code to
be executed in the shortest possible time.

reset: A means to bring the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to fetch
the reset vector.

reset pin: A signal that causes the device to reset.

R/W: See read/write pin.

 Glossary

D-7 Glossary

S

short floating-point format: A 16-bit representation of a floating point num-
ber with a 12-bit mantissa and a 4-bit exponent.

short floating-point format for external 16-bit data: A 16-bit representa-
tion of a floating point number with an 8-bit mantissa and an 8-bit expo-
nent.

short integer format: A 2s-complement,16-bit format for integer data.

short unsigned-integer format: A 16-bit unsigned format for integer data.

sign-extend: The process of filling the high-order bits of a number with the
sign bit.

single-precision floating-point format: A 32-bit representation of a float-
ing-point number with a 24-bit mantissa and an 8-bit exponent.

single-precision integer format: A 2s-complement 32-bit format for inte-
ger data.

single-precision unsigned-integer format: A 32-bit unsigned format for
integer data.

software interrupt: An interrupt caused by the execution of a TRAP instruc-
tion.

ST: See status register.

stack: A block of memory reserved for storing and retrieving data on a first-in
last-out basis. It is usually used for storing return addresses and for pre-
serving register values.

status register: A register in the CPU register file that contains global in-
formation relating to the current state of the CPU.

T

timer: A programmable peripheral that generates pulses for timed events.

timer-period register: A 32-bit memory-mapped register that specifies the
period for the on-chip timer.

Glossary

D-8

W

wait state : A period of time that the CPU must wait for external program,
data, or I/O memory to respond when it reads from or writes to that exter-
nal memory. The CPU waits one extra cycle for every wait state.

wait-state generator : A program that can be modified to generate a limited
number of wait states for a given off-chip memory space (lower program,
upper program, data, or I/O).

X

XA0–XA13: External address pins for data/program memory or I/O devices.
These pins are on the expansion bus of the ’C30. See also A0–A23.

XD0–XD31: External data bus pins that transfer data between the processor
and external data/program memory or I/O devices of the ’C30. See also
D0–D31.

Z

zero fill: The process of filling the low- or high-order bits with 0s when load-
ing a number into a larger field.

Index

Index-1

Index

16-bit-wide configured memory,
TMS320C31 11-10

2-operand instruction 13-3

2-operand instruction word 8-25

3-operand addressing modes 2-17, 13-24–13-25

3-operand instruction 13-4
add, integer 13-58
arithmetic shift 13-73
bitwise-exclusive OR 13-250
bitwise-logical

ANDN 13-69
OR 13-190

compare
floating-point value 13-90
integer 13-93

logical shift 13-138
multiply

floating-point value 13-147
integer 13-161

subtract
floating-point value 13-230
integer 13-235

with borrow 13-224
test bit fields 13-247

3-operand instruction word 8-25

32-bit-wide configured memory,
TMS320C31 11-10

A
A/D converter, definition D-1

A0-A30, definition D-1

absolute value of
floating-point instruction (ABSF) 13-41
integer instruction (ABSI) 13-44

add
floating-point value instruction (ADDF) 13-51

3-operand instruction 13-53
integer

(ADDI) 13-57
3-operand instruction 13-58

with carry instruction (ADDC) 13-48
3-operand instruction 13-49

address, definition D-1
address pins, external D-8
addressing 6-1–6-32

modes
3-operand 2-17, 13-24–13-25
branch 2-17
definition D-1
general 2-17, 13-20–13-23
groups 13-20–13-27
parallel 2-17, 13-25–13-26

register 6-3–6-29
types 6-2

bit-reversed 6-26–6-27
circular 6-21–6-25
direct 6-4–6-29
immediate 6-18–6-29
indirect 6-5–6-29
PC-relative 6-19–6-20

ALU. See arithmetic logic unit
applications, general listing 1-7
AR

read of 8-8
write to 8-7

architectural block diagram
TMS320C30 2-3
TMS320C31 2-4
TMS320C32 2-5

architecture 2-2
arithmetic, shift instruction (ASH) 13-71
arithmetic logic unit (ALU) 2-8

Index

Index-2

arithmetic logic unit (ALU), definition D-1

assembler syntax expression, example 13-38

assembly language, instruction set
2-operand instructions 13-3
3-operand instructions 13-4
interlocked operations instructions 13-5–13-6
load and store instructions 13-2
low-power control instructions 13-5
program control instructions 13-4–13-5

assembly language instructions 13-1–13-37
3-operand instruction

add
floating-point value 13-53–13-54
integer with carry 13-49–13-50

arithmetic shift 13-73–13-75
bitwise-exclusive OR 13-250–13-251
bitwise-logical

AND 13-63–13-64
AND with complement 13-69–13-70
OR 13-190–13-191

compare
floating-point value 13-90–13-91
integer 13-93–13-94

logical shift 13-138–13-140
multiply

floating-point value 13-147–13-148
integer 13-161–13-162

subtract
floating-point value 13-230–13-231
integer 13-235–13-236

with borrow 13-224–13-225
test bit fields 13-247–13-248

absolute value of
floating-point (ABSF) 13-41
integer (ABSI) 13-44–13-45

add
floating-point value (ADDF) 13-51–13-52
integer (ADDI) 13-57

3-operand instruction 13-58–13-59
integer with carry (ADDC) 13-48

arithmetic shift (ASH) 13-71–13-72
bitwise-exclusive OR (XOR) 13-249
bitwise-logical

AND 13-62
with complement (ANDN) 13-67–13-68

complement (NOT) 13-184–13-185
OR 13-188–13-189

branch
conditionally

delayed (BcondD) 13-81–13-82
standard (Bcond) 13-79–13-80

assembly language instructions (continued)
unconditionally

delayed (BRD) 13-84
standard (BR) 13-83

call, subroutine
(CALL) 13-85
conditionally (CALLcond) 13-86–13-87

categories
2-operand 13-3
3-operand 13-4
interlocked operation 13-5–13-6
load and store 13-2
low-power control 13-5
program control 13-4–13-5

compare
floating-point value (CMPF) 13-88–13-89
integer (CMPI) 13-92

decrement and branch, conditionally
delayed instruction (DBcondD) 13-97–13-98
standaard instruction (DBcond) 13-95–13-96

divide clock by 16 (LOPOWER) 13-135
example instruction 13-38–13-40
floating-point to integer conversion

