
��
����������

	�������� � ��������

User’s Guide

1997 Digital Signal Processing Products

Printed in U.S.A., March 1997
2576391-9761 revision C

SPRU034G

1997

G
uide

U
ser’s

	
�
���

��
��

��
��
�
�
�
���
�

�
�

�
�
�
�
�
�
��
�
�

TMS320C3x/C4x
Optimizing C Compiler

User’s Guide

Literature Number: SPRU034G
Manufacturing Part Number: 2576391-9761 revision C

March 1997

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest
version of relevant information to verify, before placing orders, that the information being relied
on is current.

TI warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality
control techniques are utilized to the extent TI deems necessary to support this warranty.
Specific testing of all parameters of each device is not necessarily performed, except those
mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES
OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer.
Use of TI products in such applications requires the written approval of an appropriate TI officer.
Questions concerning potential risk applications should be directed to TI through a local SC
sales office.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right, copyright,
mask work right, or other intellectual property right of TI covering or relating to any combination,
machine, or process in which such semiconductor products or services might be or are used.

Copyright 1997, Texas Instruments Incorporated

iii

Preface

Read This First

About This Manual

The TMS320C3x/C4x Optimizing C Compiler User’s Guide tells you how to
use these compiler tools:

� Compiler
� Source interlist utility
� Optimizer
� Preprocessor
� Library-build utility

This compiler accepts American National Standards Institute (ANSI) standard
C source code and produces assembly language source code for the
TMS320C3x/4x devices.

This user’s guide discusses the characteristics of the TMS320C3x/4x
optimizing C compiler. It assumes that you already know how to write C
programs. The C Programming Language (second edition), by Brian W.
Kernighan and Dennis M. Ritchie, describes C based on the ANSI C standard.
Use the Kernighan and Ritchie book as a supplement to this manual.

Before you can use this book, you should read the TMS320C3x/C4x Code
Generation Tools Getting Started Guide to install the C compiler tools.

How to Use This Manual/Notational Conventions

iv

How to Use This Manual

The goal of this book is to help you learn how to use the Texas Instruments C
compiler tools specifically designed for the TMS320C3x/4x devices. This
book is divided into three distinct parts:

� Introductory information, in chapter one, provides an overview of the
TMS320C3x/4x development tools.

� Compiler description , in chapter two, describes how to operate the C
compiler and the shell program, and discusses specific characteristics of
the C compiler as they relate to the ANSI C specification. It contains
technical information on the TMS320C3x/4x architecture and includes
information needed for interfacing assembly language to C programs. It
describes libraries and header files in addition to the macros, functions,
and types they declare. Finally, it describes the library-build utility.

� Reference material , in chapters three through six and the glossary,
provides supplementary information on TMS320C3x/4x specific
optimizations, and definitions of terms used in the book.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”, address

 Notational Conventions

v Read This First

.asect is the directive. This directive has two parameters, indicated by
section name and address. When you use .asect, the first parameter must
be an actual section name, enclosed in double quotes; the second
parameter must be an address.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of a command
that has an optional parameter:

clist asmfile [outfile] [–options]

The clist command has three parameters. The first parameter, asmfile, is
required. The second and third parameters, outfile and –options, are
optional. If you omit the outfile, the file has the same name as the assembly
file with the extension .cl. Options are preceded by a hyphen.

Square brackets are also used as part of the pathname specification for
VMS pathnames; in this case, the brackets are actually part of the
pathname (they are not optional).

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

Related Documentation From Texas Instruments

vi

Related Documentation From Texas Instruments

The following books describe the TMS320C3x/C4x and related support tools.
To obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477–8924. When ordering, please
identify the book by its title and literature number.

TMS320C3x/C4x Code Generation Tools Getting Started Guide (literature
number SPRU119) describes how to install the TMS320C3x/C4x
assembly language tools and the C compiler. Installation instructions are
included for MS–DOS , Windows 3.x, Windows NT, Windows 95,
SunOS , Solaris, and HP–UX systems.

TMS320C3x/C4x Assembly Language Tools User’s Guide (literature
number SPRU035) describes the assembly language tools (assembler,
linker, and other tools used to develop assembly language code),
assembler directives, macros, common object file format, and symbolic
debugging directives for the ’C3x and ’C4x generations of devices.

TMS320C3x C Source Debugger User’s Guide (literature number
SPRU053) tells you how to invoke the ’C3x emulator, evaluation module,
and simulator versions of the C source debugger interface. This book
discusses various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C4x C Source Debugger User’s Guide (literature number
SPRU054) tells you how to invoke the ’C4x emulator and simulator
versions of the C source debugger interface. This book discusses
various aspects of the debugger interface, including window
management, command entry, code execution, data management, and
breakpoints. It also includes a tutorial that introduces basic debugger
functionality.

TMS320C3x User’s Guide (literature number SPRU031) describes the ’C3x
32-bit floating-point microprocessor (developed for digital signal
processing as well as general applications), its architecture, internal
register structure, instruction set, pipeline, specifications, and DMA and
serial port operation. Software and hardware applications are included.

TMS320C32 Addendum to the TMS320C3x User’s Guide (literature
number SPRU132) describes the TMS320C32 floating-point
microprocessor (developed for digital signal processing as well as
general applications). Discusses its architecture, internal register
structure, specifications, and DMA and serial port operation. Hardware
applications are also included.

 Related Documentation From Texas Instruments

vii Read This First

TMS320C4x User’s Guide (literature number SPRU063) describes the ’C4x
32-bit floating-point processor, developed for digital signal processing as
well as parallel processing applications. Covered are its architecture,
internal register structure, instruction set, pipeline, specifications, and
operation of its six DMA channels and six communication ports.

Parallel Processing with the TMS320C4x (literature number SPRA031)
describes parallel processing and how the ’C4x can be used in parallel
processing. Also provides sample parallel processing applications.

TMS320C4x General-Purpose Applications User’s Guide (literature
number SPRU159) describes software and hardware applications for
the ’C4x processor. Also includes development support information,
parts lists, and XDS510 emulator design considerations.

TMS320C30 Evaluation Module Technical Reference (literature number
SPRU069) describes board-level operation of the TMS320C30 EVM.

Digital Signal Processing Applications With the TMS320C30 Evaluation
Module Selected Application Notes (literature number SPRA021)
contains useful information for people who are preparing and debugging
code. The book gives additional information about the TMS320C30
EVM, as well as C coding tips.

TMS320 DSP Development Support Reference Guide (literature number
SPRU011) describes the TMS320 family of digital signal processors and
the tools that support these devices. Included are code-generation tools
(compilers, assemblers, linkers, etc.) and system integration and debug
tools (simulators, emulators, evaluation modules, etc.). Also covered are
available documentation, seminars, the university program, and factory
repair and exchange.

Digital Signal Processing Applications with the TMS320 Family , Volumes
1, 2, and 3 (literature numbers SPRA012, SPRA016, SPRA017)
Volumes 1 and 2 cover applications using the ’C10 and ’C20 families of
fixed-point processors. Volume 3 documents applications using both
fixed-point processors, as well as the ’C30 floating-point processor.

TMS320 DSP Designer’s Notebook: Volume 1 (literature number
SPRT125) presents solutions to common design problems using ’C2x,
’C3x, ’C4x, ’C5x, and other TI DSPs.

TMS320 Third-Party Support Reference Guide (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the family of ’320 digital signal processors. A myriad
of products and applications are offered—software and hardware
development tools, speech recognition, image processing, noise
cancellation, modems, etc.

Related Documentation/Trademarks

viii

Related Documentation

The C Programming Language (second edition), by Brian W. Kernighan and
Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988, describes ANSI C. You can use it as a reference.

You may find these documents helpful as well:

Advanced C: Techniques and Applications , Sobelman, Gerald E., and
David E. Krekelberg, Que Corporation

American National Standards Institute C Specification , American National
Standard for Information Systems—Programming Language C
x3.159–1989 (ANSI standard for C)

Programming in C , Kochan, Steve G., Hayden Book Company

Understanding and Using COFF , Gircys, Gintaras R., published by O’Reilly
and Associates, Inc

Trademarks

HP-UX is a trademark of Hewlett-Packard Company.

MS-DOS is a registered trademark of Microsoft Corporation.

PC-DOS is a trademark of International Business Machines Corporation.

Solaris is a trademark of Sun Microsystems, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited.

XDS is a trademark of Texas Instruments Incorporated.

 If You Need Assistance

ix Read This First

If You Need Assistance . . .

� World-Wide Web Sites
TI Online http://www.ti.com
Semiconductor Product Information Center (PIC) http://www.ti.com/sc/docs/pic/home.htm
DSP Solutions http://www.ti.com/dsps
320 Hotline On-line� http://www.ti.com/sc/docs/dsps/support.htm

� North America, South America, Central America
Product Information Center (PIC) (972) 644-5580
TI Literature Response Center U.S.A. (800) 477-8924
Software Registration/Upgrades (214) 638-0333 Fax: (214) 638-7742
U.S.A. Factory Repair/Hardware Upgrades (281) 274-2285
U.S. Technical Training Organization (972) 644-5580
DSP Hotline (281) 274-2320 Fax: (281) 274-2324 Email: dsph@ti.com
DSP Modem BBS (281) 274-2323
DSP Internet BBS via anonymous ftp to ftp://ftp.ti.com/pub/tms320bbs

� Europe, Middle East, Africa
European Product Information Center (EPIC) Hotlines:

Multi-Language Support +33 1 30 70 11 69 Fax: +33 1 30 70 10 32 Email: epic@ti.com
Deutsch +49 8161 80 33 11 or +33 1 30 70 11 68
English +33 1 30 70 11 65
Francais +33 1 30 70 11 64
Italiano +33 1 30 70 11 67

EPIC Modem BBS +33 1 30 70 11 99
European Factory Repair +33 4 93 22 25 40
Europe Customer Training Helpline Fax: +49 81 61 80 40 10

� Asia-Pacific
Literature Response Center +852 2 956 7288 Fax: +852 2 956 2200
Hong Kong DSP Hotline +852 2 956 7268 Fax: +852 2 956 1002
Korea DSP Hotline +82 2 551 2804 Fax: +82 2 551 2828
Korea DSP Modem BBS +82 2 551 2914
Singapore DSP Hotline Fax: +65 390 7179
Taiwan DSP Hotline +886 2 377 1450 Fax: +886 2 377 2718
Taiwan DSP Modem BBS +886 2 376 2592
Taiwan DSP Internet BBS via anonymous ftp to ftp://dsp.ee.tit.edu.tw/pub/TI/

� Japan
Product Information Center +0120-81-0026 (in Japan) Fax: +0120-81-0036 (in Japan)

+03-3457-0972 or (INTL) 813-3457-0972 Fax: +03-3457-1259 or (INTL) 813-3457-1259
DSP Hotline +03-3769-8735 or (INTL) 813-3769-8735 Fax: +03-3457-7071 or (INTL) 813-3457-7071
DSP BBS via Nifty-Serve Type “Go TIASP”

� Documentation
When making suggestions or reporting errors in documentation, please include the following information that is on the title
page: the full title of the book, the publication date, and the literature number.

Mail: Texas Instruments Incorporated Email: comments@books.sc.ti.com
Technical Documentation Services, MS 702
P.O. Box 1443
Houston, Texas 77251-1443

Note: When calling a Literature Response Center to order documentation, please specify the literature number of the
book.

x

 Contents

xi

Contents

1 Introduction 1-1.
Provides an overview of the TMS320C3x/4x software development tools.

1.1 Software Development Tools Overview 1-2.
1.2 TMS320C3x/C4x C Compiler Overview 1-5.

2 C Compiler Description 2-1.
Describes how to operate the C compiler and the cl30 shell program. Contains instructions for
invoking the shell program, which compiles, assembles, and links a C source file, and for
invoking the individual compiler components, such as the optimizer. Discusses the interlist
utility, filename specifications, compiler options, compiler errors, and use of the linker and
archiver with the compiler.

2.1 Compiling C Code 2-2.
2.1.1 Invoking the C Compiler 2-3.
2.1.2 Specifying Filenames 2-4.
2.1.3 Compiler Options 2-5.
2.1.4 Using the C_OPTION Environment Variable 2-27.
2.1.5 Using the TMP Environment Variable 2-27.

2.2 Controlling the Preprocessor 2-29.
2.2.1 Predefined Names 2-30.
2.2.2 #include File Search Paths 2-31.
2.2.3 Generating a Preprocessed Listing File (–pl, –pn, –po Options) 2-33.

2.3 Using Runtime Models 2-34.
2.3.1 The Big and Small Memory Models 2-35.
2.3.2 The Register-Argument and Standard Models 2-36.

2.4 Using the C Compiler Optimizer 2-37.
2.4.1 Optimization Levels 2-38.
2.4.2 Definition Controlled Inline Expansion Option (–x Option) 2-39.
2.4.3 Using the Optimizer with the Interlist Option (–os option) 2-39.
2.4.4 Debugging Optimized Code 2-39.
2.4.5 Special Considerations When Using the Optimizer 2-40.

2.5 Function Inlining 2-42.
2.5.1 Controlling Inline Expansion (–x Option) 2-44.
2.5.2 Automatic Inline Expansion Option (–oisize Option) 2-44.
2.5.3 _INLINE Preprocessor Symbol 2-45.

Contents

xii

2.6 Using the Interlist Utility 2-48.
2.6.1 Using the Interlist Utility Without the Optimizer 2-48.
2.6.2 Using the Interlist Utility With the Optimizer 2-49.

2.7 How the Compiler Handles Errors 2-50.
2.7.1 Treating Code-E Errors as Warnings (–pe Option) 2-51.
2.7.2 Suppressing Warning Messages (–pw Option) 2-51.
2.7.3 An Example of How You Can Use Error Options 2-52.

2.8 Intrinsics 2-53.
2.9 Invoking the Tools Individually 2-55.

2.9.1 Invoking the Parser 2-56.
2.9.2 Optimizing Parser Output 2-58.
2.9.3 Invoking the Code Generator 2-61.
2.9.4 Invoking the Interlist Utility 2-63.

2.10 Linking C Code 2-64.
2.10.1 Invoking the Linker 2-64.
2.10.2 Using the Shell to Invoke the Linker (–z Option) 2-65.
2.10.3 Controlling the Linking Process 2-67.

3 TMS320C3x/C4x C Language 3-1.
Discusses the specific characteristics of the TMS320C3x/C4x C compiler as they relate to the
ANSI C specification.

3.1 Characteristics of TMS320C3x/C4x C 3-2.
3.2 Data Types 3-4.

3.2.1 The Long Double Data Type 3-5.
3.3 Register Variables 3-7.
3.4 Pragma Directives 3-8.

3.4.1 The CODE_SECTION Pragma 3-9.
3.4.2 The DATA_SECTION Pragma 3-10.
3.4.3 The FUNC_CANNOT_INLINE Pragma 3-10.
3.4.4 The FUNC_EXT_CALLED Pragma 3-11.
3.4.5 The FUNC_IS_PURE Pragma 3-11.
3.4.6 The FUNC_IS_SYSTEM Pragma 3-12.
3.4.7 The FUNC_NEVER_RETURNS Pragma 3-12.
3.4.8 The FUNC_NO_GLOBAL_ASG Pragma 3-12.
3.4.9 The FUNC_NO_IND_ASG Pragma 3-13.
3.4.10 The INTERRUPT Pragma 3-13.

3.5 The asm Statement 3-14.
3.6 Initializing Static and Global Variables 3-15.
3.7 Far Call Support 3-17.
3.8 Delay Slot Filling for Branches 3-18.
3.9 Compatibility With K&R C (–pk Option) 3-19.
3.10 Compiler Limits 3-21.

 Contents

xiii Contents

4 Runtime Environment 4-1.
Contains technical information on how the compiler uses the TMS320C3x/C4x architecture.
Discusses memory and register conventions, stack organization, function-call conventions,
system initialization, and TMS320C3x/C4x C compiler optimizations. Provides information
needed for interfacing assembly language to C programs.

4.1 Memory Model 4-2.
4.1.1 Sections 4-2.
4.1.2 C System Stack 4-3.
4.1.3 Dynamic Memory Allocation 4-4.
4.1.4 Big and Small Memory Models 4-5.
4.1.5 RAM and ROM Models 4-6.

4.2 Object Representation 4-7.
4.2.1 Data Type Storage 4-7.
4.2.2 Long Immediate Values 4-7.
4.2.3 Addressing Global Variables 4-7.
4.2.4 Character String Constants 4-8.
4.2.5 The Constant Table 4-9.

4.3 Register Conventions 4-11.
4.3.1 Register Variables 4-12.
4.3.2 Expression Registers 4-12.
4.3.3 Return Values 4-13.
4.3.4 Stack and Frame Pointers 4-13.
4.3.5 Other Registers 4-14.

4.4 Function Structure and Calling Conventions 4-15.
4.4.1 Function Call, Standard Runtlme Model 4-16.
4.4.2 Function Call, Register Argument Runtime Model 4-17.
4.4.3 Responsibilities of a Called Function 4-19.
4.4.4 Accessing Arguments and Local Variables 4-21.

4.5 Interfacing C With Assembly Language 4-22.
4.5.1 Assembly Language Modules 4-22.
4.5.2 Accessing Assembly Language Variables From C 4-25.
4.5.3 Inline Assembly Language 4-28.

4.6 Interrupt Handling 4-30.
4.6.1 Saving Registers During Interrupts 4-30.
4.6.2 Assembly Language Interrupt Routines 4-31.

4.7 Runtime-Support Arithmetic Routines 4-32.
4.7.1 Precision Considerations 4-35.

4.8 System Initialization 4-36.
4.8.1 Autoinitialization of Variables and Constants 4-36.

Contents

xiv

5 Runtime-Support Functions 5-1.
Describes the header files included with the C compiler, as well as the macros, functions, and
types they declare. Summarizes the runtime-support functions according to category (header),
and provides an alphabetical reference of the runtime-support functions.

5.1 Runtime-Support Libraries 5-2.
5.1.1 Modifying a Library Function 5-3.
5.1.2 Building a Library With Different Options 5-3.

5.2 Header Files 5-4.
5.2.1 Diagnostic Messages (assert.h) 5-4.
5.2.2 Character-Typing and Conversion (ctype.h) 5-5.
5.2.3 Error Reporting (errno.h) 5-5.
5.2.4 Low-Level I/O Functions (file.h) 5-5.
5.2.5 Limits (float.h and limits.h) 5-6.
5.2.6 Floating-Point Math (math.h) 5-8.
5.2.7 Nonlocal Jumps (setjmp.h) 5-8.
5.2.8 Variable Arguments (stdarg.h) 5-8.
5.2.9 Standard Definitions (stddef.h) 5-9.
5.2.10 stdio.h—I/O Functions 5-9.
5.2.11 General Utilities (stdlib.h) 5-10.
5.2.12 String Functions (string.h) 5-11.
5.2.13 Time Functions (time.h) 5-11.

5.3 Summary of Runtime-Support Functions and Macros 5-13.
5.4 Functions Reference 5-21.

6 Library-Build Utility 6-1.
Describes the utility that custom-makes runtime-support libraries for the options used to
compile code. This utility can also be used to install header files in a directory and to create
custom libraries from source archives.

6.1 Invoking the Library-Build Utility 6-2.
6.2 Options Summary 6-4.

A Description of Compiler Optimizations A-1.
Describes general optimizations that improve any C code and specific optimizations designed
especially for the TMS320C3x/C4x architecture.

B The C I/O Functions B-1.
Describes the C I/O library included with the C compiler.

B.1 Using the I/O Functions B-2.
B.2 Overview of Low-Level I/O Implementation B-3.
B.3 Adding a Device For C I/O B-5.

C Glossary C-1.
Defines terms and acronyms used in this book.

 Figures

xv Contents

Figures

1–1 TMS320C3x/C4x Software Development Flow 1-2.
2–1 The cl30 Shell Program Overview 2-2.
2–2 Compiling a C Program with the Optimizer 2-37.
2–3 Compiler Overview 2-55.
2–4 Sample Linker Command File for TMS320C3x C Programs 2-71.
2–5 Sample Linker Command File for TMS320C4x C Programs 2-72.
4–1 Stack Use During a Function Call 4-16.
4–2 Register Argument Conventions 4-17.
4–3 Format of Initialization Records in the .cinit Section 4-37.
4–4 RAM Model of Autoinitialization 4-39.
4–5 ROM Model of Autoinitialization 4-40.
B–1 Interaction of Data Structures in I/O Functions B-3.
B–2 The First Three Streams in the Stream Table B-4.

Tables

xvi

Tables

2–1 Compiler Options Summary Table 2-6.
2–2 Predefined Macro Names 2-30.
2–3 Supported Intrinsic Functions 2-53.
2–4 Parser Options and Shell Options 2-57.
2–5 Optimizer Options and Shell Options 2-60.
2–6 Code Generator Options and Shell Options 2-62.
2–7 Sections Created by the Compiler 2-69.
3–1 TMS320C3x/C4x C Data Types 3-4.
3–2 Absolute Compiler Limits 3-22.
4–1 Register Use and Preservation Conventions 4-11.
4–2 Registers Reserved for Register Variables 4-12.
4–3 Runtime-Support Functions Using Modified Calling Convention 4-19.
4–4 Summary of Runtime-Support Arithmetic Functions 4-34.
5–1 Macros That Supply Integer Type Range Limits (limits.h) 5-6.
5–2 Macros That Supply Floating-Point Range Limits (float.h) 5-7.

 Examples

xvii Contents

Examples

2–1 How the Runtime Support Library Uses the _INLINE Symbol 2-46.
2–2 An Interlisted Assembly Language File 2-48.
3–1 Using the CODE_SECTION Pragma 3-9.
3–2 Using the DATA_SECTION Pragma 3-10.
4–1 An Assembly Language Function Called From C 4-25.
4–2 Accessing a Variable Defined in .bss From C 4-26.
4–3 Accessing a Variable Not Defined in .bss From C 4-27.
4–4 Accessing an Assembly Language Constant From C 4-28.
A–1 Register Variables and Register Tracking/Targeting A-3.
A–2 Repeat Blocks, Autoincrement Addressing, Parallel Instructions,

Strength Reduction, Induction Variable Elimination, Register Variables,
and Loop Test Replacement A-5.

A–3 TMS320C3x/C4x Delayed Branch Instructions A-6.
A–4 TMS320C4x-Specific Features A-8.
A–5 Data-Flow Optimizations A-11.
A–6 Copy Propagation and Control-Flow Simplification A-13.
A–7 Loop Unrolling A-14.
A–8 Inline Function Expansion, part one A-15.
A–9 Inline Function Expansion, part two A-16.

xviii

1-1Introduction

Introduction

The TMS320 family of digital signal processors (DSPs) combines the high
performance required in DSP applications with special features for these
applications.

The TMS320C3x/C4x DSPs are fully supported by a complete set of code
generation tools including an optimizing C compiler, an assembler, a linker,
an archiver, a software simulator, a full-speed emulator, and a software
development board.

This chapter provides an overview of these tools and introduces the features
of the optimizing C compiler. The assembler and linker are discussed in detail
in the TMS320C3x/C4x Assembly Language Tools User’s Guide.

Topic Page

1.1 Software Development Tools Overview 1-2.

1.2 TMS320C3x/C4x C Compiler Overview 1-5.

Chapter 1

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 illustrates the TMS320C3x/C4x software development flow. The
shaded portion of the figure highlights the most common path of software
development; the other portions are optional.

Figure 1–1. TMS320C3x/C4x Software Development Flow

Assembler

Linker

C Compiler

Archiver

Macro
Library

Macro
Source
Files

Archiver

Library of
Object
Files

Hex Conversion
Utility

EPROM
Programmer

Debugging
 Tools

C
Source
Files

Assembly
Language

Source

COFF
Object
Files

Target
System:

TMS320C3x
TMS320C4x

Executable
COFF

File

Runtime-
Support
Library

Library-Build
 Utility

Software Development Tools Overview

1-3Introduction

The following list describes the tools that are shown in Figure 1–1:

� The C compiler accepts C source code and produces TMS320C3x or
TMS320C4x assembly language source code. A shell program (cl30),
an optimizer (opt30), and an interlist utility (clist) are included in the
compiler package.

� The shell program enables you to automatically compile, assemble,
and link source modules.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interlists C source statements with assembly lan-
guage output.

Chapter 2 describes how to invoke and operate the compiler, the shell, the
optimizer, and the interlist utility.

� The assembler translates assembly language source files into machine
language object files. The machine language is based on common object
file format (COFF). The TMS320C3x/C4x Assembly Language Tools
User’s Guide explains how to use the assembler.

� The linker (lnk30) combines object files into a single executable object
module. As it creates the executable module, it performs relocation and
resolves external references. The linker accepts relocatable COFF object
files and object libraries as input.

� The archiver (ar30) allows you to collect a group of files into a single
archive file, called a library. It also allows you to modify a library by
deleting, replacing, extracting, or adding members. One of the most useful
applications of the archiver is building a library of object modules.

� Eight object libraries are shipped with the C compiler. These libraries
contain ANSI–standard runtime support functions and compiler–utility
functions for the TMS320C3x and TMS320C4x. See Section 2.3 for a de-
scription of these libraries.

� Use the library-build utility (mk30) , to build your own customized
runtime-support library. Standard runtime-support library functions are
provided as source code.

� rts.src contains standard runtime functions for the TMS320C3x/C4x
processors.

� mathasm.src contains assembly language source for trigonometric
functions

� prts30.src contains C and assembly language routines for handling
peripherals/interrupts for ’C3x devices

Software Development Tools Overview

 1-4

� prts40.src contains C and assembly language routines for handling
peripherals and interrupts for ’C4x devices

� The hex conversion utility (hex30) converts a COFF object file into
ASCII–hex, Intel, Motorola–S, TI–Tagged, or Tektronix object format. The
converted file can be downloaded to an EPROM programmer. The
TMS320C3x/C4x Assembly Language Tools User’s Guide explains how
to use the hex conversion utility.

The main purpose of this development process is to produce a module that can
be executed in a TMS320C3x/C4x target system . You can use one of several
debugging tools to refine and correct your code before downloading it to a
TMS320C3x/C4x target system. These debugging platforms share a common
screen-oriented interface that allows you to display machine status informa-
tion, inspect and modify C variables, display C source code, and monitor the
execution of your program as it runs on the debugging platform. Available de-
bugging tools include:

� An instruction-accurate software simulator that simulates the
TMS320C3x/C4x functions. The simulator executes linked COFF object
modules.

� An XDS (extended development system) emulator , which is a PC-
resident, real-time, in-circuit emulator that features the same screen-ori-
ented interface as the simulator

� An EVM (evaluation module), which is a plug-in PC board that contains
a target CPU, such as a C30, that can be used to evaluate CPU
performance

TMS320C3x/C4x C Compiler Overview

1-5Introduction

1.2 TMS320C3x/C4x C Compiler Overview

The TMS320C3x/C4x C compiler is a full-featured optimizing compiler that
translates standard ANSI C programs into TMS320C3x/C4x assembly
language source. The following list describes key features of the compiler:

ANSI Standard C

The TMS320C3x/C4x compiler fully conforms to the ANSI C standard as de-
fined by the ANSI specification and described in Kernighan and Ritchie’s The
C Programming Language (second edition). The ANSI standard includes
recent extensions to C that are now standard features of the language. These
extensions provide maximum portability and increased capability.

Optimization

The compiler uses a sophisticated optimization pass that employs several
advanced techniques for generating efficient, compact code from C source.
General optimizations can be applied to any C code, and
TMS320C3x/C4x-specific optimizations take advantage of the particular
features of the TMS320C3x/C4x architecture. For more information about the
C compiler’s optimization techniques, refer to Section 2.4 on page 2-37 and
to Appendix A.

ANSI Standard Runtime Support

The compiler package comes with eight complete runtime libraries. All library
functions conform to the ANSI C library standard. The libraries include
functions for string manipulation, dynamic memory allocation, data conver-
sion, timekeeping, and trigonometry, plus exponential and hyperbolic
functions. Functions for I/O and signal handling are not included, because
these are target-system specific. For more information, refer to Chapter 5.

Assembly Source Output

The compiler generates assembly language source that is easily inspected,
enabling you to see the code generated from the C source files.

Big and Small Memory Models

The compiler supports two memory models. The small memory model enables
the compiler to efficiently access memory by restricting the global data space
to a single 64K-word data page. The big memory model allows unlimited data
space. For more information, refer to subsection 2.3.1 on page 2-35.

Compiler Shell Program

The compiler package includes a shell program, which enables you to
compile, assemble, and link programs in a single step. For more information,
refer to Section 2.1 on page 2-2.

TMS320C3x/C4x C Compiler Overview

 1-6

Flexible Assembly Language Interface

The compiler has straightforward calling conventions, allowing you to easily
write assembly and C functions that call each other. For more information,
refer to Chapter 4, Runtime Environment.

Integrated Preprocessor

The C preprocessor is integrated with the parser, allowing for faster
compilation. Standalone preprocessing or preprocessed listing is also
available. For more information, refer to Section 2.2 on page 2-29.

COFF Object Files

Common object file format (COFF) allows you to define your system’s memory
map at link time. This maximizes performance by enabling you to link C code
and data objects into specific memory areas. COFF also provides rich support
for source-level debugging.

ROM-able Code

For standalone embedded applications, the compiler enables you to link all
code and initialization data into ROM, allowing C code to run from reset.

Source Interlist Utility

The compiler package includes a utility (clist) that interlists your original C
source statements into the assembly language output of the compiler. This
utility provides you with an easy method for inspecting the assembly code gen-
erated for each C statement. For more information, refer to Section 2.6 on
page 2-48.

32-Bit and 40-Bit Data Sizes

Data sizes char, short, int, long, float, and double are 32 bits. Data size long
double is 40 bits. This allows all types of data to take full advantage of the
TMS320C3x/C4x integer and floating-point arithmetic capabilities. For more
information, refer to Section 3.2 on page 3-4.

Library-Build Utility

A library-build utility called mk30 allows you to easily custom-build object
libraries from source for any combination of runtime models or target CPUs.

2-1C Compiler Description

C Compiler Description

Translating your source program into code that the TMS320C3x/C4x can
execute is a process consisting of several steps. You must compile, assemble,
and link your source files to create an executable object file. The
TMS320C3x/C4x package contains a special cl30 shell program that enables
you to execute all of these steps with one command. This chapter provides a
complete description of how to use the shell program to compile, assemble,
and link your programs.

The TMS320C3x/C4x C compiler includes an optimizer that allows you to pro-
duce highly optimized code. The optimizer is explained in Section 2.4.

The compiler package also includes a utility that interlists your original C
source statements into the compiler’s assembly language output. This
enables you to inspect the assembly language code generated for each C
statement. The interlist utility is explained in Section 2.6.

This chapter includes the following topics:

Topic Page

2.1 Compiling C Code 2-2.

2.2 Controlling the Preprocessor 2-29.

2.3 Using Runtime Models 2-34.

2.4 Using the C Compiler Optimizer 2-37.

2.5 Function Inlining 2-42.

2.6 Using the Interlist Utility 2-48.

2.7 How the Compiler Handles Errors 2-50.

2.8 Intrinsics 2-53.

2.9 Invoking the Tools Individually 2-55.

2.10 Linking C Code 2-64.

Chapter 2

Compiling C Code

 2-2

2.1 Compiling C Code

The cl30 shell program is a utility that lets you compile, assemble, and
optionally link in one step. The shell runs one or more source modules through
the following:

The compiler which includes the parser, the optimizer, and the
code generator.

The assembler which generates a COFF object file.

The linker
 (optional)

which links your files to create an executable object
file. The linker can be invoked as part of the larger
process, or you can compile and assemble various
files with the shell and link at a later time.

For more information about the floating-point assembler and linker, refer to the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

By default, the shell compiles and assembles files; however, if you use the
–z option, the shell also links your files. Figure 2–1 illustrates the path the shell
takes with and without the –z option.

Figure 2–1. The cl30 Shell Program Overview

Linker

C
Source
Files

Executable
COFF File

C Compiler

Parser

Optimizer
(Optional)

Code
Generator

Assembler

Assembler
Source

COFF
Object
Files

Compiling C Code

2-3C Compiler Description

2.1.1 Invoking the C Compiler

To run the compiler, enter:

cl30 [–options] [filenames] [–z [link_options] [object files]]

cl30 is the command that invokes the compiler and the
assembler.

–options affect the way the compiler processes input files.

filenames are one or more C source files, assembly source files, or
object files.

–z is the option that runs the linker.

link_options control the linking process.

object files name the object files that the compiler creates.

Options control how the compiler processes files, and the filenames provide
a method of identifying source files, intermediate files, and output files.
Options and filenames can be specified in any order on the command line.
However, the –z option and its associated information must follow all filenames
and compiler options on the command line. For example, if you wanted to com-
pile two files named symtab and file, assemble a third file named seek.asm,
and use the quiet option (–q), you would enter:

cl30 –q symtab file seek.asm

As cl30 encounters each source file, it prints the filename in square brackets
[for C files] or angle brackets <for asm files>. The example above uses the
–q option to suppress the additional progress information that cl30 produces.
Entering the command above produces:

[symtab]
[file]
<seek.asm>

Compiling C Code

 2-4

The normal progress information consists of a banner for each compiler pass
and the names of functions as they are defined. The example below shows the
output from compiling a single module without the –q option.

$ cl30 symtab
[symtab]
TMS320C3x/4x ANSI C Compiler Version x.xx
Copyright (c) 1987–1997, Texas Instruments Incorporated

”symtab.c”:==> main
”symtab.c”:==> lookup

TMS320C3x/4x ANSI C Codegen Version x.xx
Copyright (c) 1987–1997, Texas Instruments Incorporated

”symtab.c”:==> main
”symtab.c”:==> lookup

TMS320C3x/4x COFF Assembler Version x.xx
Copyright (c) 1987–1997, Texas Instruments Incorporated

PASS 1
PASS 2

No Errors, No Warnings

2.1.2 Specifying Filenames

The input files specified on the command line can be C source files, assembly
source files, or object files. The shell uses filename extensions to determine
the file type.

Extension File Type

.asm, .abs, or .s* (extension begins with s) assembly language source file

.c or no extension C source file

.o* (extension begins with o) object file

Files without extensions are assumed to be C source files, and a .c extension
is assumed.

You can use the –e option to change these default extensions, causing the
shell to associate different extensions with assembly source files or object
files. You can also use the –f option on the command line to override these
file type interpretations for individual files. For more information about the
–e and –f options, refer to page 2-13.

The conventions for filename extensions allow you to compile C files and
assemble assembly files with a single command, as shown in the example on
page 2-3.

You can use wildcard filename specifications to compile multiple files.
Wildcard specifications vary by system; use the appropriate form.

To compile all the files in a directory that have a .c extension (by default, all C
files), enter the following (DOS system):
cl30 *.c

Compiling C Code

2-5C Compiler Description

2.1.3 Compiler Options

Command line options control the operation of both the shell and the programs
it runs. This section provides a description of option conventions, an option
summary table, and a detailed description of each of the options.

Compiler options:

� Consist of single letters or letter groupings

� Are not case sensitive

� Are preceded by a hyphen

� Can be combined if there are single-letter options without parameters: for
example, –sgq is equivalent to –s –g –q.

� Can be combined if two-letter pair options without parameters have the
same first letter: for example, –mr and –mb can be combined as –mrb.

� Cannot be combined in a grouping that contains a two-letter pair option
and a single-letter option. For example, –mrq is invalid, because it would
be parsed as –mr and –mq.

� Cannot be combined with other options if they have parameters, such as
–uname and –idir.

You can set up default options for the shell by using the C_OPTION environ-
ment variable. For a detailed description of the C_OPTION environment
variable, refer to subsection 2.1.4, Using the C_OPTION Environment
Variable, on page 2-27.

Table 2–1 summarizes all compiler options. The table is followed by in-depth
descriptions of each of the options.

Compiling C Code

 2-6

Table 2–1. Compiler Options Summary Table

General Shell Options Option Effect

These options control the
overall operation of the
l h ll F

–@filename causes the compiler to read options
from the specified filep

cl30 shell. For more
information see page

–c no linking (negates –z)
information, see page
2-11. –dname[=def] predefine a constant2 11.

–g enable symbolic debugging

–idir define #include search path

–k keep .asm file

–n compile only (create .asm file)

–q suppress progress messages (quiet)

–qq suppress all messages (super quiet)

–s interlist optimizer comments and
assembly source statements if avail-
able; otherwise interlist C and
assembly source statements

–ss interlist C and assembly source
statements

–uname undefine a constant

–vxx specify processor; xx = 30, 31, 32,
40, or 44 (default is –v30)

–z enable linking (all options following
are passed to linker)

File Specifiers Option Effect

These options use the
extensions of each file-

d i h

–ea set default extension for assembly
files

name to determine how to
process the file For more

–eo set default extension for object files
process the file. For more
information, see page
2-13.

–fafile identify assembly language file (de-
fault for .asm or .s*)2 13.

–fc file identify C source file (default for .c or
no extension)

–fofile identify object file (default for .o*)

–frdir

–fsdir

specify object file directory

specify assembly file directory

–ft override TMP environment variable

Compiling C Code

2-7C Compiler Description

Table 2–1. Compiler Options Summary Table (Continued)

Parser Options Option Effect

These options control the
i

–pe treat code-E errors as warnings
preprocessing, syntax-
checking and error-

–pf generate prototypes for functions
checking, and error-
handling behavior of the
compiler. For more

–pk allow compatibility with pre-ANSI
K&R Ccompiler. For more

information, see page
2-15.

–pl generate preprocessed listing (.pp)
file

 –pm combines source files to perform
program-level optimization

 –pn suppress #line directives in .pp file

–po preprocess only

 –pr write parser error messages to file

 –pw0 (or –pw) suppress all warning messages

 –pw1 enable serious warning messages
(default)

 –pw2 enable all warning messages

 –px filename names the output file created when
using the –pm option

 –p? enable trigraph expansion

Inlining Options Options Effect

These options control ex-
pansion of functions de-
clared as inline. For more
information, refer to
page 2-17.

–x0

–x1

–x2

disable inlining

default inlining level

define _INLINE + invoke optimizer at
level 2

Type-Checking Options Option Effect

These options allow
relaxation of compiler
type-checking rules For

–tf relax prototype checking

type-checking rules. For
more information, refer to
page 2-18.

–tp relax pointer combination checking

Compiling C Code

 2-8

Runtime Model Options Options Effect

These options are used to
i h bl

–ma assume aliased variables
customize the executable
output of the compiler for

–mb select big memory configuration
output of the compiler for
your specific application. –mc use faster float to int conversionsyour specific application.
For more information, see
page 2-19.

–mf force indirect access to external
objects, far data flag

–mi disable RPTS instructions

–ml use far calls for runtime support
assembly calls

–mm enable short multiply (’C3x only)

–mn reenable optimizer options disabled
by –g

–mp perform speed operations at the cost
of conservatively increased code
size

–mr use TI register argument model

–ms assume all memory is accessible
when optimizing (see page 2-21)

–mt generate Ada compatible frame
structure

–mtc generate legacy Tartan C function
names

Assembler Options Options Effect

These options control the
bl ’ b h i F

–aa create absolute listing
assembler’s behavior. For
more information, see

–adname[=def] predefine a constant
more information, see
page 2-22. –al produce assembly listing file

–as keep labels as symbols

–auname undefine a constant

–ax produce cross-reference file

Compiling C Code

2-9C Compiler Description

Table 2–1. Compiler Options Summary Table (Continued)

Linker Options Options Effect

These options are valid
only when the compiler

–a generate absolute output
only when the compiler
has been invoked with the
–z option for linking. They
control the linking
process. They must follow
the –z option on the

–ar

–b

generate relocatable output

disable the merging of symbolic
debug information

the –z option on the
command line, and the
–z option must follow all

–c use ROM initialization
z option must follow all

other options and file-
names on the command

–cr use RAM initialization

line. For more information,
see page 2-22.

–esym define entry point

–fval define fill value

–g name keep named global symbol
regardless of the use of –h

–h make all global symbols static

–heap size set heap size (words)

–heap8 size set heap size (words) for 8–bit
memory (C32)

–heap16 size set heap size (words) for 16–bit
memory (C32)

–idir define library search path

–l lib supply library name

–mfile name the map file

–n ignore all fill specifications in memory
directives

–ofile name the output file

–q suppress banner and progress infor-
mation

–r generate relocatable output

–s strip symbol table

–stacksize set stack size (bytes)

–usym undefine entry point

–vval generates version val COFF

–w generate warning if output section is
created that was not specified with
SECTIONS directive

–x force rereading of libraries

Compiling C Code

 2-10

Table 2–1. Compiler Options Summary Table (Continued)

Optimizer Options Options Effect

These options control the
b h i f h i i

–o0 perform level 0 (register) optimization
behavior of the optimizer.
For more information, see
page 2-25

–o1 perform level 1(level 0 + local)
optimization

page 2-25.
–o2 (or –o) perform level 2 (level 1 + global)

optimization

–o3 perform level 3 (level 2 + file)
optimization

–oisize set automatic inlining size (–o3 only)

–ol0 (–oL0) specify that this file alters a standard
library function

–ol1 (–oL1) specify that this file defines a standard
library function

–ol2 (–oL2) specify that this file does not define or
alter library functions

–on0 disable optimizer information file

–on1 produce optimizer information file

–on2 produce a verbose information file

–op0 specify that callable functions and/or
modifiable variables are used in this
module

–op1 specify that no callable functions are
used in this module (default)

–op2 specify that no modifiable variables or
callable functions are used in this
module

–op3 specify that no modifiable variables
are used in this module, but modifi-
able functions may be used

–os interlist optimizer comments with as-
sembly source statements

–ou allow zero-overhead loop operations

Compiling C Code

2-11C Compiler Description

General Shell Options

You can use the options described below to control the overall operation of the
cl30 shell.

–@filename read shell options and commands from a command file.
The commands can be on one line or on several lines.
Comments in the command file can begin with a semicolon
(;) or a pound (#) character and end at the end of a line or
can begin with the characters “/*” and end with “*/”. Options
in addition to those specified in the command file can be
specified on the command line or with the C_OPTION
environment variable.

–c suppresses the linking option; it causes the shell not to run
the linker even if –z is specified. This option is especially
useful when you have –z specified in the C_OPTION
environment variable and you don’t want to link. For more
information, refer to page 2-66.

–dname[=def] predefines the constant name for the preprocessor. This is
equivalent to inserting #define name def at the top of each
C source file. If the optional def is omitted, –dname sets
name equal to 1.

–g causes the compiler to generate symbolic debugging direc-
tives that are used by the C source level debuggers and/or
the interlist utility.

–idir adds dir to the list of directories to be searched for #include
files. You can use this option a maximum of 32 times to de-
fine several directories; be sure to separate –i options with
spaces. Note that if you don’t specify a directory name, the
preprocessor ignores the –i option. For more information,
refer to subsection 2.2.2 on page 2-31.

–k keeps the assembly language file. Normally, the shell de-
letes the output assembly language file after assembling
completes, but using –k allows you to retain the assembly
language output from the compiler.

–n causes the shell to compile only. If you use –n, the specified
source files are compiled but not assembled or linked. This
option overrides –z and –c. The output of –n is assembly
language output from the compiler.

Compiling C Code

 2-12

–q suppresses banners and progress information from all the
tools. Only source filenames and error messages are out-
put.

–qq suppresses all output except error messages.

–s interlists optimizer comments with assembly language out-
put, if the comments are available; otherwise, this option
invokes the interlist utility, which interlists C source state-
ments into the compiler’s assembly language output. For
more information, see Section 2.6, page 2-48.

–ss invokes the interlist utility, which interlists C source state-
ments into the compiler’s assembly language output. For
more information, see Section 2.6, page 2-48.

–uname undefines the predefined constant name. Overrides any –d
options for the specified constant.

–vxx specifies the target processor. Choices are:

� –v30 for a TMS320C30 processor
� –v31 for a TMS320C31 processor
� –v32 for a TMS320C32 processor
� –v40 for a TMS320C40 processor
� –v44 for a TMS320C44 processor

By default, the tools produce code for the ’C30 processor.
You must specify the appropriate option to generate code
for the ‘C31, ’C32, ’C40, or ’C44. All code used in the
eventual executable module, including all library-resident
code, must be compiled under the same version. For more
information, refer to Section 2.3 on page 2-34.

–z enables the linking option. It causes the shell to run the link-
er on specified object files. The –z option and its
parameters follow all other compiler options and source
files on the command line. All arguments that follow –z on
the command line are passed to, and interpreted by, the
linker. For more information, refer to subsection 2.10.1 on
page 2-64.

Compiling C Code

2-13C Compiler Description

File Specifiers

–e allows you to change the default naming conventions for file
extensions for assembly language files and object files.
This affects the interpretation of source filenames as well as
the naming of files that the shell creates.

The syntax for the –e option is:

–ea[.] new extension for assembly language files
–eo[.] new extension for object files

For example:

cl30 –ea .rrr –eo .odsp fit.rrr

assembles the file fit.rrr and creates an object file named
fit.odsp.

The “.” in the extension and the space between the option
and the extension are optional. The example above could
be written as:

cl30 –ea rrr –eo odsp fit.rrr

The –e option should precede any filenames on the com-
mand line. If you don’t use the –e option, the default
extensions are .asm for assembly files and .obj for object
files.

Compiling C Code

 2-14

–f overrides default interpretations for source file extensions.
If your naming conventions do not conform to those of the
shell, you can use –f options to specify which files are C
source files, assembly files, or object files. You can insert
an optional space between the –f option and the filename.

The –f options are:

–fafile for assembly source file
–fcfile for C source file
–fofile for object file

For example, if you have a C source file called file.s and an
assembly file called asmbly.asm, use –f to force the correct
interpretation:

cl30 –fcfile.s –fa asmbly

Note that –f cannot be applied to a wildcard specification.

–fr permits you to specify a directory for object files. If the –fr
option is not specified, the shell will place object files in the
current directory. To specify an object file directory, insert
the directory’s pathname on the command line after the –fr
option:

cl30 –fr d:\object ...

–fs permits you to specify a directory for assembly files. If the
–fs option is not specified, the shell will place assembly files
in the current directory. To specify an assembly file
directory, insert the directory’s pathname on the command
line after the –fs option:

cl500 –fs d:\assembly ...

–ft permits you to specify a directory for temporary intermediate
files. The –ft option overrides the TMP environment variable
(described in subsection 2.1.5). To specify a temporary di-
rectory, insert the directory’s pathname on the command line
after the –ft option:

cl30 –ft d:\temp .. .

Compiling C Code

2-15C Compiler Description

Parser Options

–pe treats code-E errors as warnings. Normally, the code
generator does not run if the parser detects any code-E
errors. When you use the –pe option, the parser treats
code-E errors as warnings, allowing complete compilation.
For more information about errors and about –pe, refer to
Section 2.7 on page 2-50.

–pf produces a function prototype listing file. The parser
creates a file containing the prototype of every procedure
in all corresponding C files. Each function prototype file is
named as its corresponding C file, with a .pro extension. –pf
is useful when conforming code to the ANSI C standard, or
generating a listing of procedures defined.

–pk relaxes certain requirements that are stricter than those
required by earlier K&R compilers, and that are newly im-
posed by the ANSI C standard. This facilitates compatibility
between existing K&R-compatible programs and the
TMS320C3x ANSI compiler. The effects of the –pk options
are described in Section 3.9 on page 3-19.