(FIX) 13-99–13-100
idle until interrupt (IDLE) 13-109
integer to floating-point conversion

(FLOAT) 13-103–13-104
interrupt, acknowledge (IACK) 13-107–13-108
load

data-page pointer (LDP) 13-134
floating-point

exponent (LDE) 13-112–13-113
mantissa (LDM) 13-133
value

(LDF) 13-114
conditionally (LDFcond) 13-115–13-116
interlocked (LDFI) 13-117–13-118

integer
(LDI) 13-123–13-124
conditionally (LDIcond) 13-125–13-126
interlocked (LDII) 13-127–13-128

logical shift (LSH) 13-136–13-137
low-power idle (IDLE2) 13-110–13-111
multiply

floating-point value (MPYF) 13-146
integer (MPYI) 13-159–13-160

negate
floating-point value (NEGF) 13-174–13-175
integer (NEGI) 13-178

negative integer with borrow (NEGB) 13-173
no operation (NOP) 13-181

Index

Index-3

assembly language instructions (continued)
normalize (NORM) 13-182–13-183
parallel instructions

ABSF and STF 13-42
ABSI and STI 13-46
ADDF3 and STF 13-55
ADDI3 and STI 13-60–13-61
AND3 and STI 13-65–13-66
ASH3 and STI 13-76–13-78
FIX and STI 13-101–13-102
FLOAT and STF 13-105–13-106
LDF and LDF 13-119–13-120
LDF and STF 13-121–13-122
LDI and LDI 13-129–13-130
LDI and STI 13-131–13-132
LSH3 and STI 13-141–13-144
MPYF3 and ADDF3 13-149–13-152
MPYF3 and STF 13-153–13-154
MPYF3 and SUBF3 13-155–13-158
MPYI3 and ADDI3 13-163–13-166
MPYI3 and STI 13-167–13-168
MPYI3 and SUBI3 13-169–13-172
NEGF and STF 13-176
NEGI and STI 13-179–13-180
NOT and STI 13-186–13-187
OR3 and STI 13-192–13-193
STF and STF 13-217–13-218
STI and STI 13-221–13-222
SUBF3 and STF 13-232–13-233
SUBI3 and STI 13-237–13-238
XOR3 and STI 13-252–13-254

POP
floating-point value (POPF) 13-195
integer instruction 13-194

PUSH
floating-point value (PUSHF) 13-197
integer 13-196

register syntax 13-36
repeat

block (RPTB) 13-209–13-210
single instruction (RPTS) 13-211–13-212

restore clock to regular speed
(MAXSPEED) 13-145

return
from interrupt conditionally (RETI-

cond) 13-198–13-199
from subroutine conditionally (RETS-

cond) 13-200–13-201

assembly language instructions (continued)
rotate

left (ROL) 13-204

assembly language instructions (continued)
left through carry (ROLC) 13-205–13-206
right (ROR) 13-207
right through carry (RORC) 13-208

round floating-point value
(RND) 13-202–13-203

signal, interlocked (SIGI) 13-213
software interrupt (SWI) 13-242
store

floating-point value
(STF) 13-214
interlocked (STFI) 13-215–13-216

integer
(STI) 13-219
interlocked (STII) 13-220

subtract
floating-point value (SUBF) 13-228–13-229
integer

(SUBI) 13-234
conditionally (SUBC) 13-226–13-227
with borrow (SUBB) 13-223

reverse
floating-point value (SUBRF) 13-240
integer

(SUBRI) 13-241
with borrow (SUBRB) 13-239

symbols used to define instruc-
tions 13-33–13-37

test bit fields (TSTB) 13-245–13-246
trap conditionally (TRAPcond) 13-243–13-244

auxiliary (AR7–AR0) registers 3-4

auxiliary register
ALUs 2-8
arithmetic unit (ARAU) 6-5

definition D-1
definition D-1

B
bank switching

example 9-14, 10-18
programmable 9-12–9-14

bit-reversed, addressing 6-26–6-27
definition D-1
FFT algorithms 6-26–6-27

bitwise-exclusive OR instruction (XOR) 13-249

Index

Index-4

bitwise-logical
AND 13-62

3-operand 13-63
with complement (ANDN) 13-67

complement instruction (NOT) 13-184
OR instruction 13-188

block
diagram, TMS320C3x 1-3
repeat-mode

control bits 7-3
nested block repeats 7-8
operation 7-3–7-4
RC register value 7-7
registers (RC, RE, RS) 7-2
restrictions 7-6–7-7
RPTB instruction 7-4–7-5
RPTS instruction 7-5

size (BK) register 3-4
transfer completion 12-51

block-repeat (RS, RE) registers 3-17

boot loader
code description C-2
code listing C-4
definition D-2
flowchart C-3
hardware interface, TMS320C32 11-23
interrupt and trap vector mapping 11-11
memory 11-19
precautions 11-13
serial-port loading 11-11
TMS320C31 11-2–11-13

data stream 11-7
description 11-2
external memory loading 11-9
memory load flowchart 11-5
mode selection 11-2
mode selection flowchart 11-3
sequence 11-4
serial port load flowchart 11-6

TMS320C32 11-14–11-24
data stream 11-20
description 11-14
external memory interface 11-23
mode selection 11-14
mode selection flowchart 11-17
sequence 11-15
serial port load flowchart 11-18

branch
addressing modes 2-17
conditionally

delayed instruction (BcondD) 13-81
standard instruction (Bcond) 13-79

conflicts 8-4
delayed 7-9–7-10

execution 7-10
incorrect use of 7-9
incorrectly placed 7-7, 7-10

incorrectly placed 7-6
unconditionally

delayed instruction (BRD) 13-84
standard instruction (BR) 13-83

bus
cycles 10-39

IOSTRB 10-42
STRB0 10-39
STRB1 10-39

operation
external 2-19
internal 2-18

timing 10-39
buses

data 2-18
DMA 2-18
program 2-18

busy-waiting loop, example 7-16
byte-wide configured memory, TMS320C31 11-9

C
cache

control bits
cache clear bit (CC) 4-22
cache enable bit (CE) 4-22
cache freeze bit (CF) 4-22

hit 4-21
instruction 2-16, 4-19

algorithm 4-21–4-22
memory 2-13

architecture 4-19
miss 4-21

segment 4-21
subsegment 4-21

call, subroutine
conditionally instruction (CALLcond) 7-11,

13-86
instruction (CALL) 7-11, 13-85

response timing 7-12

Index

Index-5

carry bit, definition D-2

carry flag 13-29

central processing unit. See CPU

circular addressing 6-21–6-25
algorithm 6-23
buffer 6-21–6-25
definition D-2
FIR filters 6-24
operation 6-23

CLKX pins 12-22

clock mode
timer interrupt 12-13
timer pulse generator 12-7–12-9

clock periods, minor 8-24

compare
floating-point value instruction (CMPF) 13-88
integer instruction (CMPI) 13-92

comparison, feature set 2-27

condition codes and flags 13-1, 13-30, 13-31

condition flag
floating-point underflow 13-29
latched floating-point underflow 13-29
latched overflow 13-29
negative 13-29
overflow 13-29
zero 13-29

conditional delayed branches
compare instructions 7-9
extended-precision registers 7-9

context save/restore, definition D-2

control register 12-51

control registers, external interface 9-2
expansion bus 9-9–9-15
primary bus 9-7–9-8

conversion
floating-point to integer 5-41–5-42
integer to floating-point 5-43

counter register (timer) 12-3, 12-7

CPU
arbitration 12-63
block diagram 2-7
cycle, definition D-2
definition D-2
general 2-6
interrupt

DMA interaction 7-40
latency 7-35

CPU (continued)
processing, block diagram 7-34
processing cycle 7-33

primary registers 2-9
register file 3-2
registers 3-1–3-20

auxiliary (AR7–AR0) 2-10 3-4
block size (BK) 2-11, 3-4
block-repeat (RS, RE) 3-17
data-page pointer (DP) 2-10, 3-4
extended-precision (R7–R0) 2-10, 3-3
I/O flag (IOF) 2-11, 3-16
index (IR1, IR0) 2-10, 3-4
interrupt flag (IF) 2-11, 3-11, 7-32

bits defined 3-13
interrupt-enable (IE) 2-11, 3-9, 7-32
list of 3-2
program-counter (PC) 2-18, 3-18
repeat end-address (RE) 2-11, 3-17, 7-2
repeat start-address (RS) 2-11, 3-17, 7-2
repeat-counter (RC) 2-11, 3-17, 7-2
reserved bits and compatibility 3-19
status (ST) 2-11, 3-5, 7-32, 13-29
system-stack pointer (SP) 2-11, 3-4

transfer, with serial-port transmit pol-
ling 12-43–12-44

D
D0-D31, definition D-2
data, buses 2-18
data formats 5-1–5-48

floating-point
addition and subtraction 5-32–5-36
conversion to integer 5-41–5-42

floating-point formats 5-4–5-13
conversion between formats 5-12–5-15
extended-precision 5-8–5-9
short 5-5–5-6
single-precision 5-7–5-8

integer 5-2
single-precision 5-2–5-3
unsigned 5-3

integer to floating-point conversion 5-43
normalization using NORM instruc-

tion 5-37–5-38
rounding with RND instruction 5-39–5-40
unsigned-integer formats, single-preci-

sion 5-3–5-5
data memory, TMS320C32 2-20

Index

Index-6

data-rate timing operation
fixed 12-36

burst mode 12-36
continuous mode 12-36

variable 12-39
burst mode 12-35
continuous mode 12-40

data-page pointer (DP) 2-10, 3-4

data-receive register (DRR) 12-28
serial port 12-28–12-29

data-transfer operation, handshake 11-20

data-transmit register (DXR) 12-28, 12-32, 12-36,
12-37

data-address generation logic, definition D-2

data-page pointer (DP), definition D-2

DBR instruction 8-8

decode phase, definition D-3

decrement and branch
conditionally

delayed instruction (DBcondD) 13-97
standard instruction (DBcond) 13-95

instruction (DBR) 8-8

delayed branch 7-9–7-10
correct device operation 7-50
example 8-6
incorrectly placed 7-7

dequeue (stacks) 6-29, 6-31

destination-address register 12-51

direct addressing 6-4–6-29

direct memory access (DMA) 2-24

disabled interrupts by branch 7-9

displacements
indirect addressing 6-5
PC-relative addressing 6-19

divide clock by 16 instruction (LOPOWER) 13-135

DMA
architecture 2-24
block moves 12-48
buses 2-18
controller 2-18, 2-24, 12-48–12-68

2-channel, TMS320C32 12-49
address generation 12-57
arbitration 12-63
basic configuration 12-51
basic operation 12-50
block diagram 2-25
channel synchronization 12-65–12-67

DMA (continued)
functional description 12-48
global-control register 12-53
internal priority schemes for ’C32 12-62
interrupts 12-64
priorities 12-62
register 12-51
transfer-counter register 12-58

coprocessor, definition D-3
destination register 12-67–12-68
destination/source address regis-

ter 12-57–12-59
Initialization/reconfiguration 12-73
interrupt, CPU interaction 7-40
interrupt-enable register 12-59–12-62
interrupts 7-38

control bits 7-38
processing, block diagram 7-39, 7-40

memory transfer 12-67–12-68
single DMA timing 12-68

PRI and CPU/DMA arbitration rules for
’C32 12-64

registers, initialization 12-50
setup and use examples 12-74–12-80
source register 12-67–12-68
start 12-50
timing

expansion bus destination 12-72
on-chip destination 12-69
primary bus destination 12-70 12-71

transfer-counter register 12-58–12-59
word transfers 12-50

dual-access RAM, definition D-3
DX pins 12-22

E
event counters 12-2
example instruction 13-38–13-40
execute only 8-12

parallel store followed by single read 8-14
single store followed by two reads 8-13

expansion bus 9-2
control register 9-9–9-15

bits described 9-9
functional timing of operations 9-15
I/O cycles 9-21–9-36
interface, signals 9-5
programmable wait states 9-10–9-11,