–pl generates a preprocessed listing file. The compiler writes
a modified version of the source file to an output file called
file.pp. This file contains all the source from #include files
and expanded macros. It does not contain any comments.
For more information, refer to subsection 2.2.3 on page
2-33.

Compiling C Code

 2-16

–pm when used with the –o3 option, combines source files into
one intermediate file called a module to perform program-
level optimization instead of file-level optimization. The
module proceeds to the optimization and code generation
passes of the compiler. Because the compiler can now see
the entire C program, it performs several optimizations that
are not usually done during file-level optimization:

� If a particular argument in a function always has the
same value, the compiler replaces the argument with
the value and passes the value instead of the argu-
ment.

� If a return value of a function is never used, the compiler
deletes the return code in the function.

� If a function is not called, directly or indirectly, the com-
piler removes the function.

By default, the name of the resulting object file or assembly
file is the same as the name of the first input C file.

–pn suppresses line and file information. –pn causes #line di-
rectives of the form:

#123 file.c.

to be suppressed in a file generated with –po or –pl. You
may find –pn useful when compiling machine-generated
source.

–po runs the compiler for preprocessing only. When invoked
with –po, the compiler processes only macro expansions,
#include files, and conditional compilation. The compiler
writes the preprocessed file with a .pp extension. For more
information, refer to subsection 2.2.3 on page 2-33.

–pr creates a parser error message file. The error file has the
base name of the input file and the .err extension. The file
contains all error messages generated by the parser.

–pwn sets the warning message level. Section 2.7 on page 2-50
discusses the diagnostic information reported by the com-
piler.

� –pw or –pw0 disables all warning messages.
� –pw1 enables serious warning messages (default)
� –pw2 enables all warning messages

Compiling C Code

2-17C Compiler Description

–px filename when using the –pm option, specifies the name of the final
output file. For example,

cl30 –pm one.c two.c three.c –px prog1

results in an object file named prog1.obj.

–p? enables trigraph expansion. Trigraphs are special escape
sequences of the form:

??c

where c is a character. The ANSI C standard defines these
sequences for the purpose of compiling programs on sys-
tems with limited character sets. By default, the compiler
does not recognize trigraphs; use –p? to enable trigraphs.
For more information, refer to the ANSI specification,
subsection 2.2.1.1. or K&R § A 12.1.

Inlining Options

–x n controls function inlining done by the optimizer when func-
tions have been defined or declared as inline. The
possibilities are:

� –x0 disables all inlining
� –x1 inlines all intrinsic operators (default)
� –x2 or –x invokes the optimizer at level 2 and defines

the _INLINE preprocessor symbol, which causes all
functions defined or declared as inline to be expanded
in line

Note that –x1 is the default inlining option. It occurs whether
or not the optimizer is invoked and whether or not any –x
options are specified. The last option may be specified as
–x or –x2 interchangeably. See Section 2.5 on page 2-42 for
more details.

Compiling C Code

 2-18

Type-Checking Options

–tf relaxes type checking on redeclarations of prototyped
functions. In ANSI C, if a function is declared with an old-
format declaration, such as:

int func();

and then later declared with a prototype, such as:

int func(float a, char b);

this generates an error because the parameter types in the
prototype disagree with the default argument conversions
(which convert float to double and char to int). With the –tf
option, the compiler overlooks such redeclarations of
parameter lists.

–tp relaxes type checking on pointer combinations. This
option has two effects:

� A pointer to a signed type can be combined in an
operation with a pointer to the corresponding unsigned
type:
int *pi;

unsigned *pu;

pi = pu; /* Illegal unless -tp used */

� Pointers to differently qualified types can be combined:
char *p;

const char *pc;

p = pc; /* Illegal unless -tp used */

–tp is especially useful when you pass pointers to
prototyped functions, because the passed pointer type
would ordinarily disagree with the declared parameter type
in the prototype.

Compiling C Code

2-19C Compiler Description

Runtime-Model Options

–ma assumes that variables are aliased. The compiler assumes
that pointers may alias (point to) named variables and
therefore aborts certain optimizations when an assignment
is made through a pointer.

–mb selects the big memory model, allowing unlimited space for
global data, static data, and constants. In the small memory
model, which is the default, this space is limited to 64K
words. All code used in the eventual executable module, in-
cluding all library resident code, must be compiled under
the same model. For more information, refer to Section 2.3
on page 2-34.

–mc uses faster float-to-int conversion. The ANSI C standard
specifies that when an object of floating-point type is con-
verted to an integer type, the fractional part is discarded,
effectively rounding towards zero. The compiler uses the
TMS320C3x/C4x FIX instruction for these conversions,
which rounds toward negative infinity, followed by a four-
instruction sequence to correct negative values. If the ANSI
standard behavior is not important to your application, the
–mc option suppresses the correction sequence for faster
execution.

Compiling C Code

 2-20

–mf forces the compiler to always honor indirection on external
objects. The compiler allows objects not declared in the
.bss section to be accessed indirectly via pointers, as
described in subsection 4.5.2 on page 4-25. Such objects
cannot be accessed directly because they are not on the
data page addressed by the DP. In some cases the opti-
mizer may convert such indirect accesses into direct
accesses, possibly resulting in objects in the .bss being
accessed incorrectly. For example:

extern struct sss ext_obj;
 /* object not in .bss */
struct sss ext_ptr = &ext_obj
 /* object pointer */

The optimizer may convert an expression such as structure
member ext_ptr–>f1 to ext_obj.f1 because the optimizer
assumes that all variables are in the .bss section. This
transformation is invalid if ext_obj is not in the .bss section.
The –mf option inhibits the transformation and preserves
the indirection.

–mi disables the use of RPTS instructions for loops and uses
RPTB instead. This allows loops to be interrupted.

–ml runtime support assembly calls use far calls. With this op-
tion, calls to runtime support assembly arithmetic functions
such as MPY_I30, DIV_I30, etc. will use 32-bit far calls of
the form:

LDI &MPY_I30,Rx; CALLU Rx

rather than the traditional 16-bit displacement form of CALL
MPY_I30. See Section 3.7 on page 3-17 for more informa-
tion on far calls.

–mm (TMS320C3x only) enables short multiplies, generating
MPYI instructions for integer multiplies rather than runtime
support calls. If your application does not need 32-bit
integer multiplication, use –mm to enable the MPYI instruc-
tion; it is significantly faster because it performs 24x24 bit
multiplication using a single instruction rather than a call to
a 32-bit library function. For more information, refer to
Section 4.7 on page 4-32.

Compiling C Code

2-21C Compiler Description

–mn re-enables the optimizations disabled by –g. If you use the
–g option to generate symbolic debugging information,
many code generator optimizations are disabled because
they disrupt the debugger.

–mp performs speed optimizations at the cost of increased code
size. The –mp option causes the code generator to
increase code size when doing so will increase perfor-
mance. This is most often seen in copying (rather than mov-
ing) instructions into branch delay slots from the destination
block. Refer to Section 3.8 on page 3-18 for further informa-
tion on how the compiler handles branch delay slots. When
this option is specified, the code generator may inline many
commonly used functions, such as MPY_I30, to save the
overhead of a function call.

–mr uses the register-argument model. Code compiled under
this model is completely incompatible with code compiled
under the default model. All code used in the eventual
executable module, including all library resident code, must
be compiled under the same model. For more information,
refer to Section 2.3 on page 2-34.

–ms assumes all memory is accessible when optimizing. The
–ms option causes the code generator to assume that no
access to memory will cause the bus to block. See Section
3.8 on page 3-18.

–mt causes the compiler to generate code that supports the
Tartan Ada function calling conventions.

–mtc generates an additional header for every C function
compiled, allowing it to be used with the Tartan LAJ function
calling method. Calling functions compiled with the
TMS320C3x/C4x compiler from within Tartan–compiled
code will exact a penalty of two cycles per call, but still
allows some compatibility with existing Tartan assembly
code and libraries. This option may be removed in a future
release, so the legacy Tartan code should be recompiled.

Compiling C Code

 2-22

Assembler Options

–aa invokes the assembler with the –a option, which creates
an absolute listing. An absolute listing shows the abso-
lute addresses of object code.

–adname[=def] predefines the constant name for the assembler. This
is equivalent to inserting #define name def at the top of
each source file. If the optional def is omitted,
–adname sets name equal to 1.

–al invokes the assembler with the –l (lowercase L) option to
produce an assembly listing file.

–as retains labels. Label definitions are written to the COFF
symbol table for use with symbolic debugging.

–auname undefines the predefined constant name. Overrides
any –ad options for the specified constant.

–ax invokes the assembler with the –x option to produce a
symbolic cross-reference in the listing file.

For more information about assembler options, see the TMS320C3x/C4x
Assembly Language Tools User’s Guide.

Linker Options

Linker options can be used with the compiler, or with the linker as a standalone.
(See Section 2.10.2, Linking C Code, on page 2-65). When used with the
compiler shell, all linker options should follow the –z option described in
General Options, on page 2-11. For example:

cl30 –q symtab.c –z –a –c –o symtab.out –l rts30.lib

In this example, the file symtab.c will be compiled with the –q (quiet) option.
The –z option causes the shell to invoke the linker and pass the –a, –c, –o, and
–l linker options to the linker.

All compiler command line options following –z are passed to the linker. For
this reason, the –z option followed by the linker options must be the last shell
option specified on the command line. All options on the command line follow-
ing the –z option will be passed to the linker and not the compiler.

Compiling C Code

2-23C Compiler Description

The –c and –n options suppress the linker option and cause the shell not to
run the linker even if –z has been specified (see General Shell Options, page
2-11, for more information.) Linker options are summarized in Table 2–1,
Options Summary Table, beginning on page 2-6. For more information about
linker options, refer to Section 2.10, page 2-64.

For more information on the linker, see Chapter 8 of The TMS320C3x/C4x
Assembly Language Tools User’s Guide.

–a produces an absolute, executable module. This is the
default; if neither –a nor –r is specified, the linker acts
as if –a is specified.

–ar produces a relocatable, executable object module.

–b disables merging of symbolic debugging information.

–c enables linking conventions defined by the ROM auto-
initialization model of the TMS320C3x/4x C compiler.
This is the default initialization method.

–cr enables linking conventions defined by the RAM auto-
initialization model of the TMS320C23x/4x C compiler.

–e global_symbol defines a global_symbol that specifies the primary
entry point for the output module.

–f fill_value sets the default fill value for holes within output sec-
tions; fill_value is a 16-bit constant.

–g global_symbol instructs the linker to maintain the specified symbol as
global, regardless of the use of the –h option.

–h makes all global symbols static.

–heap size sets heap size (for the dynamic memory allocation in
C) to size words and defines a global symbol that spec-
ifies the heap size. Default = 1K words.

–heap8 size creates the C32 8-bit memory heap and sets heap size
to size words and defines a global symbol that speci-
fies the heap size. Default = 1K words, when needed.

–heap16 size creates the C32 16-bit memory heap and sets heap
size to size words and defines a global symbol that
specifies the heap size. Default = 1K words, when
needed.

Compiling C Code

 2-24

–i dir alters the library-search algorithm to look in dir before
looking in the default location. This option must appear
before the –l option. The directory must follow operat-
ing system conventions.

–l filename names an archive library file as linker input; filename
is an archive library name, and must follow operating
system conventions.

–m filename produces a map or listing of the input and output
sections, including holes, and places the listing in file-
name. The filename must follow operating system con-
ventions.

–n instructs the linker to ignore all fill specifications in
memory directives.

–o filename names the executable output module. The default file-
name is a.out, and must follow operating system con-
ventions.

–q suppresses banner and progress information.

–r retains relocation entries in the output module.

–s strips symbol table information and line number entries
from the output module.

–stack size sets the C system stack size to size words and defines
a global symbol that specifies the stack size. Default =
1K words.

–u symbol places the unresolved external symbol symbol into the
output module’s symbol table.

–vn generates version n COFF format.

–w generates a warning when an output section that is not
specified with the SECTIONS directive is created.

–x forces rereading of libraries, and resolves back
references.

Compiling C Code

2-25C Compiler Description

Optimizer Options

–on causes the compiler to optimize the intermediate file that is
produced by the parser. n denotes the level of optimization.
There are three levels of optimizations: –o0, –o1, –o2, and
–o3.

If you do not indicate a level (0, 1, 2, 3) after the –o option,
the optimizer defaults to level 2. For more information about
the optimizer, refer to Section 2.4 on page 2-37 and
Appendix A.

–oisize controls automatic inlining of functions (not defined or de-
clared as inline) at optimization level 3. You specify the size
limit for the largest function that will be inlined (times the
number of times it is called). If no size is specified, the
optimizer will inline only very small functions. Setting the size
to 0 (–oi0) disables automatic inlining completely. Note that
this option controls only the inlining of functions that have not
been explicitly defined or declared as inline. The –x options
control the inlining of functions declared as inline.

–oln (lowercase L) controls file–level optimizations. When you
invoke the optimizer at level 3 (–o3), it makes use of known
properties of the standard library functions. If the file you are
compiling redefines any of the standard functions, the
compiler may produce incorrect code. Use the –oln options
to notify the optimizer if any of the following situations exist:

� –ol0: Use this option if the file you are compiling alters
a standard library function. For example, if you have de-
fined a function with the same name as a standard
library function or you have altered the source code of
a standard library function, use –ol0 to inform the opti-
mizer not to assume the known properties of the stan-
dard library function.

� –ol1: Use this option if the file you are compiling con-
tains unaltered definitions for standard library functions.
For example, use –ol1 to compile the standard library.

� –ol2: Use this option to restore the default behavior of
the optimizer after you have used one of the other two
options in a command file, an environment variable, etc.
Following the –ol2 option, the optimizer will use known
properties of the standard library functions.

Compiling C Code

 2-26

–onn causes the compiler to produce a user readable optimization
information file with a .nfo extension. This option works only
when the –o3 option is used. There are three levels
available:

� –on0 do not produce an information file. Restores the
default behavior of the optimizer if you have used one of
the other two options in a command file, an environment
variable, etc.

� –on1 produce an optimization information file.
� –on2 produce a verbose optimization information file.

–opn specifies whether functions in other files can call this file’s
EXTERN functions, or modify this file’s EXTERN variables.
Level 3 optimization combines this information with its own
file-level analysis to decide whether to treat this file’s
EXTERN function and variable definitions as if they had
been declared STATIC. The following levels are defined.

� –op0 signals the optimizer that functions in this module
may be called by other modules, and variables declared
within the module may be altered by other modules. This
disables some of the –o3 optimizations.

� –op1 signals the optimizer that no functions in this
module will be called by other modules and no interrupt
functions declared elsewhere will call functions defined
in this module. This is the default when –o3 is used.

� –op2 or –op signals the optimizer that no functions in
this module are called by other modules and no variable
declared in this module will be altered by another
module.

� –op3 signals the optimizer that functions in this module
may be called by other modules, but no variables
declared within the module may be altered by other
modules. This disables some of the –o3 optimizations.

–os interlists optimizer comments into the compiler’s assembly
language output. For more information, see Section 2.6,
page 2-48.

–ou allows the compiler to use zero-overhead loop instructions,
RPTS and RPTB to control unsigned loop counters. To use
this option, you must be certain that these loops will iterate
fewer than 231 times.

Compiling C Code

2-27C Compiler Description

2.1.4 Using the C_OPTION Environment Variable

An environment variable is a system symbol that you define and assign to a
string. You may find it useful to set the shell default options using the
C_OPTION environment variable; if you do this, these default options and/or
input filenames are used every time you run the shell.

Setting up default options with the C_OPTION environment variable is
especially useful when you want to run the shell consecutive times with the
same set of options and/or input files. After the shell reads the entire command
line and the input filenames, it reads the C_OPTION environment variable and
processes it.

Options specified with the environment variable are specified in the same way
and have the same meaning as they do on the command line.

For example, if you want to always run quietly, enable symbolic debugging,
and link, then set up the C_OPTION environment variable as follows:

Host Enter

DOS or OS/2 set C_OPTION=–qg –z

UNIX setenv C_OPTION ”–qg –z”

You may want to set C_OPTION in your system initialization file; for example,
on PCs, in your autoexec.bat file.

Using the –z option enables linking. If you plan to link most of the time when
using the shell, you can specify the –z option with C_OPTION. Later, if you
need to invoke the shell without linking, you can use –c on the command line
to override the –z specified with C_OPTION. These examples assume
C_OPTION is set as shown previously:

cl30 *.c ; compiles and links
cl30 –c *.c ; only compiles
cl30 *.c –z c.cmd ; compiles/links using command file
cl30 –c *.c –z c.cmd ; only compiles (–c overrides –z)

2.1.5 Using the TMP Environment Variable

The shell program creates intermediate files as it processes your program. For
example, the parser phase of the shell creates a temporary file used as input
by the code generation phase. By default, the shell puts intermediate files in
the current directory. However, you can name a specific directory for
temporary files.

This feature allows use of a RAM disk or other high-speed storage files. It also
allows source files to be compiled from a remote directory without writing any
files into the directory where the source resides. This is useful for protected
directories.

Compiling C Code

 2-28

There are two ways to specify a temporary directory:

1) Use the TMP environment variable:

set TMP=d:\temp

This example is for a PC. Use the appropriate command for your host.

2) Use the –ft option on the command line:

cl30 –ft d:\temp....

The –ft option, if used, overrides the TMP environment variable.

Controlling the Preprocessor

2-29C Compiler Description

2.2 Controlling the Preprocessor

The TMS320C3x/C4x C compiler includes standard C preprocessing func-
tions, which are built into the first pass of the compiler (parser). The
preprocessor handles:

� Macro definitions and expansions
� #include files
� Conditional compilation
� Various other preprocessor directives (specified in the source file as lines

beginning with the # character)

This section describes specific features of the TMS320C3x/C4x preprocessor.
A general description of C preprocessing is in Section A12 of K&R.

Controlling the Preprocessor

 2-30

2.2.1 Predefined Names

The compiler maintains and recognizes the predefined macro names listed in
Table 2–2:

Table 2–2. Predefined Macro Names

Macro Name Description

__LINE__ † expands to the current line number

__FILE__ † expands to the current source filename

__DATE__ † expands to the compilation date, in the form mm dd yyyy

__TIME__ † expands to the compilation time, in the form hh:mm:ss

__STDC__ † expands to 1 (identifies the compiler as ANSI standard)

_C3x
_TMS320C3x

expands to 1 if the target processor is a TMS320C3x
processor, otherwise it is undefined.

_C30
_TMS320C30

expands to 1 if target processor is defined to be TMS320C30,
otherwise it is undefined.

_C31
_TMS320C31

expands to 1 if target processor is defined to be TMS320C31,
otherwise it is undefined.

_C32
_TMS320C32

expands to 1 if target processor is defined to be TMS320C32,
otherwise it is undefined.

_C4x
_TMS320C4x

expands to 1 if the target processor is a TMS320C4x
processor, otherwise it is undefined.

_C40
_TMS320C40

expands to 1 if the target processor is a TMS320C40
processor, otherwise it is undefined.

_C44
_TMS320C44

expands to 1 if the target processor is a TMS320C44
processor, otherwise it is undefined.

_INLINE expands to 1 under the –x or –x2 optimizer option, undefined
otherwise

_REGPARM expands to 1 if the register argument runtime model is used,
undefined otherwise.

_BIGMODEL expands to 1 if the –mb option is used, undefined otherwise.

† Specified by the ANSI standard

You can use macro names in the same manner as any other defined name.
For example:

printf (” %s %s” ,__TIME__, __DATE__);

could translate to a line such as:

printf (” %s %s”, ”Jan 14 1997”, ”13:58”17”);

Controlling the Preprocessor

2-31C Compiler Description

The preprocessor produces self-explanatory error messages. The line
number and the filename where the error occurred are printed along with a
diagnostic message.

You can predefine additional names from the command line by using the
–d option:

cl30 –dNAME –dREGS=6 *.c

This has the same effect as including these lines at the beginning of each
source file:

#define NAME 1
#define REGS 6

2.2.2 #include File Search Paths

The #include preprocessor directive tells the compiler to read source
statements from another file. The syntax for this directive is:

#include ”filename”
or

#include <filename>

The filename names the #include file that the compiler reads statements from.
You can enclose the filename in double quotes or in angle brackets. The
filename can be a complete pathname, have partial path information, or have
no path information.

� If you enclose the filename in double quotes, the compiler searches for the
file in the following directories, in the order given:
1) The directory that contains the current source file. (The current source

file refers to the file that is being compiled when the compiler
encounters the #include directive.)

2) Any directories named with the –i compiler option in the shell.
3) Any directories set with the environment variable C_DIR.

� If you enclose the filename in angle brackets, the compiler searches for
the file in the following directories, in the order given:
1) Any directories named with the –i option in the shell.
2) Any directories set with the environment variable C_DIR.

Note that if you enclose the filename in angle brackets, the compiler
does not search for the file in the current directory.

Include files are sometimes stored in directories. You can augment the
compiler’s directory search algorithm by using the –i shell option or the
environment variable C_DIR to identify a directory name.

Controlling the Preprocessor

 2-32

–i Shell Option

The –i shell option names an alternate directory that contains #include files.
The format for the –i option is:

 cl30 –i pathname ...

You can use up to 32 –i options per invocation; each –i option names one
pathname. In C source, you can use the #include directive without specifying
any path information for the file; instead, you can specify the path information
with the –i option. For example, assume that a file called source.c is in the
current directory. This file contains one of the following directive statements:

#include ”alt.h” or
#include <alt.h>

The table below lists the complete pathname for alt.c and shows how to invoke
the compiler; select the row for your host system.

Host Pathname for alt.c Invocation Command

DOS or OS/2 c:\dsp\files\alt.h cl30 –ic:\dsp\files source.c

UNIX /dsp/files/alt.h cl30 –i/dsp/files source.c

C_DIR Environment Variable

The compiler uses the environment variable C_DIR to name alternate
directories that contain #include files. To specify the same directory for
#include files, as in the previous example, set C_DIR with one of these
commands:

Host Enter

DOS or OS/2 set C_DIR=c:\dsp\files

UNIX setenv C_DIR /dsp/files

Then you can include alt.h:

#include ”alt.h” or
#include <alt.h>

and invoke the compiler without the –i option:

cl30 source.c

This results in the compiler using the path in the environment variable to find
the #include file.

The pathnames specified with C_DIR are directories that contain #include
files. You can separate pathnames with a semicolon or with blanks. In C

Controlling the Preprocessor

2-33C Compiler Description

source, you can use the #include directive without specifying any path infor-
mation; instead, you can specify the path information with C_DIR.

The environment variable remains set until you reboot the system or reset the
variable by entering one of these commands:

Host Enter

DOS or OS/2 set C_DIR=

UNIX unsetenv C_DIR

2.2.3 Generating a Preprocessed Listing File (–pl, –pn, –po Options)

The –pl shell option allows you to generate a preprocessed version of your
source file. The compiler’s preprocessing functions perform the following
actions on the source file:

� Each source line ending in backslash (\) is joined with the following line.
� Trigraph sequences are expanded (if enabled with the –p? option).
� Comments are removed.
� #include files are copied into the file.
� Macro definitions are processed, and all macros are expanded.
� All other preprocessing directives, including #line directives and

conditional compilation, are executed.

(These functions correspond to translation phases 1–3 as specified in Section
A12 of K&R.)

The preprocessed output file contains no preprocessor directives other than
#line; the compiler inserts #line directives to synchronize line and file
information in the output files with input position from the original source files.
If you use the –pn option, no #line directives are inserted.

If you use the –po option, the compiler performs only the preprocessing
functions listed above and then writes out the preprocessed listing file; no
syntax checking or code generation takes place. The –po option can be useful
when debugging macro definitions or when host memory limitations dictate
separate preprocessing (refer to Parsing in Two Passes on page 2-58). The
resulting preprocessed listing file is a valid C source file that can be rerun
through the compiler.