10-15–10-16

Index

Index-7

extended-precision
(R7–R0) registers 3-3

definition D-3
floating-point format, definition D-3

external
buses (expansion, primary) 2-19
interface

control registers 9-2
memory map 9-6

timing, expansion bus I/O cycles 9-21–9-36
timing, primary bus cycles 9-15–9-20

interrupt 7-26, 7-36
buses (expansion, primary) 2-21
definition D-3
interlocked-instruction signaling 2-21

memory interface 9-1–9-38
configurations 10-7
control registers 10-7
features 10-2
overview 10-3
timing 9-15–9-38

reset signal 7-21

external bus operation
external interface control registers 9-2

expansion bus 9-9–9-15
primary bus 9-7–9-8

external interface timing
expansion-bus I/O cycles 9-21–9-36
primary-bus cycles 9-15–9-20

external memory interface timing, expansion
bus 9-15–9-38

programmable
bank switching 9-12–9-14
wait states 9-10–9-11, 10-15–10-16

F
FFT algorithms, using bit-reversed addressing to

implement 6-26

FIFO buffer, definition D-3

FIR filters, implementation using circular addres-
sing 6-24

FIX instruction 5-41
flowchart 5-42

fixed data-rate timing operation 12-36
burst-mode timing 12-36
continuous-mode timing 12-36

fixed priority, for ’C32 12-62

flag
carry 13-29
condition

floating-point underflow 13-29
latched floating-point underflow 13-29
latched overflow 13-29
negative 13-29
overflow 13-29
zero 13-29

FLOAT instruction, flowchart 5-43

floating-point
addition, flowchart 5-33
multiplication

examples 5-29–5-31
flowchart 5-28

operation 5-1–5-48
to integer conversion instruction (FIX) 13-99
underflow condition flag 13-29
values

fractional 5-11
negative 5-11
positive 5-10

floating-point format 5-4–5-13
2s-complement, converting IEEE format to 5-15
addition and subtraction 5-32–5-36

examples 5-34–5-36
conversion

between formats 5-12–5-13
TMS320C3x to IEEE 5-22
to IEEE standard 754, 5-14
to integer 5-41–5-42

converting integer to 5-43
determining decimal equivalent 5-9
extended-precision 5-8–5-9

normalization 5-37–5-38
rounding value 5-39–5-40

multiplication 5-26
short, for external 16-bit data, TMS320C32 5-6
single-precision 5-7–5-8

frame sync 12-37, 12-38

FSX pins 12-22

G
general addressing modes 13-20–13-23

global memory, sharing 7-17
by multiple processors 7-13

Index

Index-8

global-control register
DMA 12-53–12-59
serial port 12-15, 12-17–12-21
timer 12-3, 12-4–12-6

H
handshake 11-20
hardware interrupt, definition D-3
hit, definition D-3
hold cycles 9-37
hold everything 8-15

busy external port 8-16
conditional calls and traps 8-18
multicycle data reads 8-17

I
I/O flag (IOF) register 3-16

bits defined 3-16
CPU register file 3-16
definition D-4

I/O flags, external 2-21
IACK instruction 7-35
IACK signal, definition D-4
idle until interrupt instruction (IDLE) 13-109
IDLE2

interrupt response timing 7-51
power-down mode 7-49–7-51
timing 7-50

IEEE format, converting floating-point format
to 5-21

IIOF flag register (IIF), definition D-2
immediate addressing 6-18–6-29
inactive bus states 10-51
index registers

(IR1, IR0) 3-4
definition D-4

indirect addressing 6-5–6-29
3-operand addressing mode 13-25
ARAUs 6-5
auxiliary register 6-5
parallel addressing mode 13-26
with postdisplacement 6-11
with postinde

6-15–6-18
with predisplacement 6-9–6-11

indirect addressing (continued)
with preinde 6-13–6-15

instruction
2-operand 13-3
3-operand 13-4
cache 4-19

algorithm 4-21
TMS320C32 2-16

CALL 7-11
CALLcond 7-11
DBR 8-8
FIX 5-41
FLOAT 5-43
IACK 7-35
IDLE2 7-49
interlocked operations 13-5–13-6
ISR 7-35
LDFI 7-14
LDII 7-14
load and store 13-2
low-power control operations 13-5
LOWPOWER 7-51
NOP 7-45
NORM 5-37
POP ST 7-41
program control 13-4–13-5
PUSH ST 7-41
RETIcond 7-12, 7-48
RETScond 7-11
RND 5-39
RPTB 7-2, 7-4
RPTS 7-2, 7-5
SIGI 7-14
STFI 7-14
STII 7-14
TRAPcond 7-11

instruction register (IR) 2-18

instruction register (IR) 3-18

instruction set 13-38–13-172
example instruction 13-38–13-40
summary, table 13-10

integer format 5-2
short integer 5-2
sign-extended 5-2
single-precision 5-2
unsigned 5-3

integer to floating-point conversion
instruction (FLOAT) 13-103
using the FLOAT instruction 5-43

Index

Index-9

interface
enhanced memory, TMS320C32 2-19
expansion bus 2-19
primary bus 2-19

interlocked
instructions 2-21
operations 7-13–7-20

busy-waiting loop 7-15
external flag pins (XF0, XF1) 7-13
instructions 13-5–13-6
instructions used in 7-13
LDFI and LDII instructions 7-14
loads and stores 7-13
multiprocessor counter manipulation 7-16
STFI and STII instructions 7-14

internal
bus operation 2-18
buses 2-8
clock 12-10
interrupt 7-26

definitions D-4
enable register, definition D-4

interrupt 7-26–7-37
acknowledge, instruction (IACK) 13-107
acknowledge signal, definition D-4
considerations