Using Runtime Models

 2-34

2.3 Using Runtime Models
The compiler has three options that allow you to affect the runtime model. All
linked modules must use the same runtime model in order to correctly
interface with other C modules, assembly modules, and library resident mod-
ules. Runtime models are mutually exclusive, that is, you must choose a con-
figuration and then make sure that all the modules you link use the same
model. The following conventions are mutually exclusive and must be chosen
before you begin to compile:

Mutually Exclusive Runtime Model Options

big memory model (–mb) small memory model (default)

register-argument model (–mr) stack-based model (default)

TMS320C4x model (–v40, –v44) TMS320C3x model (–v30, –v31, –v32)

All code linked together in any program, including assembly language and
library modules, must agree on these three options. Mixed model code may
link without error, but it will not run correctly. The linker will issue an error mes-
sage if you try to link TMS320C4x code with TMS320C3x code. The big and
small memory models are further explained in subsection 2.3.1, page 2-35.
Register-argument and stack-based models are explained in subsection
2.3.2, page 2-36. With these exceptions, compiler options including runtime
model options do not affect compatibility with other modules.

Eight runtime libraries are shipped with the compiler. All are compiled for the
small memory model convention:

Runtime Library Processor Model Option(s) Used

rts30.lib TMS320C3x small memory model;
stack-based model

rts30g.lib TMS320C3x stack-based model; includes
symbolic debugging information

rts30r.lib TMS320C3x register-argument model

rts30gr.lib TMS320C3x register-argument model; includes
symbolic debugging information

rts40.lib TMS320C4x small memory model;
stack-based model

rts40g.lib TMS320C4x stack-based model; includes
symbolic debugging information

rts40r.lib TMS320C4x register-argument model

rts40gr.lib TMS320C4x register-argument model; includes
symbolic debugging information

Using Runtime Models

2-35C Compiler Description

Refer to Section 5.1 for further information. If you want to use a model that is
incompatible with these, you must build a compatible version of the runtime
library with the library build utility (mk30). See Chapter 6 for more information
on using this utility.

By default, the mk30 utility will create a runtime-support library called rts.lib.
However, if you use more than one library, you may wish to adopt a naming
convention that makes it obvious which models were used. For example,
append a suffix that contains the target CPU number (30 or 40), an ‘r’ for the
register-argument model, and a ‘b’ for the big model. Thus rts40rb.lib would
be easily recognized as the runtime support library for the TMS320C4x, big
model, with the register-argument runtime model, and rts30.lib would be for
the TMS320C3x small model and stack-based or standard runtime model.

2.3.1 The Big and Small Memory Models

The small memory model (default) requires that all external variables, global
variables, static variables, and compiler-generated constants in the program
(after linking) fit into a single 64K word long data page (65536 words). This
allows the compiler to access any of these objects without modifying the data
page pointer (DP) register. Neither model restricts the size of code, automatic
data, or dynamically allocated data.

The big model (–mb option) removes the 64K restriction. However, this model
also forces the compiler to reload the data page pointer before accessing any
external variables or compiler generated constants. This is less efficient since
it forces an extra instruction and possibly one or more extra pipeline delay
cycles each time the compiler accesses one of these objects.

Use the small model whenever possible. If you have large arrays, allocate
them dynamically from the heap (using malloc) rather than declaring them as
global or static.

Note: Size Restrictions on Small Model are not Tested

When you use the small model, you must be sure the .bss section is less than
64K words and does not cross any 64K page boundaries. Neither the
compiler nor the linker checks these restrictions against the model used.

To make sure that the .bss section conforms to these two rules, link the
.bss section using the block attribute of the SECTIONS directive.

The statement:

.bss: load = block (0x10000)

when used with the SECTIONS directive, will force the .bss section into a 64K
data page if the size of the .bss section is less than 64K. You should check the
link map after linking to verify that the .bss does not violate the restrictions.

Using Runtime Models

 2-36

If you have variables declared in assembly language outside the .bss section,
you can still use the small model, but you must access them indirectly, and you
may need to use the –mf option as well. Section 4.5 on page 4-22 discusses
interfacing C with assembly language.

2.3.2 The Register-Argument and Standard Models

You can choose from two different argument passing models. In the standard
runtime model (default) the compiler passes all arguments to functions on the
stack. When you invoke the compiler with the –mr option, some or all of the
arguments are passed in registers. This results in less overhead for function
calls in your program.

Note: All Functions Must Be Prototyped

When using the register-argument model, all functions must be prototyped.
The compiler must be able to “see” the types of function parameters when
the function is called. If there is a function call with no prototype visible, the
compiler probably will generate incorrect code for the call. The –pf option will
generate prototypes for all functions you define. The –pw2 option will issue
a warning for a function call that has no prototype in scope.

The runtime-support libraries rts30r.lib, rts30gr.lib, rts40r.lib, and rts40gr.lib
(shipped with the compiler) are compatible with the register-argument model.

Technical details of both models are explained in Section 4.4 on page 4-15.
The library build utility is described in Chapter 6.

Using the C Compiler Optimizer

2-37C Compiler Description

2.4 Using the C Compiler Optimizer

The compiler package includes an optimization program that improves the
execution speed and reduces the size of C programs by doing such things as
simplifying loops, rearranging statements and expressions, and allocating
variables into registers.

The optimizer runs as a separate pass between the parser and the code
generator. The easiest way to invoke the optimizer is to use the cl30 shell
program, specifying the –o option on the cl30 command line (you may also
invoke the optimizer outside cl30; refer to Section 2.9 on page 2-55 for more
information). The –o option may be followed by a digit specifying the level of
optimization. If you do not specify a level digit, the default is level 2.

For example, to invoke the compiler using full optimization with inline function
expansion, enter:

cl30 –o3 –x function.c

Figure 2–2 illustrates the execution flow of the compiler with standalone
optimization.

Figure 2–2. Compiling a C Program with the Optimizer

C Source
File (.c)

.if File .opt File .asm File

Parser Optimizer Code
Generator

The optimizer also recognizes cl30 options –s, –ma, –q, and –pk; these
options are discussed in subsection 2.1.3.

To invoke the optimizer outside cl30, refer to subsection 2.9.2.

Using the C Compiler Optimizer

 2-38

2.4.1 Optimization Levels

There are four levels of optimization: 0, 1, 2, and 3. These levels control the
type and degree of optimization.

� Level 0

� performs control-flow-graph simplification
� allocates variables to registers
� performs loop rotation
� eliminates dead code
� simplifies expressions and statements
� expands calls to functions declared as inline

� Level 1

performs all level 0 features, plus:

� performs local copy/constant propagation
� removes local dead assignments
� eliminates local common subexpressions

� Level 2

performs all level 1 features, plus:

� performs loop optimizations
� eliminates global common subexpressions
� eliminates global redundant assignments
� converts array references in loops to incremented pointer form
� performs loop unrolling

� Level 3

performs all level 2 features, plus:

� removes all functions that are never called
� simplifies functions that have return values that are never used
� expands calls to small functions inline
� reorders function definitions so the attributes of called functions are

known when the caller is optimized
� propagates arguments into function bodies when all call sites pass the

same value in the same argument position
� identifies file-level variable characteristics

Using the C Compiler Optimizer

2-39C Compiler Description

Note: Files That Redefine Standard Library Functions

The optimizer uses known properties of the standard library functions to
perform level 3 optimizations. If you have files that redefine standard library
functions, use the –ol (lowercase L) options to inform the optimizer.
(See page 2-25.)

This list describes optimizations performed by the standalone optimization
pass. The code generator performs several additional optimizations,
particularly TMS320C3x/C4x-specific optimizations; it does so regardless of
whether or not you invoke the optimizer. These optimizations are always
enabled and are not affected by the optimization level you choose.

For more information about the meaning and effect of specific optimizations,
refer to Appendix A.

2.4.2 Definition Controlled Inline Expansion Option (–x Option)

When the optimizer is invoked, the –x optimizer option controls inline
expansion of functions that have been declared as inline by inhibiting or
allowing the expansion of their code in place of calls. That is, code for the
function will be inserted (inlined) into your function at each place it is called
whenever the optimizer is invoked and the –x option is not equal to –x0. The
–x2 option automatically invokes the optimizer at the default level (level 2, if
the –o option is not specified separately) and defines the _INLINE preproces-
sor symbol as equal to 1, which causes expansion of functions declared as in-
line and controlled by the _INLINE symbol (For more information about
_INLINE, see subsection 2.5.3, page 2-45).

Inlining makes a program faster by eliminating the overhead caused by
function calls, but inlining sometimes increases code size.

For more information, see Section 2.5, Function Inlining, page 2-42.

2.4.3 Using the Optimizer with the Interlist Option (–os option)

Optimization makes normal source interlisting impractical, because the
optimizer extensively rearranges your program. Therefore, the optimizer
writes reconstructed C statements (as assembly language comments), which
show the optimized C statements. The comments also include a list of the
allocated register variables. Note that occasionally the optimizer interlist
comments may be misleading because of copy propagation or assignment of
multiple or equivalent variables to the same register.

2.4.4 Debugging Optimized Code

The best way to debug code that is also optimized is to debug it in an
unoptimized form and then reverify its correctness after it has been optimized.

Using the C Compiler Optimizer

 2-40

The debugger may be used with optimized code, but the extensive rearrange-
ment of code and the many-to-one allocation of variables to registers often
makes it difficult to correlate source code with object code.

Note: Symbolic Debugging and Optimized Code

If you use the –g option to generate symbolic debugging information, many
code generator optimizations are disabled because they disrupt the
debugger. If you want to use symbolic debugging and still generate fully
optimized code, use the –mn option on cl30; –mn re-enables the
optimizations disabled by –g.

2.4.5 Special Considerations When Using the Optimizer

The optimizer is designed to improve your ANSI-conforming C programs while
maintaining their correctness. However, when you write code for the optimizer,
you should note the following special considerations to insure that your
program performs as you intend.

asm Statements

You must be extremely careful when using asm (inline assembly) statements
in optimized code. The optimizer rearranges code segments, uses registers
freely, and may completely remove variables or expressions. Although the
compiler will never optimize out an asm statement (except when it is totally
unreachable), the surrounding environment where the assembly code is
inserted may differ significantly from its apparent context in the C source code.
It is usually safe to use asm statements to manipulate hardware controls such
as interrupt registers or I/O ports, but asm statements that attempt to interface
with the C environment or access C variables may have unexpected results.
After compilation, check the assembly output to make sure your asm
statements are correct and maintain the integrity of the program.

Volatile Keyword

The optimizer analyzes data flow to avoid memory accesses whenever
possible. If you have code that depends on memory accesses exactly as
written in the C code, you must use the volatile keyword to identify these
accesses. The compiler won’t optimize out any references to volatile
variables.

In the following example, the loop waits for a location to be read as 0xFF:

unsigned int *ctrl;

while (*ctrl !=0xFF);

Using the C Compiler Optimizer

2-41C Compiler Description

In this example, *ctrl is a loop-invariant expression, so the loop will be
optimized down to a single memory read. To correct this, declare ctrl as:

volatile unsigned int *ctrl

Aliasing

Aliasing occurs when a single object may be accessed in more than one way,
such as when two pointers point to the same object or when a pointer points
to a named object. Aliasing can disrupt optimization because any indirect
reference could potentially refer to any other object. The optimizer analyzes
the code to determine where aliasing can and cannot occur, then optimizes as
much as possible while still preserving the correctness of the program.

The compiler assumes that if the address of a local variable is passed to a
function, the function might change the local by writing through the pointer but
will not make its address available for use elsewhere after returning. For
example, the called function cannot assign the local’s address to a global
variable or return it. In cases where this assumption is invalid, use the
–ma option in cl30 to force the compiler to assume worst-case aliasing. In
worst-case aliasing, any indirect reference may refer to such a variable.

Function Inlining

 2-42

2.5 Function Inlining

When an inline function is called and the optimizer is invoked, the code for the
function is inserted at the point of the call. This is advantageous in short
functions for two reasons:

� It saves the overhead of a function call.

� Once inlined, the optimizer is free to optimize the function in context with
the surrounding code.

Inline expansion is performed one of three ways.

� The intrinsic operators of the target system (such as abs) are inlined by
the compiler by default. This happens whether or not the optimizer is used
and whether or not any compiler or optimizer options are used. (You can
defeat this automatic inlining by invoking the compiler with the –x0 option.)

� Definition controlled inline expansion is performed when two conditions
exist:

� the inline keyword is encountered in source code

 and

� the optimizer is invoked (at any level)

Functions with local static variables or a variable number of arguments will
not be inlined, with the exception of functions declared as static inline. In
functions defined as static inline, expansion will occur despite the pres-
ence of local statics. In addition, a limit is placed on the depth of inlining for
recursive or non–leaf functions. Inlining should be used for small functions
or functions that are called only a few times (though the compiler does not
enforce this.)

You can control this type of function inlining two ways:

inline return-type function-name (parameter declarations) {function}

� Method 1. By defining a function as inline within a module (with the
inline keyword), you can specify that the function is inlined within that
module. A global symbol for the function is created, but the function
will be inlined only within the module where it is defined as inline. It will
be called by other modules unless they contain a compatible static
inline declaration. Functions defined as inline are expanded when the
optimizer is invoked and the –x option is not equal to –x0. Setting the
–x option to –x2 will automatically invoke the optimizer at the default
level (level 2).

Function Inlining

2-43C Compiler Description

static inline return-type function-name (parameter declarations)

� Method 2. By declaring a function as static inline, you can specify that
the function is inlined in the present module. This names the function
and specifies that the function is to be expanded inline, but no code is
generated for the function declaration itself. Functions declared in this
way may be placed in header files and included by all source modules
of the program. Declaring a function as static inline in a header file
specifies that the function is inlined in any module that includes the
header.

Functions declared as inline are expanded whenever the optimizer is
invoked at any level. Functions declared as inline and controlled by
the _INLINE preprocessor symbol, such as the runtime library func-
tions, are expanded whenever the optimizer is invoked and the
_INLINE preprocessor symbol is equal to 1. When you define an inline
function, it is recommended that you use the _INLINE preprocessor
symbol to control its declaration. If you fail to control the expansion
using _INLINE, and subsequently compile without the optimizer, the
call to the function will be unresolved. For more information, see
subsection 2.5.3, The _INLINE Preprocessor Symbol, page 2-45.

� Automatic inline expansion (functions not declared as inline) is done when
the optimizer is invoked at level 3. By default, the optimizer will inline very
small functions. You can change the size of functions that are
automatically inlined with the –oisize option. The –oi option specifies that
functions whose size (times number of calls) is less than size units are in-
lined regardless of how they were declared. The optimizer measures the
size of a function in arbitrary units. However, the size of each function is
reported in the optimizer information file (–on1 option). If you want to be
certain that a function is always inlined, use the inline keyword (discussed
above and in the next subsection). You can defeat all automatic inlining of
small functions not declared as inline by setting the size to 0 (–oi0).

Note: Function Inlining May Greatly Increase Code Size

It should be noted that expanding functions inline expands code size, and
that inlining a function that is called a great number of times can expand code
size exponentially. Function inlining is optimal for functions that are called
only a small number of times, or for small functions that are called more often.
If your code size seems too large, try compiling with the –x0 keyword and
note the difference in code size.

Function Inlining

 2-44

2.5.1 Controlling Inline Expansion (–x Option)

A command line switch controls the types of inline expansion performed.

–x0 : no inline expansion. Defeats the default expansions listed below. If the
–x0 shell option is specified, the compiler treats intrinsic functions as
regular function calls. See Section 2.8 on page 2-53 for further
information on intrinsics.

–x1 : is the default value. The intrinsic operators are inlined wherever they
are called. This is true whether or not the optimizer is invoked, and
whether or not a –x option is specified (except –x0). Intrinsic operators
are listed on page 2-53.

–x2/–x : creates the preprocessor symbol _INLINE, assigns it the value 1, and
invokes the optimizer at level 2, thereby enabling definition controlled
inline expansion.

If a function has been defined or declared as inline, it will be expanded
inline whenever the optimizer is called and the –x option is not equal
to –x0. Setting the –x option to –x2 automatically invokes the optimizer
and thus causes the automatic expansion of functions defined or
declared as inline, as well as causing the other optimizations defined
at level 2, which is the default level for the optimizer. The _INLINE
preprocessor symbol has been used to control the expansion of the
runtime library modules. They will be expanded if _INLINE is equal to
1, but will be called if _INLINE is not equal to 1. Other functions may
be set up to use _INLINE in the same way. For more information, see
subsection 2.5.3, The _INLINE Preprocessor Symbol.

If the –x, –x1 or –x2 option is used together with the –o option at any
level, the optimizer will be invoked at the level specified by –o rather
than at the level specified by –x.

2.5.2 Automatic Inline Expansion Option (–oi size Option)

The optimizer will automatically inline all small functions (not defined or de-
clared with the inline keyword) when invoked at level 3. A command line option
controls the size of functions inlined when the optimizer is invoked at level 3.
The –oi option can be used three ways:

� If you set the size parameter to zero (–oi0), all size controlled inlining is
disabled.

� If you do not use the –oi option, the optimizer inlines very small functions.

Function Inlining

2-45C Compiler Description

� If you set the size parameter to a nonzero integer, the optimizer will inline
all functions whose size is less than the size parameter. If the function is
called more than once, the optimizer multiplies the size of the function by
the number of calls, and will inline the function only if the resulting product
is less than the size parameter. The optimizer measures the size of a
function in arbitrary units. The optimizer information file (created with the
–on1 or –on2 option), however, will report the size of each function in the
same units that the –oi option uses.

2.5.3 _INLINE Preprocessor Symbol

_INLINE is a preprocessor symbol that is defined (and set to 1) if the parser
(or shell utility) is invoked with the –x2 (or –x) option. It allows you to write code
so that it will run whether or not inlining is used. It is used by standard header
files included with the compiler to control the declaration of standard C runtime
functions.

The _INLINE symbol is used in the string.h header file to declare the function
correctly, regardless of whether inlining is used. The _INLINE symbol is turned
off in the memcpy source before the header file is included, because it is
unknown whether the rest of the module is compiled with inlining.

If the rest of the modules are compiled with inlining enabled and the string.h
header is included, all references to memcpy will be inlined and the linker will
not have to use the memcpy in the runtime-support library to resolve any
references. Otherwise, the runtime-support library code will be used to resolve
the references to memcpy and function calls will be generated.

You will want to use the _INLINE preprocessor symbol in the same way so that
your programs will run regardless of whether inlining mode is selected for any
or all of the modules in your program.

Example 2–1 on page 2-46 illustrates how the runtime support library uses the
_INLINE symbol.

Function Inlining

 2-46

Example 2–1. How the Runtime Support Library Uses the _INLINE Symbol

/**/
/* STRING.H HEADER FILE */
/**/
typedef unsigned size_t

#if _INLINE
#define __INLINE static inline /* Declaration when inlining */
#else
#define __INLINE /*No declaration when not inlining */
#endif

__INLINE void *memcpy (void *_s1, const void *_s2, size_t _n);

#if _INLINE /* Declare the inlined function */

static inline void *memcpy (void *to, const void *from, size_t n)
{

register char *rto = (char *) to;
register char *rfrom = (char *) from;
register size_t rn;

for (rn = 0; rn < n; rn++) *rto++ =rfrom++;
return (to);

}

#endif /* _INLINE */

#undef __INLINE

/**/
/* MEMCPY.C (rts xx .lib) */
/**/
#undef _INLINE /* Turn off so code will be generated */

#include <string.h>

void *memcpy (void *to, const void *from, size_t n)
{

register char *rto = (char *) to;
register char *rfrom = (char *) from;
register size_t rn;

for (rn = 0; rn < n; rn++) *rto++ =rfrom++;
return (to);

}

There are two definitions of the memcpy function. The first, in the header file
is an inline definition. Note how this definition is enabled and the prototype
declared as static inline only if _INLINE is true: that is, the module including
this header is compiled with the –x option.

The second definition (in memcpy.c) is for the library so that the callable
version of memcpy exists when inlining is disabled. Since this is not an inline
function, the _INLINE symbol is undefined (#undef) before including string.h
so that the non-inline version of memcpy’s prototype is generated.

Function Inlining

2-47C Compiler Description

If the application is compiled with the –x option and the string.h header is
included, all references to memcpy in the runtime support library will be inlined
and the linker will not have to use the memcpy in the runtime support library
to resolve any references. Any modules that call memcpy that are not compiled
with inlining enabled will generate calls that the linker resolves by getting the
memcpy code out if the library.

You will want to use the _INLINE preprocessor symbol in the same way so that
your programs will run regardless of whether inlining mode is selected for any
or all of the modules in your program.

Using the Interlist Utility

 2-48

2.6 Using the Interlist Utility

The compiler package includes a utility that interlists your original C source
statements into the assembly language output of the compiler. The interlist
utility enables you to inspect the assembly code generated for each C
statement.

The easiest way to invoke the interlist utility is to use the –ss shell option. To
compile and run the interlist utility on a program called function.c, enter:

cl30 –ss function

2.6.1 Using the Interlist Utility Without the Optimizer

The interlist utility runs as a separate pass between the code generator and
the assembler. It reads both the assembly and C source files, merges them,
and writes the C statements into the assembly file as comments surrounded
by dashes, such as ;–––– . The output assembly file, function.asm, is
assembled normally. The –ss option automatically prevents the cl30 shell from
deleting the interlisted assembly language file (as if you had used –k).

Example 2–2 shows a typical interlisted assembly file.

Example 2–2. An Interlisted Assembly Language File

* FUNCTION NAME : _main *

_main:
;–––
; 6 | main()
;–––
;–––
; 8 | int i, j;
;–––

PUSH FP
LDI SP,FP
ADDI 2,SP

;–––
; 10 | i += j;
;–––

LDI *+FP(2),R0
ADDI R0,*+FP(1),R1
STI R1, *+FP(1)

;–––
; 11 | j = i + 123;
;–––

ADDI 123,R1
STI R1,*+FP(2)

Using the Interlist Utility

2-49C Compiler Description

2.6.2 Using the Interlist Utility With the Optimizer

If the –os option is used with the optimizer (–o), the interlist utility does not run
as a separate pass. Instead, the optimizer inserts comments into the code indi-
cating how the optimizer has rearranged and optimized the code. These com-
ments appear in the assembly language file as comments starting with ;*** .

Optimization makes normal source interlisting impractical because the
optimizer extensively rearranges your program. Therefore, when you use the
–os option, the optimizer writes reconstructed C statements. The comments
also include a list of the allocated register variables. Note that occasionally the
optimizer interlist comments may be misleading because of copy propagation
or assignment of multiple or equivalent variables to the same register.

If the –os option is specified and the optimizer (–o) is not, the option will be
ignored and the following warning will be issued:

Optimizer comments requested, optimization not run, ignoring option –os

If the –ss option is used with the optimizer (–o), the original C source code is
added to the assembly file by the interlist utility. In this case, to maintain a
correspondence between the interlist comments and the code, optimization
and instruction scheduling will take place on a line by line basis, roughly
corresponding to the instructions between interlist comments. If both the –ss
and –os options are used, the file generated contains the assembly code, the
original C source comments, and the optimized source comments.

The –s option will interlist optimizer comments into the assembly file if the com-
ments are available; otherwise, it will use the interlist utility to interlist C source
into the assembly file.

To invoke the interlist utility outside of the shell, refer to subsection 2.9.4.

How the Compiler Handles Errors

 2-50

2.7 How the Compiler Handles Errors

One of the compiler’s primary functions is to detect and report errors in the
source program. When the compiler encounters an error in your program, it
displays a message in the following format:

”file.c”, line n: [ECODE] error message

“file.c” identifies the filename.

line n: identifies the line number where the error occurs.

[ECODE] is a 4-character error code. A single upper-case letter
identifies the error class; a 3-digit number uniquely
identifies the error.

error message is the text of the message.