TMS320C30 7-44–7-47
TMS320C3x 7-41–7-43

control bits 7-32
interrupt enable register (IE) 7-32
interrupt flag register (IF) 7-32
status register (ST) 7-32

CPU/DMA interaction 7-40
definition D-4
DMA 7-38, 12-64
edge-triggered 12-64
external 2-21, 7-36
flag register (IF), behavior 7-32
initialization 7-47
latency (CPU) 7-35–7-36
locations 3-15
logic, functional diagram 7-37
prioritization 7-31
processing 7-33–7-35

block diagram 7-34, 7-39
serial port 12-34

receive timer 12-34
transmit timer 12-34

interrupt (continued)
service routine (ISR) 7-35, 7-50

instruction 7-35
timer 12-2, 12-13
vector table

TMS320C30 and TMS320C31 7-26–7-28
TMS320C32 7-29–7-30

interrupt and trap
branch instructions, TMS320C31, microcomputer

mode 4-17
vector locations, TMS320C32 4-18, 7-30

interrupt service routine (ISR), definition D-4

interrupt-enable (IE) register
bits defined 3-10
CPU register file 3-9

interrupt-trap table pointer (ITTP) 3-14
definition D-4

interrupts, level-triggered 12-64

IOSTRB
bus cycles 10-42
control register 10-9
signal 9-3, 9-15

ISR. See interrupt service routine (ISR)

L
LA0-LA30, definition D-8

latched
floating-point underflow condition flag 13-29
overflow condition flag 13-29

LD0-LD31, definition D-8

LDFI instruction 7-14

LDII instruction 7-14

load
data-page pointer instruction (LDP) 13-134
floating-point

exponent instruction (LDE) 13-112
mantissa instruction (LDM) 13-133
value

(LDF) 13-114
conditionally instruction (LDFcond) 13-115
interlocked instruction (LDFI) 13-117

integer
conditionally instruction (LDIcond) 13-125
instruction (LDI) 13-123
interlocked instruction (LDII) 13-127

load and store instructions 13-2

Index

Index-10

logical shift instruction (LSH) 13-136

LOPOWER 7-51–7-52
timing 7-52

low-power
control instructions 13-5
idle instruction (IDLE2) 13-110

LRU cache update 4-19

LSB, definition D-4

M
mantissa, definition D-5

maskable interrupt, definition D-5

MAXSPEED, timing 7-52

memory 4-2
accesses

2-operand instructions 8-25
3-operand instructions 8-25
data access 8-22
data loads and stores 8-24
internal clock 8-24
pipeline 8-24
program fetch 8-22, 8-24
timing 8-24
two data accesses 8-23

addressing modes 2-17
cache 2-13
configured, TMS320C31, byte-wide 11-9
conflicts 8-4, 8-9, 8-22

execute only 8-12
hold everything 8-15
program fetch incomplete 8-11
program wait 8-9

data, TMS320C32 2-20
DMA memory transfer 12-67–12-68
enhanced interface, TMS320C32 2-19
general organization 2-13
global, sharing 7-17

by multiple processors 7-13
interface

16-bit wide 10-26
32-bit wide 10-20
8-bit wide 10-32, 10-38
control registers 9-7
signals 9-3

maps
peripheral bus

TMS320C30 4-9

TMS320C31 4-11

memory (continued)
TMS320C32 4-12

TMS320C30 4-2, 4-4
TMS320C31 4-6

microcomputer mode
TMS320C30 4-3
TMS320C31 4-5
TMS320C32 4-7

microprocessor mode
TMS320C30 4-2
TMS320C31 4-5
TMS320C32 4-7

organization, block diagram
TMS320C30 2-14
TMS320C31 2-15
TMS320C32 2-16

parallel
multiplies and adds 8-30
stores 8-29

pipeline conflicts 8-8
program, TMS320C32 2-19
timing 8-24
TMS320C31, configured

16-bit-wide 11-10
32-bit-wide 11-10

widths
16-bit with 16-bit data type size 10-28
16-bit with 32-bit data type size 10-30
16-bit with 8-bit data type size 10-26
32-bit with 16-bit data type size 10-22
32-bit with 32-bit data type size 10-24
32-bit with 8-bit data type size 10-20
8-bit with 16-bit data type size 10-34
8-bit with 32-bit data type size 10-35
8-bit with 8-bit data type size 10-32

memory-mapped register, definition D-5

MFLOPS, definition D-5

microcomputer mode, definition D-5

microprocessor mode, definition D-5

MIPS, definition D-5

miss, definition D-5

modes, boot loader
flowchart

TMS320C31 11-3
TMS320C32 11-17

mode selection
TMS320C31 11-2
TMS320C32 11-14

Index

Index-11

MSB, definition D-5

MSTRB signal 9-3, 9-15

multiple processors, sharing global memory 7-13

multiplication, floating-point, examples 5-29–5-31

multiplier
definition D-5
floating-point/integer 2-8

multiply
floating-point value instruction (MPYF) 13-146
integer instruction (MPYI) 13-159
or CPU operation with a parallel store, instruction

word format 8-29

multiprocessor
counter manipulation, example 7-16
support, through interlocked operations 7-13

N
negate

floating-point value instruction (NEGF) 13-174
integer instruction (NEGI) 13-178

negative
condition flag 13-29
integer with borrow instruction (NEGB) 13-173

nested block repeats 7-8

no operation instruction (NOP) 13-181

normalization, floating-point value 5-37–5-38

normalize instruction (NORM) 13-182
flowchart 5-38
using 5-37–5-38

O
output value formats 13-28

overflow 5-41
condition flag 13-29
flag (OV) bit, definition D-6

P
parallel

addressing modes 2-17, 13-25–13-26
instruction set summary table 13-17–13-19
multiplies and adds, instruction word for-

mat 8-30

parallel Instructions
ADDI3 and STI 13-60–13-61
FIX and STI 13-101–13-102

parallel instructions
ABSF and STF 13-42–13-43
ABSI and STI 13-46–13-47
ADDF3 and STF 13-55–13-56
ASH3 and STI 13-76–13-78
FLOAT and STF 13-105–13-106
LDF and LDF 13-119–13-120
LDF and STF 13-121
LDI and LDI 13-129–13-130
LDI and STI 13-131–13-132
LSH3 and STI 13-141–13-144
MPYF3 and ADDF3 13-149–13-152
MPYF3 and STF 13-153–13-154
MPYF3 and SUBF3 13-155–13-158
MPYI3 and ADDI3 13-163–13-166
MPYI3 and STI 13-167–13-168
MPYI3 and SUBI3 13-169–13-172
NEGF and STF 13-176–13-177
NEGI and STI 13-179–13-180
NOT and STI 13-186–13-187
OR3 and STI 13-192–13-193
STF and STF 13-217–13-218
STI and STI 13-221–13-222
SUBF3 and STF 13-232–13-233
SUBI3 and STI 13-237–13-238
XOR3 and STI 13-252–13-254

PC-relative addressing 6-19–6-20

period register (timer) 12-3, 12-7

peripheral
bus

definition D-6
memory-mapped registers

TMS320C30 4-10
TMS320C31 4-11
TMS320C32 4-13

peripherals on
DMA controller 12-48–12-68
serial port 12-15–12-47
timers 12-2

register diagram 2-22
serial ports 2-23
timers 2-23

modules, block diagram 2-22

Index

Index-12

peripherals 12-1–12-68
DMA controller 12-48–12-68

CPU/DMA interrupt enable regis-
ter 12-59–12-62

destination- and source-address regis-
ters 12-57–12-59

global-control register 12-53–12-59
Initialization/reconfiguration 12-73
memory transfer timing 12-67–12-68
programming examples 12-74–12-80
transfer-counter register 12-58–12-59

general architecture 2-22
serial ports 12-15–12-47

data-transmit register 12-28
data-receive register 12-28–12-29
FSR/DR/CLKR port control regis-

ter 12-23–12-24
FSX/DX/CLKX port control regis-

ter 12-22–12-23
functional operation 12-35–12-41
global-control register 12-17–12-21
initialization/reconfiguration 12-41
interrupt sources 12-34
operation configurations 12-29–12-31
receive/transmit timer control regis-

ter 12-25–12-27
receive/transmit timer counter register 12-27
receive/transmit timer period register 12-28
timing 12-31–12-34
TMS320C3x interface exam-

ples 12-41–12-48
timers 12-2–12-14

global-control register 12-4–12-6
initialization/reconfiguration 12-13–12-17
interrupts 12-13
operation modes 12-10–12-12
period and counter registers 12-7
pulse generation 12-7–12-9

pin operation, states at reset 7-21

pipeline
conflicts 8-4

branch 8-4
memory 8-8, 8-9
register 8-6
resolving (memory) 8-22

decode unit 8-2
definition D-6
execute unit 8-2
fetch unit 8-2
memory accesses 8-24

pipeline (continued)
operation 7-42

introduction 8-1
read unit 8-2
structure 8-2

major units 8-2

POP
floating-point value instruction (POPF) 13-195
integer instruction 13-194

power-management modes 7-49–7-52
IDLE2 7-49–7-51

primary bus 9-2
bus cycles 9-15–9-20
control register 9-7–9-8

bits described 9-7
BNKCMP and bank size 9-12, 10-17

full speed accesses 9-15
functional timing of operations 9-15
interface, signals 9-4
programmable

bank switching 9-13, 10-18
wait states 9-10–9-11, 10-15–10-16

program
buses 2-18
control, instructions 13-4–13-5
counter, definition D-6
fetch

incomplete 8-11
multicycle program memory fetches 8-12

flow control 7-1–7-52
calls, traps, and returns 7-11–7-12
delayed branches 7-9–7-10
interlocked operations 7-13–7-20
interrupt vector table,

TMS320C32 7-29–7-30
interrupts 7-26–7-37

control bits 7-32
CPU interrupt latency 7-35–7-36
CPU/DMA interaction 7-40
prioritization 7-31
processing 7-33–7-35
TMS320C30 considerations 7-44–7-47
TMS320C3x considerations 7-41–7-43
vector table 7-26–7-28

power-management mode 7-49–7-52
repeat modes 7-2–7-8

nested block repeats 7-8–7-15
RC register value after repeat mode 7-7
repeat-mode control bits 7-3
repeat-mode operation 7-3–7-4
restrictions 7-6–7-7

Index

Index-13

program (continued)
RPTB instruction 7-4–7-5
RPTS instruction 7-5–7-6

reset operation 7-21–7-25
TMS320LC31 power management mode

IDLE2 7-49–7-51
LOPOWER 7-51–7-52

memory 2-19
wait

due to multicycle access 8-11
until CPU data access completes 8-10

program-counter (PC) register 2-18, 3-18

programmable
bank switching 9-12–9-14
wait states 9-10–9-11, 10-15–10-16

pulse mode
timer interrupt 12-13
timer pulse generator 12-7–12-9

PUSH
floating-point value instruction (PUSHF) 13-197
integer instruction 13-196

Q
queue (stacks) 6-29, 6-31

R
RAM. See memory

RC register value, after repeat mode com-
pletes 7-7

read/write (R/W) pin, definition D-6

receive shift register (RSR) 12-28

receive/transmit timer
control register (serial port) 12-25–12-27
counter register (serial port) 12-27
period register (serial port) 12-28

register
addressing 6-3–6-29
conflicts 8-4
file

CPU 2-9
definition D-6

registers
buses 2-18
CPU 2-9

auxiliary (AR7–AR0) 2-10, 3-4
block size (BK) 2-11, 3-4
block-repeat (RS, RE) 3-17
data-page pointer (DP) 2-10, 3-4
extended-precision (R7–R0) 2-10, 3-3

condition flags 13-39
extended-precision registers (R7–R0) 7-9
I/O flag (IOF) 2-11, 3-16
index (IR1, IR0) 2-10, 3-4
interrupt flag (IF) 2-11, 3-11

asynchronous accesses 7-45
interrupt-trap table pointer (ITTP) bit 3-14

interrupt-enable (IE) 2-11, 3-9, 12-59–12-62
repeat end-address (RE) 7-2
repeat start-address (RS) 7-2
repeat-counter (RC) 2-11, 3-17, 7-2
status (ST) 2-11, 3-5, 13-29
system-stack pointer (SP) 2-11, 3-4, 6-29