Errors are divided into 4 classes according to severity; these classes are
identified by the letters W, E, F, and I (upper-case i).

Code-W Error Messages

Code-W errors are warnings. They result from a condition that is technically
undefined according to the rules of the language, and code may not generate
what you intended. This is an example of a code-W error:

”file.c”, line 42: [W063] illegal type for register variable ’x’

Code-E Error Messages

Code-E errors are recoverable. They result from a condition that violates the
semantic rules of the language. Although these are normally fatal errors, the
compiler can recover and generate an output file if you use the –pe option.
Refer to subsection 2.7.1 for more information. This is an example of a
code-E error:

”file.c”, line 66: [E056] illegal storage class for function ’f’

Code-F Error Messages

Code-F errors are fatal. They result from a condition that violates the syntactic
or semantic rules of the language. The compiler cannot recover and therefore
does not generate output for code-F errors. This is an example of a
code-F error:

”file.c”, line 71: [F090] structure member ’a’ undefined

How the Compiler Handles Errors

2-51C Compiler Description

Code-I Error Messages

Code-I errors are implementation errors. They occur when one of the
compiler’s internal limits is exceeded. These errors are usually caused by
extreme behavior in the source code rather than by explicit errors. In most
cases, code-I errors cause the compiler to abort immediately. Most
code-I messages contain the maximum value for the limit that was exceeded.
(Those limits that are absolute are also listed in Section 3.10 on page 3-21.)
This is an example of a code-I error:

”file.c”, line 99: [I015] block nesting too deep (max=20)

Other Error Messages

The compiler also reports other errors, such as incorrect command line syntax
or inability to find specified files.These errors are usually fatal and are identified
by the symbol >> preceding the message.

This is an example of such an error:

>> Cannot open source file ’mystery.c’

2.7.1 Treating Code-E Errors as Warnings (–pe Option)

A fatal error is an error that prevents the compiler from generating an output
file. Normally, code-E, -F, and -I errors are fatal, while -W errors are not fatal.
The –pe shell option causes the compiler to effectively treat code-E errors as
warnings, so that the compiler will generate code for the file despite the error.

Using –pe allows you to bend the rules of the language, so be careful. As with
any warning, the compiler may not generate what you expect.

Note that there is no way to specify recovery from code-F or -I errors; these
are always fatal and prevent generation of a compiled output file.

2.7.2 Suppressing Warning Messages (–pw Option)

The –pw options inform the compiler to quietly ignore or to generate certain
code-W messages (warnings).

You can suppress all warning messages with the –pw0 (or –pw) option. This
can be useful when you are aware of the condition causing a warning and con-
sider it innocuous.

The –pw1 option causes the compiler to report serious warning messages.
This is the default.

How the Compiler Handles Errors

 2-52

The –pw2 option causes the compiler to report all warning messages,
including messages that report undeclared functions at their point of call.

2.7.3 An Example of How You Can Use Error Options

The following example demonstrates how the –pe and –pw options can be
used to suppress errors and error messages. The examples use this 2-line
code segment:

int *pi; char *pc;
pi = pc;

� If you invoke the code with the shell (and –q), this is the result:

[err]
”err.c”, line3:

[E104] operands of ’=’ point to different types

In this case, because code-E errors are fatal, the compiler does not
generate code.

� If you invoke the code with the shell and the –pe option, this is the result:

[err]
”err.c”, line3:

[E104] operands of ’=’ point to different types

In this case, the same message is generated, but because –pe is used, the
compiler ignores the error and generates an output file.

� If you invoke the code with the shell and –pe and –pw, this is the result:

[err]

As in the previous case, –pe causes the compiler to overlook the error and
generate code. Because the –pw option is used, the message is sup-
pressed.

Intrinsics

2-53C Compiler Description

2.8 Intrinsics

The compiler supports nine intrinsic functions: “built–in” functions whose
bodies are supplied by the code generator. The supported intrinsics provide
access to certain conversion and math instructions, as described in Table 2–3.

Table 2–3. Supported Intrinsic Functions

Function Description Processor(s)

abs(i) Integer absolute value of i via ABSI
instruction

all

labs(l) Long integer absolute value of l via ABSI
instruction

all

fabs(f) Floating-point absolute value of f via ABSF
instruction

all

toieee(f) Conversion of floating-point variable f to
IEEE format via TOIEEE instruction

C4x

frieee(f) Conversion of IEEE formatted variable f to
floating-point format via FRIEEE
instruction

C4x

fast_ftoi(f) Conversion of floating-point variable f to
integer via FIX instruction

all

ansi_ftoi(f) Conversion of floating-point variable f to
integer using ANSI compatible conversion
sequence

all

fast_imult(i,j) 24-bit integer multiplication of i and j using
MPYI instruction (similar to specifying the
–mm shell option)

C3x

fast_invf(f) 16-bit floating-point inverse of f using
RCPF instruction

C4x

When working with intrinsics, it is important to be aware of the following:

� If the –x0 shell option is specified (disabling inline expansion), the compiler
treats intrinsic functions as regular function calls. This means that, at link
time, the linker will look for a function with the appropriate name and issue
an error message if it has not been defined. It is your responsibility to pro-
vide such a function. Note, however, that the runtime-support library
includes callable functions for the abs, labs, and fabs intrinsics.

Intrinsics

 2-54

� You should include the intrin.h file in any file that uses the intrinsics
functions.

� The fast_ftoi intrinsic is similar to the –mc shell option in that both cause
the compiler to perform fast floating-point to integer conversions via the
FIX instruction. However, the intrinsic gives you expression-by-
expression control over this effect. The intrinsic performs the fast
conversion whether or not the shell option is specified.

� The ansi_ftoi intrinsic causes the compiler to perform an ANSI-compatible
floating-point to integer conversion via a standard sequence of
instructions. The intrinsic gives you expression-by-expression control
over this effect. Note that the ansi_ftoi intrinsic overrides the –mc shell op-
tion; the compiler will perform the ANSI-compatible conversion even if the
–mc shell option is specified.

� The fast_imult intrinsic is similar to the –mm shell option in that both cause
the compiler to use 24-bit multiplication via the MPYI instruction. However,
the intrinsic gives you expression-by-expression control over this effect.
The intrinsic performs the 24-bit multiplication whether or not the shell
option is specified.

� If the fast_invf instrinsic is used, the compiler will use the 16-bit RCPF
instruction rather than a 32-bit call to the INV_F40 function.

Invoking the Tools Individually

2-55C Compiler Description

2.9 Invoking the Tools Individually

The TMS320C3x/C4x C compiler offers you the versatility of invoking all of the
tools at once, using the shell, or invoking each of the tools individually. To
satisfy a variety of applications, you can invoke the compiler (parser, optional
optimizer, and code generator), the assembler, and the linker as individual pro-
grams. This section also describes how to invoke the interlist utility outside the
shell.

Compiler

The compiler is made up of three distinct programs: the parser, optimizer, and
code generator.

Figure 2–3. Compiler Overview

Code
GeneratorParser OptimizerC

Source
File

.if file .opt file .asm file

The input for the parser is a C source file. The parser reads the source file,
checking for syntax and semantic errors, and writes out an internal
representation of the program called an intermediate file. Subsection 2.9.1,
page 2-56, describes how to run the parser, and also describes how to run the
parser in two passes: the first pass preprocesses the code, and the second
pass parses the code.

The optimizer is an optional pass that runs between the parser and the code
generator. The input is the intermediate file (.if) produced by the parser. When
you run the optimizer, you choose the level of optimization. The optimizer
performs the optimizations on the intermediate file and produces a highly
efficient version of the file in the same intermediate file format. Section 2.4,
page 2-37, describes the optimizer.

The input for the code generator is the intermediate file produced by the
parser (.if) or the .opt file from the optimizer. The code generator produces an
assembly language source file. Subsection 2.9.3, page 2-61, describes how
to run the code generator.

Invoking the Tools Individually

 2-56

Assembler

The input for the assembler is the assembly language file produced by the
code generator. The assembler produces a COFF object file. The assembler
is described fully in the TMS320C3x/C4x Assembly Language Tools User’s
Guide.

Interlist Utility

The inputs for the interlist utility are the assembly file produced by the compiler
and the C source file. The utility produces an expanded assembly source file
containing statements from the C file as assembly language comments.
Section 2.6 on page 2-48 describes the interlisting file and subsection 2.9.4
on page 2-63 describes the use of the interlist utility.

Linker

The input for the linker is the COFF object file produced by the assembler. The
linker produces an executable object file. Section 2.10 describes how to run
the linker. The linker is described fully in the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

2.9.1 Invoking the Parser

The first step in compiling a TMS320C3x/C4x C program is to invoke the C
parser. The parser reads the source file, performs preprocessing functions,
checks the syntax, and produces an intermediate file that can be used as input
for the code generator.

To invoke the parser, enter:

 ac30 input file [output file] [options]

ac30 is the command that invokes the parser.

input file names the C source file that the parser uses as input. If
you don’t supply an extension, the parser assumes that
the file’s extension is .c.

output file names the intermediate file that the parser creates. If you
don’t supply a filename for the output file, the parser uses
the input filename with an extension of .if.

options affect parser operation. Each option available for the
standalone parser has a corresponding shell option that
performs the same function. Table 2–4 shows the shell
options, the parser options, and the corresponding
functions.

Invoking the Tools Individually

2-57C Compiler Description

Table 2–4. Parser Options and Shell Options

ac30 Option Shell Option Function

–@name –@name causes the parser to read options from the
specified file

–? –p? enable trigraph expansion

–dname [=def] –dname [=def] predefine macro name

–e –pe treat code-E errors as warnings

–f –pf prototype declared functions

–i dir –i dir define #include search path

–k –pk allow K&R compatibility

–lname
(lowercase L)

–plname generate .pp file

–mb –mb use big memory model

–mr –mr use register-argument runtime model

–n –pn suppress #line directives

–o –po preprocess only

–p –pm compile all input modules into a single
output module

–q –q suppress progress messages (quiet)

–r –pr write parser error messages to file

–tf –tf relax prototype checking

–tp –tp relax pointer combination

–uname –uname undefine macro name

–vxx –vxx select CPU version

–w0 (or –w) –pw0 (or –pw) suppress all warning messages

 –w1 –pw1 enable serious warning messages
(default)

–w2 –pw2 enable all warning messages

–x0 –x0

–x1

disable inline expansion

expand abs, fabs, and labs inline (default)

–x –x or –x2 #define _INLINE

Invoking the Tools Individually

 2-58

Parsing in Two Passes

Compiling very large source programs on small host systems such as PCs can
cause the compiler to run out of memory and fail. You may be able to work
around such host memory limitations by running the parser as two separate
passes: the first pass preprocesses the file, and the second pass parses the
file.

When you run the parser as one pass, it uses host memory to store both macro
definitions and symbol definitions simultaneously. But when you run the parser
as two passes, these functions can be separated. The first pass performs only
preprocessing, therefore memory is needed only for macro definitions. In the
second pass, there are no macro definitions, therefore memory is needed only
for the symbol table.

The following example illustrates how to run the parser as two passes:

1) Run the parser with the –po option, specifying preprocessing only.

cl30 –po file.c

If you want to use the –d, –mr, –u, –v, –x, or –i options, use them on this first
pass. This pass produces a preprocessed output file called file.pp. For
more information about the preprocessor, refer to Section 2.2.

2) Rerun the whole compiler on the preprocessed file to finish compiling it.

cl30 file.pp

You can use any other options on this final pass.

2.9.2 Optimizing Parser Output

The second step in compiling a TMS320C3x/C4x C program — optimizing—
is optional. After parsing a C source file, you can choose to process the
intermediate file with the optimizer. The optimizer improves the execution
speed and reduces the size of C programs. The optimizer reads the
intermediate file, optimizes it according to the level you choose, and produces
an intermediate file. The intermediate file has the same format as the original
intermediate file, but it enables the code generator to produce more efficient
code.

Invoking the Tools Individually

2-59C Compiler Description

To invoke the optimizer, enter:

 opt30 [input file [output file]] [options]

opt30 is the command that invokes the optimizer.

input file names the intermediate file produced by the parser. The
optimizer assumes that the extension is .if.

output file names the intermediate file that the optimizer creates. If
you don’t supply a filename for the output file, the
optimizer uses the input filename with an extension of
.opt.

options affect the way the optimizer processes the input file. The
options that you use in standalone optimization are the
same as those used for the shell. Besides the optimizer
options, some other compiler options may be used with
the optimizer. Those formats are shown in Table 2–5.
Section 2.4 provides a detailed list of the optimizations
performed at each level. Detailed explanations of each
optimizer option may be found on page 2-25.

Invoking the Tools Individually

 2-60

Table 2–5. Optimizer Options and Shell Options

opt30 Option Shell Option Function

–a –ma assume variables are aliased

–f –mf force indirect access to externals

–h0 –ol0 specify that this file alters a standard
library function (–o3 only)

–h1 –ol1 specify that this file defines a standard
library function (–o3 only)

–h2 –ol2 specify that this file does not define or alter
library functions (–o3 only)

–isize –oisize set automatic inlining size (–o3 only)

–k –pk allow K&R compatibility

–m –mm enable short multiply (’C3x only)

–n0 –on0 do not produce information file

–n1 –on1 produce information file

–n2 –on2 produce verbose information file

–o0 –o0 level 0; register optimization

–o1 –o1 level 1; level 0 + local optimization

–o2 –o2 level 2; level 1 + global optimization

–o3 –o3 level 3; level 2 + file optimization

–p0 –op0 specify that callable functions and/or
modifiable variables are used in this
module

–p1 –op1 specify that no callable functions are used
in this module (default)

–p2 –op2 specify that no modifiable variables or call-
able functions are used in this module

–p3 –op3 specify that no modifiable variables are
used in this module, but modifiable func-
tions may be used

–q –q suppress progress messages (quiet)

–r –mr use register-argument runtime model

–s –os or –s interlist optimizer comments

–u –ou allow zero-overhead loop operations

–vxx –vxx specify processor; xx = 30, 31, 32, 40, or
44 (default is –v30)

–z optimize primarily to reduce size, then to
improve speed

Invoking the Tools Individually

2-61C Compiler Description

2.9.3 Invoking the Code Generator

The third step in compiling a TMS320C3x/C4x C program is to invoke the C
code generator. As Figure 2–3 on page 2-55 shows, the code generator
converts the intermediate file produced by the parser into an assembly
language source file for input to the TMS320 floating-point assembler. You can
modify this output file or use it as input for the assembler. The code generator
produces re-entrant relocatable code, which, after assembling and linking, can
be stored in ROM.

To invoke the code generator as a standalone program, enter:

 cg30 [input file [output file [tempfile]]] [options]

cg30 is the command that invokes the code generator.

input file names the intermediate file that the code generator uses
as input. If you don’t supply an extension, the code
generator assumes that the extension is .if. If you don’t
specify an input file, the code generator will prompt you
for one.

output file names the assembly language source file that the code
generator creates. If you don’t supply a filename for the
output file, the code generator uses the input filename
with the extension of .asm.

tempfile names a temporary file that the code generator creates
and uses. The default filename for the temporary file is
the input filename appended to an extension of .tmp. The
code generator deletes this file after using it.

options affect the way the code generator processes the input
file. Each option available for the standalone code
generator mode has a corresponding shell option that
performs the same function. The following table shows
the shell options, the code generator options, and the
corresponding functions.

Invoking the Tools Individually

 2-62

Table 2–6. Code Generator Options and Shell Options

cg30 Option Shell Option Function

–gb –mb enable the big memory model

–gc –mc fast floating–point to integer conversions

–gi –mi disables RPTS instructions for loops (uses
RPTB)

–gl –ml use far calls for runtime support assembly calls

–gm –mm enable short multiply (’C3x only)

–gn –mn re-enable optimizations disabled by symbolic
debugging

–gp –mp perform speed optimizations at the cost of code
size

–gr0 use standard (stack) runtime model

–gr1 (or –gr) –mr use register-argument runtime model

–gs –ms assume all memory is accessible when optimiz-
ing

–gt –mt generate Ada compatible frame structure

–gtc –mtc generate Tartan C function names

–n –o –s perform optimizations while generating interlist
information

–o –g enable symbolic debugging

–q –q suppress progress messages (quiet)

–vxx –vxx specify processor; xx = 30, 31, 32, 40, or 44
(default is –v30)

–z retain the input file

† –z tells the code generator to retain the input file (the intermediate file created by the parser).
This option is useful for creating several output files with different options; for example, you might
want to use the same intermediate file to create one file that contains symbolic debugging
directives (–o option) and one that doesn’t. Note that if you do not specify the –z option, the code
generator deletes the input (intermediate) file.

Invoking the Tools Individually

2-63C Compiler Description

2.9.4 Invoking the Interlist Utility

The fourth step in compiling a TMS320C3x/C4x C program is optional. After
you have compiled a program, you can run the interlist utility. To run the interlist
utility from the command line, the syntax is:

 clist asmfile [outfile] [–options]

clist is the command that invokes the interlist utility.

asmfile is the filename of assembly language output from the compiler.

outfile names the interlisted output file. If you omit this, the file has the
same name as the assembly file with an extension .cl .

options control the operation of the utility as follows:

–b removes blanks and useless lines (lines containing
comments or lines containing only { or }).

–r removes symbolic debugging directives.

–q suppresses banner and status information.

The interlist utility uses .line directives, produced by the code generator, to
associate assembly code with C source. For this reason, when you compile
the program, you must use the –g shell option to specify symbolic debugging
if you want to interlist it. If you do not want the debugging directives in the
output, use the –r interlist option to remove them from the interlisted file.

The following example shows how to compile and interlist function.c. To
compile, enter:

cl30 –gk –mn function

This compiles and produces symbolic debugging directives, keeps the
assembly language file, and allows normal optimization.

To produce an interlist file, enter

clist –r function

This interlists and removes debugging directives from the file. The output from
this example is function.cl.

Linking C Code

 2-64

2.10 Linking C Code

The TMS320C3x/C4x C compiler and assembly language tools provide two
methods for linking your programs:

� you can link object files using the linker alone.

� you can compile, assemble, and link in one step by using the shell. This
is useful when you have a single source module.

This section describes how to invoke the linker with each method. It also
discusses special requirements of linking C code: including the
runtime-support libraries, specifying the initialization model, and allocating the
program into memory.

2.10.1 Invoking the Linker

The TMS320C3x/C4x C compiler and assembly language tools support
modular programming by allowing you to compile and assemble individual
modules and then link them together.

The general syntax for invoking the linker is:

lnk30 [–options] filename1 ... filenamen

lnk30 is the command that invokes the linker.

options can appear anywhere on the command line or in a linker
command file. (Options are discussed in Table 2–1, page
2-6.)

filenames can be object files, linker command files, or archive libraries.
The default extension for all input files is .obj ; any other
extension must be explicitly specified. The linker can deter-
mine whether the input file is an object file or an ASCII file that
contains linker commands. The default output filename is
a.out.

Linker options can be specified on the command line or in a command file. The
command file allows you to use the MEMORY and SECTIONS directives,
which can customize your memory to your specifications. If you enter the lnk30
command with no options, the linker will prompt for them.

Command files :
Object files [.obj] :
Output files [] :
Options :

Linking C Code

2-65C Compiler Description

This is the usual syntax for linking compiler-based C programs as a separate
step:

lnk30 –c filenames –o name.out –l rts.lib
or

lnk30 –cr filenames –o name.out –l rts.lib

lnk30 is the command that invokes the linker.

–c/–cr are options that tell the linker to use special conventions
defined by the C environment. Note that when you use the
shell to link, it automatically passes –c to the linker.

filenames are object files created by compiling and assembling C
programs.

–o name.out names the output file. If you don’t use the –o option, the link-
er creates an output file with the default name of a.out .

–l rts.lib identifies the appropriate archive library containing C
runtime-support and floating-point math functions.
(The –l option tells the linker that a file is an object library.)
If you’re linking C code, you must use a runtime-support
library. The rts.lib library is included with the C compiler.

Whenever you specify a library as linker input, the linker includes and links only
those library members that resolve undefined references. For example, you
can link a C program consisting of modules prog1, prog2, and prog3
(the output file is named prog.out):

lnk30 –c prog1 prog2 prog3 –l rts30.lib –o prog.out

The linker uses a default allocation algorithm to allocate your program into
memory. You can use the MEMORY and SECTIONS linker directives to
customize the allocation process, and you can also use other linker options,
described in Table 2–1 on page 2-6. These directives are also described in
Chapter 8 of the TMS320C3x/C4x Assembly Language Tools User’s Guide.

2.10.2 Using the Shell to Invoke the Linker (–z Option)

The options and parameters discussed in this section apply to both methods
of linking; however,when you are linking with the shell, the options follow the
–z shell option.

By default, the shell does not run the linker. However, if you use the –z option,
the shell compiles, assembles, and links in one step. When using –z to enable
linking, remember that:

� –z must follow all source files and compiler options on the command line
(or be specified with C_OPTION)

Linking C Code

 2-66

� –z divides the command line into compiler options (before –z) and linker
options (following –z)

� –c and –n suppress –z, so do not use them if you want to link

For all arguments that follow –z on the command line, the shell generates a
linker command file containing the arguments. The shell passes the command
file to the linker. In this way, you are not limited by command line size restric-
tions. The arguments can be other linker command files, object files, linker op-
tions, or libraries. For example, to compile and link all the .c files in a directory,
enter:

cl30 –sq *.c –z c.cmd –o prog.out –l rts30.lib

The shell will call the compiler using the –s and –q options to compile all of the
files in the current directory that end with a .c extension. Because –z is
specified, the shell will generate a command file containing all of the argu-
ments following the –z option and then invoke the linker with this command file.
The linker will link together all of the object files produced during compilation,
the runtime support library, and any additional files specified in c.cmd. The
resulting linked file will be named prog.out.

The order in which the linker processes arguments can be important,
especially for command files and libraries. The cl30 shell passes arguments
to the linker in the following order:

1) Object file names from the command line
2) Arguments following –z on the command line
3) Arguments following –z from the C_OPTION environment variable

–c and –n Shell Options

You can override the –z option by using the –c or –n shell options. The
–c option is especially helpful when you have specified –z in the C_OPTION
environment variable and want to selectively disable linking with –c on the
command line. The –n option causes the shell to stop the process after com-
pilation.

The –c linker option has a different function than, and is independent of, the
–c shell option. By default, the shell automatically uses the –c linker option that
tells the linker to use C linking conventions (ROM model of initialization). If you
want to use –cr (RAM model of initialization) rather than –c, you can pass –cr
as a linker option instead.

Linking C Code

2-67C Compiler Description

2.10.3 Controlling the Linking Process

Regardless of the method you choose for invoking the linker, special
requirements apply when linking C programs. You must:

� include the compiler’s runtime-support library
� specify the initialization model
� determine how you want to allocate your program into memory

This section discusses how these factors are controlled and provides an
example of the standard default linker command file.

For more information about how to operate the linker, refer to Chapter 8 of the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

Runtime-Support Libraries

All C programs must be linked with a runtime-support library. This archive
library contains standard C library functions (such as malloc and strcpy) as well
as functions used by the compiler to manage the C environment. To link a
library, simply use the –l option on the command line:

lnk30 –c filenames –l rts30.lib –l flib30.lib ... or
lnk30 –cr filenames –l rts30.lib –l flib30.lib ...

Eight versions of the standard C runtime-support libraries are included with the
compiler. Refer to section 2.3 for further information on the included runtime
support libraries.

Generally, the libraries should be specified as the last filename on the command
line because the linker searches libraries for unresolved references in the order
that files are specified on the command line. If any object files follow a library,
references from those object files to that library will not be resolved. You can
use the –x option to force the linker to reread all libraries until references are
resolved. Whenever you specify a library as linker input, the linker includes and
links only those library member that resolve undefined references.