DMA
destination and source address 12-57–12-59
global-control register 12-53–12-59
transfer-counter register 12-58–12-59

DMA channel control 7-38
instruction (IR) 2-12, 3-18
interrupt-enable (IE) 7-38
memory map, external memory interface 10-7

IOSTRB control 10-9
STRB0 10-8
STRB1 control 10-8

peripherals
receive/transmit timer control 12-25
serial port 12-15–12-47

FSR/DR/CLKR 12-23
FSX/DX/CLKX 12-22
global-control 12-17–12-21

timer 12-3
counter 12-7
global-control 12-4
period 12-7

pipeline conflicts 8-6
program-counter (PC) 2-12, 2-18, 3-18
repeat mode operation 7-3–7-4
reserved bits and compatibility 3-19

repeat
block instruction (RPTB) 13-209

See also RPTB instruction
single instruction (RPTS) 13-211

See also RPTS instruction

Index

Index-14

repeat end-address (RE) register 3-17, 7-2

repeat mode, definition D-6

repeat modes 7-2–7-8
control algorithm 7-4
control bits 7-3
maximum number of repeats 7-3
nested block repeats 7-8
operation 7-3–7-4
RC register value 7-7
restrictions 7-6–7-7
RPTB instruction 7-4–7-5
RPTS instruction 7-5

repeat start-address (RS) register 3-17, 7-2

repeat-counter (RC) register 3-17, 7-2
definition D-6

reset 4-14
definition D-6
operation 7-21–7-25

performed 7-25
pin states 7-21

reset and interrupt vector priorities 7-31

reset pin, definition D-6

reset, interrupt, and trap vector, locations, micropro-
cessor mode, TMS320C31 4-16

reset/interrupt,/trap vector, locations, microproces-
sor mode, TMS320C30 and TMS320C31 7-27

reset/interrupt/trap vector
locations

microcomputer boot mode,
TMS320C31 7-28

microprocessor mode, TMS320C30 4-15
map

microcomputer mode 4-14
microcomputer/boot-loader mode 4-14
microprocessor and microcomputer/boot-load-

er mode 4-14
microprocessor mode 4-14

restore clock to regular speed instruction
(MAXSPEED) 13-145

RETIcond instruction 7-48

return
from interrupt conditionally instruction (RETI-

cond) 7-12, 13-198
from subroutine 7-11
from subroutine conditionally (RETS-

cond) 13-200
from subroutine conditionally instruction (RETS-

cond) 7-11

RND instruction 5-39
flowchart 5-40

ROM. See memory
rotate

left instruction (ROL) 13-204
left through carry (ROLC) 13-205
right instruction (ROR) 13-207
right through carry instruction (RORC) 13-208

rotating priority, for ’C32 12-63
round floating-point value instruction

(RND) 13-202
rounding of floating-point value 5-39–5-40
RPTB instruction 7-4–7-5

nesting 7-8
pipeline conflict in 7-7
to flush pipeline 8-5

RPTS instruction 7-5–7-6
to flush pipeline 8-5

S
segment start address (SSA) 4-19
semaphores, using in critical sections 7-17
serial port 12-15–12-47

block diagram 12-16
clock 12-15, 12-31

configurations 12-29–12-31
timer 12-42
timing 12-31–12-34

continuous transmit and receive mode 12-33
CPU transfer with transmit polling 12-43–12-44
data-receive register 12-28–12-29
data-transmit register 12-28
fixed data-rate timing 12-36

burst mode 12-36
continuous mode 12-36

frame sync 12-37, 12-38
functional operation 12-35–12-41
global-control register 12-15, 12-17–12-21
handshake mode 12-19, 12-33–12-35, 12-42,

12-43
direct connect 12-34

initialization reconfiguration 12-41–12-47
interface examples

handshake mode example 12-42–12-43
serial A/C interface example 12-45
serial A/D and DIA interface exam-

ple 12-46–12-48
interrupt sources 12-34

Index

Index-15

serial port (continued)
loading 11-11
memory mapped locations for 12-17
operation configurations 12-29–12-31
port control register

FSR/DR/CLKR 12-23–12-24
FSX/DX/CLKX 12-22–12-23

receive/transmit timer
control register 12-25–12-27
counter register 12-27
period register 12-28

registers 12-15, 12-47
timing 12-31–12-34

short
floating-point format, definition D-7
integer format 5-2

definition D-7
unsigned integer format, definition D-7

SIGI instruction 7-14
timing diagram for 7-15

signal, interlocked instruction (SIGI) 13-213

sign-extend, definition D-7

single-precision
floating-point format, definition D-7
integer format 5-2

definition D-7
unsigned integer format, definition D-7

software interrupt
definition D-7
instruction (SWI) 13-242

source-address register 12-51

stack 6-30–6-31
building 6-30
definition D-7
implementation of high-to-low memory 6-30
implementation of low-to-high memory 6-31
management 6-29–6-32
pointer 6-29

standard branch 7-9
example 8-5

status (ST) register 3-5, 13-29
CPU register file 3-5
definition D-7
global interrupt enable (GIE) bit

’C30 interrupt considerations 7-44
’C3x interrupt considerations 7-41

STFI instruction 7-14

STII instruction 7-14

store
floating-point value

(STF) 13-214
interlocked (STFI) 13-215

integer
instruction (STI) 13-219
interlocked (STII) 13-220

STRB signal 9-3, 9-15
STRB0 control register 10-8
STRB1 control register 10-8
subtract

floating-point value instruction (SUBF) 13-228
integer

(SUBI) 13-234
conditionally instruction (SUBC) 13-226
with borrow instruction (SUBB) 13-223

reverse
floating-point value instruction

(SUBRF) 13-240
integer

(SUBRI) 13-241
with borrow instruction (SUBRB) 13-239

synchronization, DMA channels 12-65
synchronize two processors, example 7-19
system management 6-29–6-32
system-stack pointer (SP) register 3-4, 6-29