All C programs must be linked with an object module called boot.obj. When a
program begins running, it executes boot.obj first. boot.obj contains code and
data for initializing the runtime environment; the linker automatically extracts
boot.obj and links it when you use –c or –cr and include rts.lib in the link.

Chapter 5 describes additional runtime-support functions that are included in
rts.lib. These functions include ANSI C standard runtime support.

Linking C Code

 2-68

Initialization (RAM and ROM Models)

The C compiler produces tables of data for autoinitializing global variables.
The format of these tables is discussed on page 4-37. These tables are in a
named section called .cinit. The initialization tables can be used in either of two
ways:

� RAM Model (–cr linker option)

Global variables are initialized at load time. Use the –cr linker option to
select the RAM model. For more information about the RAM model, refer
to page 4-38.

� ROM Model (–c linker option)

Global variables are initialized at runtime. Use the –c linker option to select
the ROM model. For more information about the ROM model, refer to page
4-37.

The –c and –cr Linker Options

Whenever you link a C program, you must use either the –c or the –cr option.
These options tell the linker to use special conventions required by the
C environment; for example, they tell the linker to select the ROM or RAM
model of autoinitialization. Note that when you use the shell to link programs,
the –c option is the default. The following list outlines the linking conventions
used with –c or –cr:

� The symbol _c_int00 is defined as the program entry point; it identifies the
beginning of the C boot routine in boot.obj. When you use –c or –cr,
_c_int00 is automatically referenced; this ensures that boot.obj is auto-
matically linked in from the runtime-support library used.

� The .cinit output section is padded with a termination record so that the
loader (RAM model) or the boot routine (ROM model) knows when to stop
reading the initialization tables.

� In the RAM model (–cr option),

� The linker sets the symbol cinit to –1. This indicates that the
initialization tables are not in memory, so no initialization is performed
at runtime.

Linking C Code

2-69C Compiler Description

� The STYP_COPY flag (010h) is set in the .cinit section header.
STYP_COPY is the special attribute that tells the loader to perform
autoinitialization directly and not to load the .cinit section into memory.
The linker does not allocate space in memory for the .cinit section.

Note that a loader is not included as part of the C compiler package.

� In the ROM model (–c option), the linker defines the symbol cinit as the
starting address of the .cinit section. The C boot routine uses this symbol
as the starting point for autoinitialization.

Sections Created by the Compiler

The compiler produces five relocatable blocks of code and data. These blocks,
called sections , can be allocated into memory in a variety of ways to conform
to a variety of system configurations.

The compiler creates two basic kinds of sections: initialized and uninitialized.
Table 2–7 summarizes the sections.

Table 2–7. Sections Created by the Compiler

Name Type Contents

.bss Uninitialized global and static variables

.cinit Initialized initialization values for explicitly initialized global and
static variables

.const Initialized global and static constant variables that are explicitly
initialized and string literals

.stack Uninitialized software stack

.text Initialized executable code and floating-point constant

.sysmem Uninitialized memory for malloc functions

When you link your program, you must specify where to locate the sections in
memory. In general, initialized sections can be linked into ROM or RAM;
uninitialized sections must be linked into RAM. Refer to subsection 4.1.1 on
page 4-2 for a complete description of how the compiler uses these sections.
The linker provides MEMORY and SECTIONS directives for performing this
process.

For more information about allocating sections into memory, refer to
Chapter 9, in the TMS320C3x/C4x Assembly Language Tools User’s Guide.

Sizing the Stack and Heap

The linker provides four options that allow you to specify the size of the .stack
and .sysmem sections.

Linking C Code

 2-70

–stack xxxx sets the size of the .stack section to xxxx words. The value xxxx
must be constant.

–heapxxxx sets the size of the .sysmem section to xxxx words. The value
xxxx must be constant.

–heap8xxxx sets the size of the .sysm8 section to xxxx words (for C32 8-bit
memory support). The value of xxxx must be constant.

–heap16xxxx
sets the size of the .sysm16 section to xxxx words (for C32 16-bit
memory support). The value of xxxx must be constant.

The linker always includes the stack section; and includes the .sysmem,
.sysm8, or .sysm16 sections only if you use memory allocation functions (such
as malloc(), malloc8(), or malloc16()). The default size for all sections is 1K
(1024) words. Note, however, that the .sysm8 and .sysm16 sections are not
created unless the 8-bit or 16-bit memory support functions are linked.

Allocating the .bss and .const Section

When you use the small memory (default) model, the sum of the entire .bss
and .const section must fit within a single 64K word long data page and must
not cross any 64K address boundaries. Use the linker’s block qualifier to help
guarantee the correct allocation of .bss and .const.

Sample Linker Command File

The compiler package includes two sample linker command files called
c30.cmd and c40.cmd that can be used to link C programs. To link your
program using a command file, enter the following command:

lnk30 object.files –o output.file –m map.file c30.cmd

Figure 2–4 shows the contents of c30.cmd. Figure 2–5 shows the contents of
c40.cmd.

To link your program using the TMS320C4x command file, enter the following
command:

lnk30 object.files –o output.file –m map.file c40.cmd

Linking C Code

2-71C Compiler Description

Figure 2–4. Sample Linker Command File for TMS320C3x C Programs

/**/
/* C30.CMD – v4.60 COMMAND FILE FOR LINKING C30 C PROGRAMS */
/* */
/* Usage: lnk30 <obj files...> –o <out file> –m <map file> c30.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C30 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) Be sure to use the right library! Use a library that */
/* matches the runtime model you are using. */
/* */
/* (2) You must specify the directory in which rts.lib is */
/* located. Either add a ”–i<directory>” line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (3) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. */
/**/
–c /* LINK USING C CONVENTIONS */
–stack 0x400 /* 1K STACK */
–heap 0x400 /* 1K HEAP */
–lrts30.lib /* GET RUN–TIME SUPPORT */

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 ROM: org = 0x0 len = 0x1000 /* INTERNAL 4K ROM */
 EXT0: org = 0x1000 len = 0x7ff000 /* EXTERNAL MEMORY */
 XBUS: org = 0x800000 len = 0x2000 /* EXPANSION BUS */
 IOBUS: org = 0x804000 len = 0x2000 /* I/O BUS */
 RAM0: org = 0x809800 len = 0x400 /* RAM BLOCK 0 */
 RAM1: org = 0x809c00 len = 0x400 /* RAM BLOCK 1 */
 EXT1: org = 0x80a000 len = 0x7f6000 /* EXTERNAL MEMORY */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 .text: > EXT0 /* CODE */
 .cinit: > EXT0 /* INITIALIZATION TABLES */
 .const: > EXT0 /* CONSTANTS */
 .stack: > RAM0 /* SYSTEM STACK */
 .sysmem: > RAM1 /* DYNAMIC MEMORY (HEAP) */
 .bss: > EXT1, block 0x10000 /* VARIABLES */
}

Linking C Code

 2-72

Figure 2–5. Sample Linker Command File for TMS320C4x C Programs

/**/
/* C40.CMD – v4.60 COMMAND FILE FOR LINKING C40 C PROGRAMS */
/* */
/* Usage: lnk30 <obj files...> –o <out file> –m <map file> c40.cmd */
/* */
/* Description: This file is a sample command file that can be used */
/* for linking programs built with the TMS320C40 C */
/* Compiler. Use it a guideline; you may want to change */
/* the allocation scheme according to the size of your */
/* program and the memory layout of your target system. */
/* */
/* Notes: (1) Be sure to use the right library! Use a library that */
/* matches the runtime model you are using. */
/* */
/* (2) You must specify the directory in which rts.lib is */
/* located. Either add a ”–i<directory>” line to this */
/* file, or use the system environment variable C_DIR to */
/* specify a search path for libraries. */
/* */
/* (3) When using the small (default) memory model, be sure */
/* that the ENTIRE .bss section fits within a single page. */
/* To satisfy this, .bss must be smaller than 64K words and */
/* must not cross any 64K boundaries. */
/**/
–c /* LINK USING C CONVENTIONS */
–stack 0x400 /* 1K STACK */
–heap 0x400 /* 1K HEAP */
–lrts40.lib /* GET RUN–TIME SUPPORT */

/* SPECIFY THE SYSTEM MEMORY MAP */

MEMORY
{
 ROM: org = 0x000000 len = 0x1000 /* INTERNAL ROM */
 RAM0: org = 0x2FF800 len = 0x400 /* RAM BLOCK 0 */
 RAM1: org = 0x2FFC00 len = 0x400 /* RAM BLOCK 1 */
 LOCAL: org = 0x300000 len = 0x7D00000 /* LOCAL BUS */
 GLOBAL: org = 0x8000000 len = 0x8000000 /* GLOBAL BUS */
}

/* SPECIFY THE SECTIONS ALLOCATION INTO MEMORY */

SECTIONS
{
 .text: > LOCAL /* CODE */
 .cinit: > LOCAL /* INITIALIZATION TABLES */
 .const: > LOCAL /* CONSTANTS */
 .stack: > RAM0 /* SYSTEM STACK */
 .sysmem: > RAM1 /* DYNAMIC MEMORY (HEAP) */
 .bss: > LOCAL, block 0x10000 /* VARIABLES */
}

Linking C Code

2-73C Compiler Description

In these command files, the –c option specifies that the linker use the ROM
initialization model, and the –l (lowercase “L”) option with rts30.lib (or any of
the runtime support libraries) specifies that the linker search for the library
named. If the library is not in the current directory, you can customize the
command file to use C_DIR or the –i option to define a path where the rts.lib
can be found.

You will most likely have to customize the command file to fit a particular
application by adding or modifying options, libraries, memory configurations,
and section allocations. If you use the RAM initialization model, change –c to
–cr. If you use the big memory model, you can remove the 64K-word blocking
on the .bss section.

For more information about operating the linker, refer to the linker chapter in
the TMS320C3x/C4x Assembly Language Tools User’s Guide.

 2-74

3-1TMS320C3x/C4x C Language

TMS320C3x/C4x C Language

The TMS320C3x/C4x C compiler supports the C language based on the ANSI
(American National Standards Institute) C standard. This standard was
developed by a committee chartered by ANSI to standardize the C program-
ming language.

ANSI C supersedes the de facto C standard, which was described in the first
edition of The C Programming Language and based on the UNIX System V
C language. The ANSI standard is described in the American National
Standard for Information Systems–Programming Language C X3.159-1989.
The second edition of The C Programming Language, by Kernighan and
Ritchie, is based on the ANSI standard and is used here as a reference. ANSI
C encompasses many of the language extensions provided by recent C com-
pilers and formalizes many previously unspecified characteristics of the
language.

The TMS320C3x/C4x C compiler strictly conforms to the ANSI C standard.
The ANSI standard identifies certain implementation-defined features that
may differ from compiler to compiler, depending on the type of processor, the
runtime environment, and the host environment. This chapter describes how
these and other features are implemented for the TMS320C3x/C4x C
compiler.

These are the topics covered in this chapter:

Topic Page

3.1 Characteristics of TMS320C3x/C4x C 3-2.

3.2 Data Types 3-4.

3.3 Register Variables 3-7.

3.4 Pragma Directives 3-8.

3.5 The asm Statement 3-14.

3.6 Initializing Static and Global Variables 3-15.

3.7 Far Call Support 3-17.

3.8 Delay Slot Filling for Branches 3-18.

3.9 Compatibility with K&R C (–pk Option) 3-19.

3.10 Compiler Limits 3-21.

Chapter 3

Characteristics of TMS320C3x/C4x C

 3-2

3.1 Characteristics of TMS320C3x/C4x C

The ANSI standard identifies some features of the C language that are af-
fected by characteristics of the target processor, runtime environment, or host
environment. For reasons of efficiency or practicality, this set of features may
differ among standard compilers. This section describes how these features
are implemented for the TMS320C3x/C4x C compiler.

The following list identifies all such cases and describes the behavior of the
TMS320C3x/C4x C compiler in each case. Each description also includes a
reference to the formal ANSI standard and to the The C Programming
Language by Kernighan and Ritchie (K&R).

Identifiers and constants

� The first 100 characters of all identifiers are significant. Case is significant;
uppercase and lowercase characters are distinct for identifiers. These
characteristics apply to all identifiers, internal and external, in all
TMS320C3x/C4x tools. (ANSI 3.1.2, K&R A2.3)

� The source (host) and execution (target) character sets are assumed to
be ASCII. Although the compiler recognizes the syntax of multibyte
characters, there are no additional multibyte characters.

 (ANSI 2.2.1, K&R A12.1)

� Hex or octal escape sequences in character or string constants may have
values up to 32 bits. (ANSI 3.1.3.4, K&R A2.5.2)

� Character constants with multiple characters are encoded as the last
character in the sequence. For example,

’abc’ == ’c’ (ANSI 3.1.3.4, K&R A2.5.2)

Data types

� For information about the representation of data types, refer to Section
3.2. (ANSI 3.1.2.5, K&R A4.2)

� The type size_t, which is assigned to the result of the sizeof operator, is
equivalent to unsigned int. (ANSI 3.3.3.4, K&R A7.4.8)

� The type ptrdiff_t, which is assigned to the result of pointer subtraction, is
equivalent to int. (ANSI 3.3.6, K&R A7.7)

Characteristics of TMS320C3x/C4x C

3-3TMS320C3x/C4x C Language

Conversions

� Int-to-float conversions use the TMS320C3x/C4x FLOAT instruction
which produces an exact representation. However, the value may be trun-
cated when written to memory, resulting in a loss of precision towards
negative infinity.

(ANSI 3.2.1.3, K&R A6.3)

� Pointers and integers can be freely converted.
(ANSI 3.3.4, K&R A6.6)

Expressions

� When two signed integers are divided and either is negative, the quotient
is negative. A signed modulus operation takes the sign of the dividend (the
first operand). For example,

10 / –3 == –3, –10 / 3 == –3

10 % –3 == 1, –10 % 3 == –1 (ANSI 3.3.5, K&R A7.6)

� A right shift of a signed value is an arithmetic shift; that is, the sign is pre-
served. (ANSI 3.3.7, K&R A7.8)

Declarations

� The register storage class is effective for all character, short, integer, and
pointer types. (ANSI 3.5.1, K&R A8.1)

� Structure members are not packed into words (with the exception of bit
fields). Each member is aligned on a 32-bit word boundary.

(ANSI 3.5.2.1, K&R A8.3)

� A bit field of type integer is signed. Bit fields are packed into words, begin-
ning at the low-order bits, and do not cross word boundaries.

(ANSI 3.5.2.1, K&R A8.3)

Preprocessor

� The preprocessor recognizes one #pragma directive; all others are ig-
nored. For details, see Section 3.4, Pragma Directives. The recognized
pragma is:

#pragma DATA_SECTION (symbol , ” section name”)

� The standard #error preprocessor directive forces the compiler to issue a
diagnostic message and halt compilation. The TMS320C3x/C4x compiler
extends the #error directive with a #warn directive, which, like #error,
forces a diagnostic message but does not halt compilation. The syntax of
#warn is identical to #error.

(K&R A12.7)

Data Types

 3-4

3.2 Data Types

� All integer types (char, short, int, long, and their unsigned counterparts)
are equivalent types and are represented as 32-bit binary values.

� Signed types are represented in 2s-complement notation.
� The type char is a signed type, equivalent to int.
� Objects of type enum are represented as 32-bit values; in expressions, the

type enum is equivalent to int.
� Floating-point types float and double are equivalent and are represented

in the TMS320C3x/C4x 32-bit single-precision floating-point format.
� Floating–point type long double is represented in the TMS320C3x/C4x

40-bit extended-precision format.
� Although floating–point types are not directly supported, support is pro-

vided for conversion to and from IEEE single and double-precision format
for the TMS320C4x processors through the assembly language functions
TOIEEE and FRIEEE. See the TMS320C4x User’s Guide for more infor-
mation on these instructions.

The size, representation, and range of each scalar data type are listed in the
table below.

Table 3–1. TMS320C3x/C4x C Data Types

Type Size Representation Range
Minimum Maximum

char, signed char 32 bits ASCII –2147483648 2147483647

unsigned char 32 bits ASCII 0 4294967295

short 32 bits 2s complement –2147483648 2147483647

unsigned char 32 bits binary 0 4294967295

int, signed int 32 bits 2s complement –2147483648 2147483647

unsigned int 32 bits binary 0 4294967295

long, signed long 32 bits 2s complement –2147483648 2147483647

unsigned long 32 bits binary 0 4294967295

enum 32 bits 2s complement –2147483648 2147483647

float 32 bits TMS320C3x/C4x 5.877472e–39 3.4028235e38

double 32 bits TMS320C3x/C4x 5.877472e–39 3.4028235e38

long double 40 bits TMS320C3x/C4x 5.87747175e–39
 3.4028236684e38

pointers 32 bits binary 0 0xFFFFFFFF

Data Types

3-5TMS320C3x/C4x C Language

Many of the range values are available as standard macros in the header file
limits.h, which is supplied with the compiler.

Note: A TMS320C3x/C4x Byte Is 32 Bits

The ANSI definition specifies that the sizeof operator yields the number of
bytes required to store an object. ANSI further stipulates that when the
sizeof operator is applied to type char, the result is one. Since the
TMS320C3x/C4x char is 32 bits (to make it separately addressable), a byte
is also 32 bits. This yields results that you may not expect; for example,
sizeof (int) == 1 (not 4). TMS320C3x/C4x bytes and words are equivalent (32
bits).

3.2.1 The Long Double Data Type

The long double data type is handled differently than the other floating–point
data types. The features of long doubles are described below:

� Long doubles are not represented in the single–precision 32-bit format
used for floats and doubles, but in extended–precision 40-bit format.

� Long doubles require two memory words for storage; the first word con-
tains the upper 24 bits and the second word contains the lower 24 bits.

The sizeof(long double) operator returns 2.

Two instructions are required to load and/or store long doubles.

� Long doubles can be stored in one floating-point register and, like floats
and doubles, can be passed as parameters in registers.

� No register variable can hold a 40-bit value; therefore, a long double can-
not be held in a register variable across a call. It will be stored to memory
before the call and then reloaded when needed.

� In float/double to long double conversion, the lower 8 bits of the 40-bit
register will be filled with zeros. In long double to float/double conversion,
the value will be rounded to the nearest single-precision floating-point
value using the RND instruction.

� Addition, subtraction, and negation use assembly instructions when the
instructions are able to accept extended-precision floating-point values as
input.

’C3x multiplication uses the runtime-support assembly function MPY_LD;
’C4x multiplication uses the MPYF instruction.

Inversion and reciprocals use the runtime-support assembly function
INV_LD.

Data Types

 3-6

Division uses the runtime-support assembly function DIV_LD.

� The 40-bit runtime-support assembly functions are linked into their own
section called .float40.

Register Variables

3-7TMS320C3x/C4x C Language

3.3 Register Variables

The TMS320C3x/C4x C compiler treats register variables (variables declared
with the register keyword) differently, depending on whether or not you use the
optimizer.

Compiling With the Optimizer

The compiler ignores any register declarations and treats all variables as
register variables while optimizing.

Compiling Without the Optimizer

If you use the register keyword, you can suggest variables as candidates for
allocation into registers.

Eight (nine for the TMS320C4x) registers are available for register variables
in each function:

� Registers R4 and R5 (and R8 for the ’C4x) are reserved for integer register
variables in a function.

� Two registers, R6 and R7, are reserved for floating-point register variables
in a function.

� Four registers, AR4–AR7, are reserved for pointer or integer register
variables.

Any object with a scalar type (integer, floating-point, or pointer) can be de-
clared as a register variable. The register designator is ignored for objects of
other types.

The register storage class is meaningful for parameters as well as local vari-
ables. If the stack–based calling convention is used, a parameter declared as
a register is passed on the stack normally but then moved into a register upon
function entry. This improves access to the parameter within the function. If a
parameter is not declared as a register, it will be allocated local space in the
function and stored there as the function begins execution.

For more information about register variables, refer to Section 4.3 on
page 4-11.

Pragma Directives

 3-8

3.4 Pragma Directives

Pragma directives tell the compiler’s preprocessor how to treat functions. The
TMS320C3x/C4x C compiler supports the following pragmas:

� CODE_SECTION
� DATA_SECTION
� FUNC_CANNOT_INLINE
� FUNC_EXT_CALLED
� FUNC_IS_PURE
� FUNC_IS_SYSTEM
� FUNC_NEVER_RETURNS
� FUNC_NO_GLOBAL_ASG
� FUNC_NO_IND_ASG
� INTERRUPT

The arguments func and symbol must have file scope; that is, you cannot
define or declare them inside the body of a function. You must specify the
pragma outside the body of a function, and it must occur before any declara-
tion, definition, or reference to the func or symbol argument. If you do not follow
these rules, the compiler issues a warning.

Pragma Directives

3-9TMS320C3x/C4x C Language

3.4.1 The CODE_SECTION Pragma

The CODE_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma CODE_SECTION (symbol, “section name”);

The section will be declared by the compiler with the .sect assembler directive.
If you use a section name longer than eight characters, you must use COFF2.

The CODE_SECTION pragma is useful if you have code objects that you want
to link into an area separate from the .bss section.

Example 3–1 demonstrates the use of the CODE_SECTION pragma.

Example 3–1. Using the CODE_SECTION Pragma

(a) C source file

#pragma CODE_SECTION(fn, ”my_sect”)

int fn(int x)
{
 return c;
}

(b) Assembly source file

.sect ”my_sect”

.global _fn

Pragma Directives

 3-10

3.4.2 The DATA_SECTION Pragma

The DATA_SECTION pragma allocates space for the symbol in a section
named section name. The syntax of the pragma is:

#pragma DATA_SECTION (symbol, “section name”);

The DATA_SECTION pragma is useful if you have data objects that you want
to link into an area separate from the .bss section.

If you use a section name longer than eight characters, you must use COFF2.

Example 3–2 demonstrates the use of the DATA_SECTION pragma.

Example 3–2. Using the DATA_SECTION Pragma

(a) C source file

#pragma DATA_SECTION(bufferB, ”my_sect”)
char bufferA[512];
char bufferB[512];

(b) Assembly source file

 .global _bufferA
 .bss _bufferA,512
 .global _bufferB
_bufferB: .usect ”my_sect”,512,1

3.4.3 The FUNC_CANNOT_INLINE Pragma

The FUNC_CANNOT_INLINE pragma instructs the compiler that the named
function cannot be expanded inline. Any function named with this pragma
overrides any inlining you designate in any other way, such as using the inline
keyword.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_CANNOT_INLINE (func);

The argument func is the name of the C function that cannot be inlined. For
more information, see Section 2.5, Function Inlining, on page 2-42.

Pragma Directives

3-11TMS320C3x/C4x C Language

3.4.4 The FUNC_EXT_CALLED Pragma

When you use the –pm option, the compiler uses program-level optimization.
When you use this type of optimization, the compiler removes any function that
is not called, directly or indirectly, by main. You might have C functions that are
called by hand-coded assembly instead of main.

The FUNC_EXT_CALLED pragma specifies to the optimizer to keep these C
functions or any other functions that these C functions call. These functions
act as entry points into C.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_EXT_CALLED (func);

The argument func is the name of the C function that you do not want removed.

3.4.5 The FUNC_IS_PURE Pragma

The FUNC_IS_PURE pragma specifies to the optimizer that the named func-
tion has no side effects. This allows the optimizer to do the following:

� Delete the call to the function if the function’s value is not needed
� Delete duplicate functions

The pragma must appear before any declaration or reference to the function.
The syntax of the pragma is:

#pragma FUNC_IS_PURE (func);

The argument func is the name of a C function.

Pragma Directives

 3-12

3.4.6 The FUNC_IS_SYSTEM Pragma

The FUNC_IS_SYSTEM pragma specifies to the optimizer that the named
function has the behavior defined by the ANSI standard for a function with that
name.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_IS_SYSTEM (func);

The argument func is the name of the C function to treat as an ANSI standard
function.