T
test bit fields instruction (TSTB) 13-245
timer 2-23, 12-2–12-14

block diagram 12-2
control register 12-13

receive/transmit 12-25–12-27
counter 12-2
counter register 12-3, 12-7

receive/transmit 12-27
definition D-7
global-control register 12-3, 12-4–12-6
I/O port configurations 12-10
initialization/reconfiguration 12-13–12-17
interrupts 12-13
operation modes 12-10–12-12
output generation examples 12-9
period register 12-3, 12-7

receive/transmit 12-28
pulse generation 12-7–12-9
registers 12-47
timing figure 12-8

Index

Index-16

timer-period register, definition D-7
timing

external interface
expansion bus I/O cycles 9-21–9-36
primary bus cycles 9-15–9-20

external memory interface 9-15–9-38
TMS320C30

architecture, block diagram 2-3
DMA controller 12-49

arbitration 12-63
external memory interface 9-1–9-38
interrupt vector table 7-26
memory maps 4-4
memory organization, block diagram 2-14
serial ports 12-15
timers 12-2

TMS320C31
architecture, block diagram 2-4
boot loader 11-2
DMA controller 12-49

arbitration 12-63
external memory interface 9-1–9-38
interrupt and trap memory maps 11-12
interrupt vector table 7-26
memory maps 4-5, 4-6
memory organization, block diagram 2-15
serial ports 12-15
timers 12-2

TMS320C32
architecture, block diagram 2-5
boot loader 11-14
data memory 2-20
data types and sizes 2-20
DMA controller 12-49

arbitration 12-63
external memory interface 2-19, 10-1–10-52
interrupt vector table 7-29
memory, external widths 2-20
memory organization, block diagram 2-16
program memory 2-19
serial ports 12-15
short floating-point format 5-4, 5-6
timers 12-2
trap vector locations 7-30

TMS320C3x
device differences 2-27
devices 1-2

compared 1-5
DSPs, introduction 1-1
functional block diagram 1-3

TMS320C3x (continued)
key specifications 1-3
serial port interface examples 12-41–12-48

TMS320LC31, power management mode, LOPOW-
ER 7-51–7-52

transfer-counter register 12-51
trap 7-11–7-12

conditionally instruction (TRAPcond) 7-11,
13-243

flow, block diagram 7-47
initialization 7-47
interrupt considerations, ’C30 7-44–7-46
operation 7-47
vector locations 3-15

traps 4-14
two parallel stores, instruction word format 8-29

U
unsigned-integer format 5-3

single-precision 5-3

V
variable data-rate timing operation 12-39

burst mode 12-35
continuous mode 12-40

W
wait state

definition D-8
generation 9-11
programmable 9-10–9-11, 10-15–10-16

wait-state generator, definition D-8

X
XF0, XF1 signals 2-21

Z
zero condition flag 13-29
zero fill, definition D-8
zero wait-state 9-15
zero-logic interconnect of devices 7-18
zero-overhead looping 7-2

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

	Contents
	Examples
	Tables
	Figures

	Introduction
	Internal Bus Operation

	CPU Registers
	Status Register
	IE Register
	IF Register
	IVTP
	IOF
	Repeat Registers

	Memory
	Memory Map
	Traps
	Cache

	Data Formats
	Addressing Modes
	Flow Control
	Interrupts
	DMA Interrupts
	Traps

	Pipeline
	C30 External Memory Interface
	PBCR
	XBCR
	Bank Switching

	C32 Memory Interface
	S0/1 BCR
	Bank Switching

	Boot Loaders
	Peripherals
	Timers
	Serial Ports
	DMA Controller

	Assy Language Instructions
	Condition Codes
	ABS
	ABS||STF
	ABSI
	ABS||STI
	ADDC
	ADDF
	ADDF3
	ADDF3||STF
	ADDI
	ADDI3
	ADDI3||STI
	AND
	AND3
	AND3||STI
	ANDN
	ANDN3
	ASH
	ASH3
	ASH3||STI
	Bcond
	BcondD
	BR
	BRD
	CALL
	CALLcond
	CMPF
	CMPF3
	CMPI
	DBcond
	DBcondD
	FIX
	FIX||STI
	FLOAT
	FLOAT||STI
	IACK
	IDLE
	IDLE2
	LDE
	LDF
	LDFcond
	LDFI
	LDF||LDF
	LDF||STF
	LDI
	LDIcond
	LDII
	LDI||LDI
	LDI||STI
	LDM
	LDP
	LOPOWER
	LSH
	LSH3
	LSH3||STI
	MAXSPEED
	MPYF
	MPYF3
	MPYF3||ADDF3
	MPYF3||STF
	MPYF3||SUBF3
	MPYI
	MPYI3
	MPYI3||ADDI3
	MPYI3||STI
	MPYI3||SUBI3
	NEGB
	NEGF
	NEGF||STF
	NEGI
	NEGI||STI
	NOP
	NORM
	NOT
	NOT||STI
	OR
	OR3
	OR3||STI
	POP
	POPF
	PUSH
	PUSHF
	RETIcond
	RETScond
	RND
	ROL
	ROLC
	ROR
	RORC
	RPTB
	RPTS
	SIGI
	STF
	STFI
	STF||STF
	STI
	STII
	STI||STI
	SUBB
	SUBB3
	SUBC
	SUBF
	SUBF3
	SUBF3||STF
	SUBI
	SUBI3
	SUBI3||STI
	SUBRB
	SUBRF
	SUBRI
	SWI
	TRAPcond
	TSTB
	TSTB3
	XOR
	XOR3
	XOR3||STI

	Instruction Opcodes
	C31 Boot Loader Source
	C32 Boot Loader Source
	Glossary
	Index