3.4.7 The FUNC_NEVER_RETURNS Pragma

The FUNC_NEVER_RETURNS pragma specifies to the optimizer that the
function never returns to its caller.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NEVER_RETURNS (func);

The argument func is the name of the C function that does not return.

3.4.8 The FUNC_NO_GLOBAL_ASG Pragma

The FUNC_NO_GLOBAL_ASG pragma specifies to the optimizer that the
function makes no assignments to named global variables and contains no
asm statements.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NO_GLOBAL_ASG (func);

The argument func is the name of the C function that makes no assignments.

Pragma Directives

3-13TMS320C3x/C4x C Language

3.4.9 The FUNC_NO_IND_ASG Pragma

The FUNC_NO_IND_ASG pragma specifies to the optimizer that the function
makes no assignments through pointers and contains no asm statements.

The pragma must appear before any declaration or reference to the function
that you want to keep. The syntax of the pragma is:

#pragma FUNC_NO_IND_ASG (func);

The argument func is the name of the C function that makes no assignments.

3.4.10 The INTERRUPT Pragma

The INTERRUPT pragma enables you to handle interrupts directly with C
code. The argument func is the name of a function. The pragma syntax is:

#pragma INTERRUPT (func);

Except for _c_int00, which is the name reserved for the system reset interrupt
for C programs, the name of the interrupt (the func argument) does not need
to conform to a naming convention.

The asm Statement

 3-14

3.5 The asm Statement

The TMS320C3x/C4x C compiler allows you to imbed TMS320C3x/C4x
assembly language instructions or directives directly into the assembly lan-
guage output of the compiler. This capability is provided through an extension
to the C language: the asm statement. The asm statement is syntactically like
a call to a function named asm, with one string-constant argument:

asm(” assembler text ”);

The compiler copies the argument string directly into your output file. The
assembler text must be enclosed in double quotes. All the usual character
string escape codes retain their definitions. For example, you can insert a
.string directive that contains quotes:

asm(”STR: .string \”abc\””);

The inserted code must be a legal assembly language statement. Like all
assembly language statements, the line must begin with a label, a blank, a tab,
or a comment (asterisk or semicolon). The compiler performs no checking on
the string; if there is an error, it will be detected by the assembler. For more
information, refer to the TMS320C3x/C4x Assembly Language Tools User’s
Guide.

These asm statements do not follow the syntactic restrictions of normal C
statements: they can appear as either a statement or a declaration, even out-
side blocks. This is particularly useful for inserting directives at the very begin-
ning of a compiled module.

Note: Avoid Disrupting the C Environment With asm Statements

Be extremely careful not to disrupt the C environment with asm statements.
The compiler does not check the inserted instructions. Inserting jumps and
labels into C code can cause unpredictable results in variables manipulated
in or around the inserted code. Directives that change sections or otherwise
affect the assembly environment can also be troublesome. Be especially
careful when you use the optimizer with asm statements. Although the opti-
mizer cannot remove asm statements (except where such statements are
totally unreachable), it can significantly rearrange the code order near asm
statements, possibly causing undesired results. The asm command is pro-
vided so that you can access features of the hardware, which, by definition,
C is unable to access.

Initializing Static and Global Variables

3-15TMS320C3x/C4x C Language

3.6 Initializing Static and Global Variables

The ANSI C standard specifies that static and global variables without explicit
initializations must be specifically initialized to zero before the program begins
running. This task is typically done when the program is loaded. Because the
loading process depends heavily on the specific environment of the target
application system, the TMS320C3x/C4x C compiler itself does not preinitial-
ize variables; therefore, it is up to your application to fulfill this requirement.

If your loader does not preinitialize variables, you can use the linker to
preinitialize the variables to 0 in the object file. In the linker command file, use
a fill value of 0 in the .bss section:

SECTIONS
{

...

.bss: {} = 0x00;

...
}

Because the linker writes a complete load image of the zeroed .bss section into
the output COFF file, this method may have the unwanted effect of significantly
increasing the size of the output file.

Initializing Static and Global Variables With the const Type Qualifier

Static and global variables with the type qualifier const are initialized
differently than other types of static and global variables.

const static and global variables without explicit initializations may or may not
not be preinitialized to zero, for the same reasons discussed in Section 3.6.
For example:

const int zero; /* may not be initialized to zero */

All constants that initialize global variables (with or without the const qualifier)
will be placed in the .cinit section. All constants contained in expressions or
that initialize local variables (with or without the const qualifier) will either be
placed in the CONST table or will be loaded with immediate addressing.

Values initialized with the const qualifier are not placed in the .const section
because the values must be accessed with direct addressing. With the small
memory model, it would be necessary to require that the .bss and the .const
sections be on the same data page if the values were placed in the .const
section.

The CONST table and the .const section are not the same. The CONST table
contains the following:

Initializing Static and Global Variables

 3-16

� Integer constant expressions wider than 16 bits

� Floating-point constant expressions with exponents larger than 4 bits or
mantissas larger than 11 bits

� Integer local variable initializers wider than 16 bits

� Floating-point local variable initializers with exponents larger than 4 bits
or mantissas larger than 11 bits

� Addresses of global variables

� Addresses of string constants

The .const section contains the following:

� Tables for switch statements

� String constants that do not initialize global variables

� The CONST table when using big model

Far Call Support

3-17TMS320C3x/C4x C Language

3.7 Far Call Support

A function can be declared with the keyword far to signify to the compiler that
calls to that function should be made using a 32-bit far call (an indirect call
through a register) instead of a label. The resulting assembly code will load the
address of the function into a register and then call unconditionally to that reg-
ister. The far call allows address offsets of greater than 16 bits to be used when
calling that function, at the cost of one additional instruction (the address load).

The compiler is required to make calls to certain runtime–support assembly
functions to accomplish various initialization and arithmetic tasks. (These
functions are listed in Table 4–3 on page 4-19.) The shell’s –ml option (page
2-20) can be used to cause the compiler to generate far calls to these func-
tions. Using far calls in this way may be appropriate if, for example, functions
that call the runtime-support functions are separated from them by offsets of
greater than 16 bits.

To make far calls to other runtime-support functions, you must extract the
source files from the rts.src file, add the far keyword to the desired functions,
and then recompile the library. The library-build utility described in Section 6.1
allows you to extract source files and recompile the library.

It is important to add the far keyword to the function prototypes in the appropri-
ate include files to ensure far call generation in the source files.

Delay Slot Filling for Branches

 3-18

3.8 Delay Slot Filling for Branches

The compiler includes support for filling the three delay slots generated by the
TMS320C3x/C4x for branches.

The compiler handles unconditional branches by first trying to fill the delay
slots with instructions located before the branch. It will then try to move up in-
structions from the destination block. Almost any type of instruction can be
moved, except for those that modify the PC.

Conditional branches are handled a little differently. The compiler will try to fill
delay slots with:

� conditional load instructions that include known, “safe” source operands
(such as local auto variables, parameters, and constants). If you know that
all memory will return an appropriate value when accessed, you can use
the –ms shell option to inform the compiler that these constraints are not
necessary when filling delay slots.

� instructions located immediately following the delay slots of the
conditional block (i.e., instructions that will be executed if the condition is
false)

� instructions located at the destination block (i.e., instructions that will be
executed if the condition is true)

If the shell option –mp is used, the compiler will try to copy instructions rather
than moving them, which can lead to significant increases in speed.

If the compiler cannot fill any, or at least a majority, of the delay slots, it will con-
dense the delayed branch into a non-delayed branch instruction (unless the
–mp option has been specified). Any instructions found in the delay slots will
be placed before the branch instruction. The compiler makes this change in
an attempt to conserve code size by deleting the NOPs that would normally
be placed in the empty delay slots. If the –mp option has been specified, the
compiler will not condense delayed branches in this manner, but will leave
branches even with only one slot filled in an attempt to take advantage of cycle
savings.

Compatibility With K&R C (–pk Option)

3-19TMS320C3x/C4x C Language

3.9 Compatibility With K&R C (–pk Option)

The ANSI C language is a superset of the de facto C standard defined in the
first edition of The C Programming Language (K&R). Most programs written
for earlier non-ANSI C versions of the TMS320C3x/C4x C compiler and other
non-ANSI compilers should correctly compile and run without modification.

However, there are subtle changes in the language that may affect existing
code. Appendix C in K&R (second edition) summarizes the differences be-
tween ANSI C and the previous C standard, called K&R C.

To simplify the process of compiling existing C programs with the
TMS320C3x/C4x ANSI C compiler, the compiler has a K&R option (–pk) that
modifies some of the semantic rules of the language for compatibility with older
code. In general, the –pk option relaxes requirements that are stricter for ANSI
C than for previous C standards. The –pk option does not disable any new
features of the language such as function prototypes, enumerations,
initializations, or preprocessor constructs. Instead, –pk simply liberalizes the
ANSI rules without revoking any of the features.

The specific effects of –pk are include:

� The integral promotion rules have changed regarding promoting an un-
signed type to a wider, signed type. Under K&R, the result type was an
unsigned version of the wider type; under ANSI, the result type is a signed
version of the wider type. This affects options that perform differently when
applied to signed or unsigned operands. Namely, comparisons, division
(and mod), and right shift. In this example, assume that short is narrower
than int:

unsigned short u
int i;
if (u<i) .../* SIGNED comparison, unless –pk used */

� ANSI prohibits two pointers to different types from being combined in an
operation. In most K&R compilers, this situation is only a warning. Such
cases are still diagnosed when –pk is used, but with less severity:

int *p;
char *q = p; /* error without –pk, warning with –pk */

Even without –pk, a violation of this rule is a code-E (recoverable) error. An
alternative to using –pk to work around this situation is to use –pe, which
converts code-E errors to warnings.

� External declarations with no type or storage class (identifier only) are ille-
gal in ANSI but legal in K&R:

a; /* illegal unless –pk used */

Compatibility With K&R C (–pk Option)

 3-20

� ANSI interprets file scope definitions that have no initializers as tentative
definitions: in a single module, multiple definitions of this form are fused
together into a single definition. Under K&R, each definition is treated as
a separate definition, resulting in multiple definitions of the same object
(and usually an error). For example:

int a;
int a; /* illegal if –pk used, OK if not */

Under ANSI, the result of these two declarations is a single definition for
the object a. For most K&R compilers, this sequence is illegal because a is
defined twice.

� ANSI prohibits, but K&R allows, objects with external linkage to be
redeclared as static:

extern int a;
static int a; /* illegal unless –pk used */

� Unrecognized escape sequences in string and character constants are
explicitly illegal under ANSI but ignored under K&R:

char c = ’\q’; /* same as ’q’ if –pk used, error
if not */

� ANSI specifies that bit fields must be of type integer or unsigned. With –pk,
bit fields can be legally declared with any integer type. For example,

struct s
{

short f : 2; /* illegal unless –pk used */
};

� K&R syntax allows assignments to structures returned from a function:

f().x = 123 /* illegal unless –pk used */

� K&R syntax allows a trailing comma in enumerator lists:

enum { a, b, c, }; /* illegal unless –pk used */

� K&R syntax allows trailing tokens on preprocessor directives:

#endif NAME /* illegal unless –pk used */

Compiler Limits

3-21TMS320C3x/C4x C Language

3.10 Compiler Limits

Due to the variety of host systems supported by the TMS320C3x/C4x C
compiler and the limitations of some of these systems, the compiler may not
be able to successfully compile source files that are excessively large or com-
plex. Most of these conditions occur during the first compilation pass (parsing).
When such a condition occurs, the parser issues a code-I diagnostic message
indicating the condition that caused the failure; usually the message also spec-
ifies the maximum value for whatever limit has been exceeded. The code
generator also has compilation limits but fewer than the parser.

In general, exceeding any compiler limit prevents continued compilation, so
the compiler aborts immediately after printing the error message. The only way
to avoid exceeding a compiler limit is to simplify the program or parse and pre-
process in separate steps.

Many compiler tables have no absolute limits but rather are limited only by the
amount of memory available on the host system. Table 3–2 specifies the limits
that are absolute. When two values are listed, the first is for PCs (DOS or
OS/2), and the second is for other hosts. All the absolute limits equal or exceed
those required by the ANSI C standard.

On smaller host systems such as PCs, the optimizer may run out of memory.
If this occurs, the optimizer terminates and the shell continues compiling the
file with the code generator. This results in a file compiled with no optimization.
The optimizer compiles one function at a time, so the most likely cause of this
is a large or extremely complex function in your source module. To correct the
problem, your options are:

� don’t optimize the module in question

� identify the function that caused the problem and break it down into
smaller functions

� extract the function from the module and place it in a separate module that
can be compiled without optimization so that the remaining functions can
be optimized.

� Use the protected-mode compiler

Compiler Limits

 3-22

Table 3–2. Absolute Compiler Limits

Description Limits

Filename length 256 characters

Source line length 16K characters (see note 1)

Length of strings built from # or ## 512 characters (see note 2)

Macro definitions Allocated from available system
memory

Macros predefined with –d 32

Macro parameters 32

Macro nesting 32 levels (see note 3)

#include search paths 32 paths (see note 4)

#include file nesting 32 levels

Conditional inclusion (#if) nesting 32 levels

Nesting of struct, union, or prototype dec-
larations

20 levels

Function parameters 32 parms

Array, function, or pointer derivations on
a type

12 derivations

Aggregate initialization nesting 32 levels

Static initializers ≈ 1500 per initialization

Local initializers ≈ 150 per block

Nesting of declarations in structs, unions,
or prototypes

32 levels

Global symbols 2000 PCs
10000 All others

Block scope symbols visible at any point 500 PCs
1000 All others

Number of unique string constants 400 PCs
1000 All others

Number of unique floating-point
constants

400 PCs
2000 All others

Notes: 1) After splicing of \ lines. This limit also applies to any single macro definition or invoca-
tion.

2) Before concatenation. All other character strings are unrestricted.

3) Includes argument substitutions.

4) Includes –i and C_DIR directories.

4-1Runtime Environment

Runtime Environment

This section describes the TMS320C3x/C4x C runtime environment. To
ensure successful execution of C programs, it is critical that all runtime code
maintain this environment. If you write assembly language functions that inter-
face to C code, follow the guidelines in this chapter.

Topics in this chapter include:

Topic Page

4.1 Memory Model 4-2.

4.2 Object Representation 4-7.

4.3 Register Conventions 4-11.

4.4 Function Structure and Calling Conventions 4-15.

4.5 Interfacing C with Assembly Language 4-22.

4.6 Interrupt Handling 4-30.

4.7 Runtime-Support Arithmetic Routines 4-32.

4.8 System Initialization 4-36.

Chapter 4

Memory Model

 4-2

4.1 Memory Model

The C compiler treats memory as a single linear block that is partitioned into
subblocks of code and data. Each block of code or data that a C program gen-
erates will be placed in its own contiguous space in memory. The compiler
assumes that a full 32-bit address space is available in target memory.

Note: The Linker Defines the Memory Map

The linker , not the compiler, defines the memory map and allocates code
and data into target memory. The compiler assumes nothing about the types
of memory available, about any locations not available for code or data
(holes), or about any locations reserved for I/O or control purposes. The
compiler produces relocatable code that allows the linker to allocate code
and data into the appropriate memory spaces. For example, you can use the
linker to allocate global variables into fast internal RAM or to allocate
executable code into internal ROM. Each block of code or data could be allo-
cated individually into memory, but this is not a general practice. (An
exception to this is memory-mapped I/O, although physical memory loca-
tions can be accessed with C pointer types.)

4.1.1 Sections

The compiler produces six relocatable blocks of code and data; these blocks,
called sections, can be allocated into memory in a variety of ways, to conform
to a variety of system configurations. For more information about sections,
please read the Introduction to Common Object File Format in the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

There are two basic types of sections:

� Initialized sections contain data or executable code. The C compiler
creates three initialized sections: .text, .cinit, and .const.

� The .text section is an initialized section that contains all the
executable code as well as floating-point constants.

� The .cinit section is an initialized section that contains tables with the
values for initializing variables and constants.

� The .const section is an initialized section that contains floating-point
constants and switch tables.

� Uninitialized sections reserve space in memory (usually RAM). A pro-
gram can use this space at runtime for creating and storing variables. The
compiler creates three uninitialized sections: .bss, .stack, and .sysmem.

Memory Model

4-3Runtime Environment

� The .bss section reserves space for global and static variables; in the
small model, the .bss section also reserves space for the constant
table. At program startup, the C boot routine copies data out of the
.cinit section (which may be in ROM) and stores it in the .bss section.

� The .stack section allocates memory for the system stack. This
memory is used to pass arguments to functions and to allocate local
variables.

� The .sysmem section is a memory pool, or heap, used by the
dynamic memory functions, malloc, calloc, and realloc. If a program
does not link these functions, the linker does not create the .sysmem
section.

For the TMS320C32 only, the .sysm8 section and .sysm16 section
are used by special 8-bit and 16-bit versions of the dynamic memory
management functions. See Section 4.1.3 for more information.

The linker takes the individual sections from different models and combines
sections with the same name to create output sections. Note that the
assembler creates three default sections (.text, .bss, and .data); the C
compiler, however, does not use the .data section.

The complete program is made up of the compiler output sections, plus the
assembler’s .data section. The linker takes the individual sections from differ-
ent modules and combines sections having the same name to create the
output sections. You can place these output sections anywhere in the address
space, as needed, to meet system requirements. The .text, .cinit, .const, and
.data sections can be linked into either ROM or RAM. The .bss, .stack, and
.sysmem sections should be linked into some type of RAM. Note, however,
that the .bss and .const sections must be allocated in the same 64K data page
for a small model, see page 4-5.

For more information about allocating sections into memory, see the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

4.1.2 C System Stack

The C compiler uses a software stack to:

� Save function return addresses
� Allocate local variables
� Pass arguments to functions
� Save temporary results
� Save registers
� Save the processor status

Memory Model

 4-4

The runtime stack grows up from low addresses to higher addresses. The
compiler uses two auxiliary registers to manage this stack:

SP is the stack pointer (SP); it points to the current top of the stack.

AR3 is the frame pointer (FP); it points to the beginning of the current
frame. Each function invocation creates a new frame at the top of the
stack, from which local and temporary variables are allocated.

The C environment manipulates these registers automatically. If you write any
assembly language routines that use the runtime stack, be sure to use these
registers correctly. (For more information about using these registers, see
Section 4.3, page 4-11; for more information about the stack, see Section 4.4,
page 4-15.)

The stack size is set by the linker. The linker also creates a global symbol,
__STACK_SIZE, and assigns it a value equal to the size of the stack in
words. The default stack size is 1K (400h) words. This size allows the stack to
fit into one of the on-chip RAM blocks. You can change the size of the stack at
link time by using the –stack option on the linker command line and specifying
the size of the stack as a constant immediately after the option. For more
information about the –stack option, refer to the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

At system initialization, the SP is set to a designated address for the bottom-
of-stack. This address is the first location in the .stack section. Since the
position of the stack depends on where the .stack section is allocated, the
actual position of the stack is determined at link time. If you allocate the stack
as the last section in memory (highest address), the stack has unlimited
space for growth (within the limits of system memory).

Note: Stack Overflow

The compiler provides no means to check for stack overflow during compila-
tion or at runtime. A stack overflow will disrupt the runtime environment,
causing your program to fail. Be sure to allow enough space for the stack to
grow.

4.1.3 Dynamic Memory Allocation

The runtime-support library supplied with the compiler contains several
functions (such as malloc, calloc, and realloc) that allow you to dynamically
allocate memory for variables at runtime. Dynamic allocation is not a standard
part of the C language; it is provided by standard runtime-support functions.

Memory is allocated from a global pool, or heap, that is defined in the
.sysmem section. You can set the size of the .sysmem section by using the

Memory Model

4-5Runtime Environment

–heap option when you link your program. Specify the size of the memory
pool as a constant after the –heap option on the linker command line. The
linker also creates a global symbol, __SYSMEM_SIZE, and assigns it a value
equal to the size of the heap in words. The default size is 1K words. For more
information on the heap option, refer to the TMS320C3x/C4x Assembly
Language Tools User’s Guide.

Dynamically allocated objects are not addressed directly (they are always
accessed with pointers), and the memory pool is in a separate section;
therefore, the dynamic memory pool can have an unlimited size, even in the
small memory model. This allows you to use the more efficient small memory
model, even if you declare large data objects. To conserve space in the .bss,
you can allocate large arrays from the heap instead of declaring them as
global or static. For example, instead of a declaration such as:

struct big table[10000];

use a pointer and call the malloc function;

struct big *table
table = (struct big *)malloc(10000 * sizeof (struct big));

For the TMS320C32, the runtime support library contains the following 8-bit
and 16-bit versions of the dynamic memory management functions:

calloc8, free8, malloc8, bmalloc8, minit8, realloc8

calloc16, free16, malloc16, bmalloc16, minit16, realloc16

These functions allocate space from the .sysm8 and .sysm16 uninitialized
sections rather than the .sysmem section. The sizes of the .sysm8 and
.sysm16 sections are set by specifying the –heap8 and –heap16 linker
options, respectively. If the 8-bit or 16-bit memory management functions are
used but the –heap8 and –heap16 options are not specified, the linker will allo-
cate the default size of 1K 8-bit or 16-bit words. The 8-bit or 16-bit memory
functions cause the linker to set the constant heap size values for the
_SYSMEM8_SIZE and _SYSMEM16_SIZE symbols. The stdlib.h header file
should be included in any file that uses these functions.

4.1.4 Big and Small Memory Models

The compiler supports two memory models that affect how .bss is allocated
into memory. Neither model restricts the size of the .text or .cinit sections. Both
models restrict the size of a single function to 32K words of code or less; this
allows the compiler to use relative conditional jumps over the entire range of
the function.

� The small memory model , which is the default, requires that the entire
.bss section fit within a single 64K-word memory data page (65536 words).

Memory Model

 4-6

This means that the total space for all static and global data in the program
must be less than 64K and that the .bss cannot cross any 64K address
boundaries. The compiler sets the data-page pointer register (DP) during
runtime initialization to point to the beginning of the .bss. Then the com-
piler can access all objects in the .bss (global and static variables and
constant tables) with direct addressing (@) without modifying the DP.

� The big memory model does not restrict the size of the .bss; unlimited
space is available for global and static data. However, when the compiler
accesses any global or static object that is stored in the .bss, it must first
ensure that the DP correctly identifies the memory page where the object
is stored. To accomplish this, the compiler must set the DP by using an
LDP or LDPK (load data-page pointer) instruction each time a static or
global data item is accessed. This task produces one extra instruction
word and several extra machine cycles (one cycle for the LDP instruction
plus one or more pipeline delay cycles if the object is accessed by the next
instruction).

For example, the following compiler-generated assembly language uses
the LDP instruction to set the DP to the correct page before accessing the
global variable x. This is a TMS320C3x example (the sequence is one
cycle shorter for the ’C4x):

*** _x is a global variable ***

LDP _x ; 1 extra word, 1 cycle
LDI @_x,R0 ; 3 cycles (2 pipeline delays)

To use the big memory model, invoke the compiler with the –mb option.
For more information, refer to Section 2.3, Using Runtime Models, on
page 2-34.

4.1.5 RAM and ROM Models

The C compiler produces code that is suitable for use as firmware in a
ROM-based system. In such a system, the initialization tables in the .cinit
section (used for initialization of globals and statics) are stored in ROM. At sys-
tem initialization time, the C boot routine copies data from these tables from
ROM to the initialized variables in .bss (RAM).

In situations where a program is loaded directly from an object file into memory
and then run, you can avoid having the .cinit section occupy space in memory.
A user-defined loader can read the initialization tables directly from the object
file (instead of from ROM) and perform the initialization directly at load time
(instead of at runtime). You can specify this to the linker by using the –cr linker
option. For more information, refer to Section 4.8, System Initialization, on
page 4-36.

Object Representation

4-7Runtime Environment

4.2 Object Representation

This section explains how various data objects are sized, aligned, and
accessed.

4.2.1 Data Type Storage

� All basic types are 32 bits wide and stored in individual words of memory.
No packing is performed except on bit fields, which are packed into words.
Bit fields are allocated from LSB (least significant bit) to MSB in the order
in which they are declared.

� No object has any type of alignment requirement; any object can be stored
on any 32-bit word boundary. Objects that are members of structures or
arrays are stored just as they are individually. Members are not packed
into structures or arrays (unless the members are bit fields).

� The integer types char, short, int, and long are all equivalent, as are their
unsigned counterparts. Objects of type enum are also represented as
32-bit words.

� The float and double types are equivalent; both types specify objects rep-
resented in the TMS320C3x/C4x 32-bit floating-point format.

� The long double type is represented in the TMS320C3x/C4x 40-bit format.

For more information on data types, refer to Section 3.2, Data Types, on
page 3-4.

4.2.2 Long Immediate Values

The TMS320C3x/C4x instruction set has no immediate operands that are
longer than 16 bits. The compiler occasionally needs to use constants that are
too long to be immediate operands. This occurs with signed integer constants
that have more than 15 significant nonsign bits, with unsigned integers that
have more than 16 significant bits, or with floating-point constants that have
more than 11 significant nonsign bits in the mantissa.

4.2.3 Addressing Global Variables

The compiler generates the addresses of global and static symbols for index-
ing arrays or manipulating pointers. Because these addresses may be up to
32 bits wide and immediate operands are limited to 16 bits, these addresses
are treated like long constants. Subsection 4.2.5 on page 4-9 describes the
structure of the constant table.

Object Representation

 4-8

4.2.4 Character String Constants

In C, a character string constant can be used in either of two ways:

� It can initialize an array of characters; for example:

char s[] = ”abc”;

When a string is used as an initializer, it is simply treated as an initialized
array; each character is a separate initializer. For more information about
initialization, refer to Section 4.8, System Initialization, on page 4-36.

� It can be used in an expression; for example:

strcpy (s, ”abc”);

When a string is used in an expression, the string itself is defined in the
.const section with the .byte assembler directive, along with a unique label
that points to the string (the terminating 0 byte is also included). In the
following example, the label SL5 points to the string from the example
above:

.const
SL5 .byte ”abc”, 0

String labels have the form SLn, n being a number assigned by the
compiler to make the label unique. These numbers begin at 0 with an
increase of 1 for each string defined. All strings used in a source module
are defined at the end of the compiled assembly language module.

The label SLn represents the address of the string constant. The compiler
uses this label to reference the string in the expression. Like all addresses
of static objects, this address must be stored in the constant table in order
to be accessed. Thus, in addition to storing the string itself in the .const
section, the compiler uses the following directive statement to store the
string’s address in the constant table:

.word SLn

If the same string is used more than once within a source module, the
string will not be duplicated in memory. All uses of an identical string
constant share a single definition of the string.

Because strings are stored in the .const section (possibly in ROM) and
shared, it is bad practice for a program to modify a string constant. The
following code is an example of incorrect string use:

char *a = ”abc”
a[1] = ’x’; /* Incorrect! */

Object Representation

4-9Runtime Environment

4.2.5 The Constant Table

The constant table contains definitions of all the objects that the compiler must
access, but are too wide to be used as immediate operands. Such objects
include:

� integer constants that are wider than 16 bits

� floating-point constants that have exponents larger than 4 bits or
mantissas larger than 11 bits

� integer local variable initializers wider than 16 bits

� floating–point local variable initializers with exponents larger than 4 bits or
mantissas larger than 11 bits

� addresses of global variables

� addresses of string constants

The constant table is simply a block of memory that contains all such objects.
The compiler builds the constant table at the end of the source module by using
the .word and .float assembler directives. Each entry in the table occupies one
word. The label CONST is the address of the beginning of the table. For exam-
ple:

CONST: .word 011223344h ; 32 bit constant
.float 3.14159265 ; floating–point
.word _globvar ; address of global
.word SL23 ; address of string

Objects in the table are accessed with direct addressing; for example:

LDI @const+offset, R0

In this example, offset is the index into the constant table of the required object.
As with string constants, identical constants used within a source module
share a single entry in the table.

In the big memory model, the constant table is built in the .const section (and
is not copied into RAM). The compiler must insure that the DP register is
correctly loaded before accessing the object in the table, just as with accessing
global variables. This requires an LDP instruction before each access of the
constant table.

The small model, however, avoids the overhead of loading the DP by requiring
that all directly addressable objects, including all global variables as well as the
constant table, are stored on the same memory page. Of course, global vari-
ables must be stored in RAM. For the code to be ROM-able, the constant table

Object Representation

 4-10

must be in ROM. In order to get them on the same page, the boot routine must
copy the constant table from permanent storage in ROM to the global page in
RAM. The compiler accomplishes this by placing the data for the constant
table in the .cinit section and allocating space for the table itself .bss. Thus the
table is automatically built into RAM through the autoinitialization process.

Note that the small memory model restricts the total size of the global data
page to 64K words.

As with all autoinitialization, you can avoid the extra use of memory required
by the .cinit section by using the –cr linker option and a “smart” loader to per-
form the initialization directly from the object file. For more information about
autoinitialization, refer to Section 4.8 on page 4-36.

Register Conventions

4-11Runtime Environment

4.3 Register Conventions

Strict conventions associate specific registers with specific operations in the
C environment. If you plan to interface an assembly language routine to a C
program, it is important that you understand these register conventions.

The register conventions dictate both how the code generator uses registers
and how values are preserved across function calls. There are two types of
register variable registers, save on call and save on entry. The distinction
between these two types of register variable registers is the method by which
they are preserved across calls. It is the called function’s responsibility to pre-
serve save on entry register variables, and the calling function’s responsibility
to preserve save on call register variables.

The following table summarizes how the code generator uses the
TMS320C3x/C4x registers and shows which registers are defined to be pre-
served across function calls.

Table 4–1. Register Use and Preservation Conventions

Register Usage Preserved by Call

R0 Integer and float expressions
Scalar return values

No

R1 Integer and float expressions No

R2–R3 Integer and float expressions No

R4–R5 Integer register variables Integer part preserved

R6–R7 Float register variables Floating part preserved

AR0–AR1 Pointer expressions No

AR2 Pointer expressions No

AR3 Frame Pointer (FP) Yes

AR4–AR7 Pointer register variables Yes

IR0 Extended frame offsets No

IR1 Extended frame offsets No

BK Integer expressions No

RC, RS, RE Block (structure) copy No

ST Status register No

SP Stack pointer Yes

DP Accessing globals (big model only) Yes in small model
No in big model

TMS320C4x Only

R8 Integer register variables Integer part preserved

R9–R11 Integer and float variables No

Register Conventions

 4-12

4.3.1 Register Variables

Register variables are local variables or compiler temporaries defined to
reside in a register rather than in memory. Storing local variables in registers
allows significantly faster access, which improves the efficiency of compiled
code. Table 4–2 shows the registers that are reserved to store register vari-
ables.

Table 4–2. Registers Reserved for Register Variables

Register Description

R4, R5 Integer register variables

R6, R7 Floating-point register variables

R8 (’C4x only) Integer register variables

AR4–AR7 Pointer register variables

These registers are preserved across calls. When a function uses register
variables, it must save the contents of each used register on entrance to the
function, then restore the saved contents on exit. This ensures that a called
function does not disrupt the register variables of the caller.

When you are not using the optimizer (–o option), you can allocate register
variables with the register keyword. The code generator tries to allocate these
variables to the registers listed in Table 4–2 if the value needs to be preserved
across calls. If a function declares more register variables than are available
for that type, the excess variables are treated as automatic variables and are
stored in memory on the local frame.

When you are using the optimizer, the compiler ignores the register keyword
and treats all variables as register variables. The code generator allocates as
many variables to registers as possible, based on the life of a variable and
when it is used.

In general, registers not listed in Table 4–2 are not preserved across function
calls, so they are used only for variables that do not overlap any calls.
However, if the –pm shell option is used to create a single assembly file, the
code generator can more accurately determine the register usage and thereby
safely use additional registers not listed in Table 4–2.

4.3.2 Expression Registers

The compiler uses registers not being used for register variables to evaluate
expressions and store temporary results. The code generator keeps track of

Register Conventions

4-13Runtime Environment

the current contents of the registers and attempts to allocate registers for
expressions in a way that preserves the useful contents in the registers
whenever possible. This allows the compiler to reuse register data, to take
advantage of the TMS320C3x/C4x’s efficient register addressing modes, and
to avoid unnecessary accesses of variables and constants.

The contents of the expression registers are not preserved across function
calls. Any register that is being used for temporary storage when a call occurs
is saved to the local frame before the function is called. This prevents the called
function from ever having to save and restore expression registers.

If the compiler needs another register for storing an expression evaluation, a
register that is being used for temporary storage can be saved on the local
frame and used for the expression analysis.

4.3.3 Return Values

In general, when a value of any scalar type (integer, pointer, or floating-point)
is returned from a function, the value is placed in register R0 when the function
returns. However, in the register–argument calling convention used for
runtime support assembly files, pointers are returned in AR0.

4.3.4 Stack and Frame Pointers

The TMS320C3x/C4x C compiler uses a conventional stack mechanism for
allocating local (automatic) variables and passing arguments to functions.
When a function requires local storage, it creates its own working space (local
frame) from the stack. The local frame is allocated during the function’s entry
sequence and deallocated during the return sequence.

Two registers, the stack pointer (SP) and the frame pointer (FP), manage the
stack and the local frame. The SP is a TMS320C3x/C4x register dedicated to
managing the stack. The compiler uses SP in the conventional way: the stack
grows toward higher addresses, and the stack pointer points to the top location
(highest memory) on the stack. Register AR3 is dedicated as the frame pointer
(FP). The FP points to the beginning or bottom of the local frame for the current
function. All objects stored in the local frame are referenced indirectly through
the FP.

Both the FP and the SP must be preserved across function calls. The function
calls automatically preserve the SP because everything pushed for the call is
popped on return. The FP is preserved as a specific part of a function’s entry
and exit sequence. For more information about stack and frame pointer use
during function calls, refer to Section 4.4, Function Structure and Calling
Connections, page 4-15.

Register Conventions

 4-14

4.3.5 Other Registers

Other registers that have specific functions are discussed below.

� The data-page pointer (DP) is used to access global and static variables.
In the small model, the DP is set at program startup and never changed.
If the DP is modified by an assembly language function in the small model,
the function must preserve the value.

� Index registers IR0 and IR1 are used for array indexing and when an offset
of more than 8 bits (�255 words) is required for indirect addressing. In
addition, the compiler can use both for a general-purpose integer register
variable if it is not needed for other purposes. Neither register is preserved
across calls.

� The BK register is used by the compiler as an integer register variable. Its
value is not preserved across calls.

� The compiler uses block-repeat registers (RC, RE, and RS) to generate
efficient block copy operations for assigning large (>5 words) structures.
These registers can be used for integer register variables if not being used
for block copy operations. The repeat register values are not preserved
across calls; therefore, no calls can be made inside of a loop structured
with RPTB or RPTS instructions.

Function Structure and Calling Conventions

4-15Runtime Environment

4.4 Function Structure and Calling Conventions

The C compiler imposes a strict set of rules on function calls. Except for special
runtime-support functions, any function that calls or is called by a C function
must follow these rules. Failure to adhere to these rules can disrupt the C
environment and cause a program to fail.

Figure 4–1 illustrates a typical function call. In this example, parameters are
passed to the function, and the function uses local variables. On the “Before
Call” stack, SP points to the last saved register, and FP points to the previous
FP. The “Push Arguments” stack displays the stack just before executing the
first assembly instruction of the called function (after the last instruction of the
calling function). The “Allocate Local Frame” stack displays the stack after all
frame allocation. On this stack, SP points to the last saved register. This
example shows allocation of a local frame for the called function. Functions
that have no arguments passed on the stack and no local variables do not allo-
cate a local frame.

If you use the register-argument model (see Section 4.4.2), some or all of the
arguments may be passed in registers rather than on the stack as shown.

Function Structure and Calling Conventions

 4-16

Figure 4–1. Stack Use During a Function Call

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Caller’s Local
Frame

SP

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

Push Arguments,
Call Function

Return
Address

Allocate
Local Frame

Before
CALL

argumentn

argument1

FP

SP

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

FP

SP

FP

Caller’s Local
Frame

Caller’s Local
Frame

Argument1
�

�

�

Argument n

Argument1
�

�

�

Argument n

Return
Address

Old FP

Low

High

Local Frame

Saved
Registers

4.4.1 Function Call, Standard Runtlme Model

In general, a function performs the following tasks when it calls another
function.

1) The caller pushes the arguments on the stack in reverse order (the right-
most declared argument is pushed first, and the leftmost is pushed last).
This places the leftmost argument at the top of the stack when the function
is called.

2) The caller calls the function.

3) When the called function is complete, the caller pops the arguments off the
stack with the following instruction:

SUBI n,SP (n is the number of argument words that were pushed)

Function Structure and Calling Conventions

4-17Runtime Environment

4.4.2 Function Call, Register Argument Runtime Model

In general, when the register argument model is in use, a function performs
the following tasks when it calls another function.

1) Six registers, AR2, R2, R3, RC, RS, and RE, are used to pass arguments
as follows:

� The first two (left-most) floating-point (float, double, or long double)
arguments are passed in R2 and R3.

� The remaining integer or pointer arguments are passed in the remain-
ing registers in the above list, in order. Note that structures and unions
can be passed by address as an integer argument.

� All arguments that are not assigned to registers, either because of
type incompatibility or because all registers have been exhausted, are
pushed onto the stack in reverse order (right-to-left).

A seventh register, AR0, may be used to return structures and unions
by address.

In Figure 4–2, several function prototypes are shown with the location
of each argument indicated to illustrate the conventions.

Figure 4–2. Register Argument Conventions

int fl(int *a, int b, int c); /* function call */

 AR2 R2 R3 <–––where parameters are placed

int f2(int a, float b, int *c, struct A d, float e, Int f); /* call */

 AR2 R2 RC RS R3 RE <–––parameters

int f3(float a, int *b, float c, int d, float e); /* call */

 R2 AR2 R3 RC STACK <–––parameters

int f4(struct x a, int b, int C, int d, int e, int f, int g, int h);

 AR2 R2 R3 RC RS RE STACK STACK

Notice how R2 and R3 are allocated first to any floats in the argument
list. Then, a second pass allocates remaining arguments to remaining
registers.

Function Structure and Calling Conventions

 4-18

If a function is declared with an ellipsis, indicating that it can be called
with varying numbers of arguments, the convention is modified
slightly. The last explicitly declared argument is passed on the stack,
so that its stack address can act as a reference for accessing the
undeclared arguments. For example:

int vararg(int a, int b, ...);

 AR2 STACK STACK STACK STACK...

2) The caller calls the function.

3) The caller pops the arguments that were passed on the stack, if any.

Register Argument Model for Runtime-Support Functions

The runtime-support assembly (.asm) files use a modified version of the
register argument calling convention.

Four registers, R1, R2, R3, and R4, are used to pass arguments as follows:

� Integer, floating-point, and pointer arguments are passed in the
registers in the above list, in order.

� All arguments that are not assigned to registers, either because of
type incompatibility or because all registers have been exhausted, are
pushed onto the stack in reverse order (right-to-left).

A fifth register, AR0, may be used to return structures and unions by
address. AR0 may also be used to return pointers.

Table 4–3 lists the functions contained in the runtime-support assembly files
that conform to the modified calling convention.

Function Structure and Calling Conventions

4-19Runtime Environment

Table 4–3. Runtime-Support Functions Using Modified Calling Convention

Function Assembly File Function Assembly File

_c_int00
_main
_exit

boot.asm MPY_I30 mpyi.asm

_frexp frexp30.asm MPY_K30 mpyk.asm

_ldexp ldexp30.asm MPY_LD mpyld.asm

_longjmp
_setjmp

setjmp.asm DIV_I30
DIV_I40

divi.asm

_modf modf30.asm DIV_F30
DIV_F40

divf.asm

_sqrt sqrt30.asm DIV_U30
DIV_U40

divu.asm

DIV_F, DIV_I
DIV_U, MOD_I
MOD_U, MPY_I
MPY_X

arith410.asm DIV_LD divld.asm

INV_F30
INV_F40

invf.asm MOD_I30
MOD_I40

modi.asm

INV_LD invld.asm MOD_U30
MOD_U40

modu.asm

4.4.3 Responsibilities of a Called Function

A called function must perform certain tasks. Step 1 below helps to manage
the local frame. If the function has no local variables, no stack arguments, and
no need for local temporary storage, Steps 1) and 6) are not taken.

1) The called function sets up the local frame. The local frame is allocated
in the following way:
a) The old frame pointer is saved on the stack.
b) The new frame pointer is set to the current SP.
c) The frame is allocated by adding its size to the SP.

Function Structure and Calling Conventions

 4-20

2) If the called function modifies any of the following registers, it must save
them on the stack.

Save as integers Save as floating-point

R4 R5 R6 R7

AR4 AR5

AR6 AR7

FP DP (small model only)

R8 (‘C4x only)

The called function may modify any other registers without saving them.

3) The called function executes its code.

4) If the function returns an integer, pointer, or float, it places the return value
in R0. In the modified register-argument calling convention used for
runtime support assembly files (page 4-18), pointers are returned in AR0.

If the function returns a structure, the caller allocates space for the
structure and then passes the address of the return space to the called
function in register AR0. To return a structure, the called function then
copies the structure to the memory block that AR0 points to. If the caller
does not use the return value, AR0 is set to 0. This directs the called
function not to copy the return structure.

In this way, the caller can be “smart” about telling the called function where
to return the structure. For example, in the statement s = f(), where s is a
structure and f is a function that returns a structure, the caller can simply
place the address of s in AR0 and call f. Function f then copies the return
structure directly into s, performing the assignment automatically.

You must be careful to properly declare functions that return structures—
both at the point where they are called (so the caller properly sets up AR0)
and where they are defined (so the function knows to copy the result).

5) The called function restores all saved registers.

6) It deallocates the local frame (if necessary) by subtracting its size from SP
and restores the old FP by popping it.

7) It pops the return address and branches to it. In functions with no saved
registers, this is performed by executing a RETS statement. In other
functions, the compiler loads the return address into R1 and uses a
delayed branch to return. The delay slots are used to restore registers and
deallocate the local frame.

Function Structure and Calling Conventions

4-21Runtime Environment

4.4.4 Accessing Arguments and Local Variables

A function accesses its stack arguments and local nonregister variables
indirectly through the FP, which always points to the bottom of the local frame.
Because the FP actually points to the old FP, the first local variable is
addressed as *+FP(1). Other local variables are addressed with increasing
offsets, up to a maximum of 255. Local objects with offsets larger than 255 are
accessed by first loading their offset into an index register (IRn) and
addressing them as *+FP(IRn).

Stack arguments are addressed in a similar way, but with negative offsets from
the FP. The return address is stored at the location directly below the FP, so
the first argument is addressed as *–FP(2). Other arguments are addressed
with increasing offsets, up to a maximum of 255 words. The IR registers are
also used to access arguments with offsets larger than 255.

Note: Avoid Locals and Arguments With Large Offsets

It is desirable to avoid using locals and arguments with offsets larger than
255 words. However, if you must use locals and/or arguments with large
offsets, the sequence used to access these variables is:

LDI offset, IRn
��� *+FP(IR n), ...

This sequence incurs one additional instruction and three additional clock
cycles each time it is used. If you must use a larger local frame, try to put the
most frequently used variables within the first 255 words of the frame.

When register arguments are used, it is critically important that the caller and
callee agree both in type and number of arguments so that the called function
can find the arguments. Rules for argument passing are described in
subsection 4.4.2. Arguments passed in registers can remain in those registers
as long as the register is not needed for expression evaluation. If registers con-
taining arguments must be freed for expression evaluation, they can be copied
to the local frame or other registers at function entry.

When you are not using the optimizer, the compiler needs the argument-
passing registers for expression evaluation, so the arguments are copied to
a local frame at function entry.

When you are using the optimizer, the compiler attempts to keep register
arguments in their original registers.

Interfacing C With Assembly Language

 4-22

4.5 Interfacing C With Assembly Language

There are three ways to use assembly language in conjunction with C code:

� Use separate modules of assembled code and link them with compiled C
modules (see subsection 4.5.1, page 4-22). This is the most versatile
method.

� Use inline assembly language, embedded directly in the C source (see
subsection 4.5.3, page 4-28).

� Modify the assembly language code that the compiler produces.

Note: Assembler Support for Runtlme Models

The two argument-passing runtime models use different function structure
and calling conventions. Assembly language functions called by C need to
retrieve arguments according to the runtime model that was used to compile
the code. The compiler and assembler provide support for the two runtime
models in the form of two predefined symbols. The assembler symbol
.REGPARM is set to 1 when –mr is used and is set to 0 otherwise. The
compiler symbol _REGPARM is defined to be 1 if –mr is used and is set to
0 otherwise. Example 4–1 on page 4-25 shows how to use these symbols
to write code that will work with either runtime model.

4.5.1 Assembly Language Modules

Interfacing with assembly language functions is straightforward if you follow
the calling conventions defined in Section 4.4 and the register conventions
defined in Section 4.3. C code can access variables and call functions defined
in assembly language, and assembly code can access C variables and call
C functions. Follow these guidelines to interface assembly language and C:

� All functions, whether they are written in C or assembly language, must
follow the conventions outlined in Section 4.3, page 4-11.

� You must preserve any dedicated registers modified by a function.
(You must preserve the DP in the small model only.) These are the
dedicated registers:

Save as integers Save as floating-point

R4 RS R6 R7

AR4 AR5

AR6 AR7

FP DP (small model only)

SP R8 (‘C4x only)

Interfacing C With Assembly Language

4-23Runtime Environment

All registers are saved as integers except R6 and R7, which are saved as
floating-point values. If the SP is used normally, it does not need to be
explicitly preserved. In other words, the assembly function is free to use
the stack as long as anything that is pushed is popped back off before the
function returns (thus preserving SP).

All other registers (such as expression registers, index registers, status
registers, and block repeat registers) are not dedicated and can be used
freely without first being saved.

� Interrupt routines must save the registers they use. Registers R0–R7
(R0–R11 on the TMS320C4x) must be saved as complete 40-bit values
because they may contain either integers or floating–point values when
the interrupt occurs. For more information about interrupt handling, refer
to Section 4.6 on page 4-30.

� Access arguments from the stack or in the designated registers, depend-
ing on which argument-passing model is used.

� When calling a C function from assembly language, follow the guidelines
in subsection 4.4.1, on page 4-16; push the arguments on the stack in
reverse order. When using the register-argument model, load the
designated registers with arguments, and push the remaining arguments
on the stack as described in subsection 4.4.2, on page 4-17. When calling
C functions, remember that only the dedicated registers are preserved. C
functions can change the contents of any other register.

� Functions must return values correctly according to their C declarations.
Integers, pointers, and floating-point values are returned in register R0,
and structures are returned as described in step 4 on page 4-20.

� No assembly module should use the .cinit section for any purpose other
than autoinitialization of global variables. The C startup routine in
boot.asm assumes that the .cinit section consists entirely of initialization
tables. Disrupting the tables by putting other information in .cinit can cause
unpredictable results.

� The compiler appends an underscore (_) to the beginning of all identifiers.
In assembly language modules, you must use a prefix of _ for all objects
that are to be accessible from C. For example, a C object named x is called
_x in assembly language. For identifiers that are to be used only in an
assembly language module or modules, any name that does not begin
with a leading underscore may be safely used without conflicting with a C
identifier.

Interfacing C With Assembly Language

 4-24

� Any object or function declared in assembly that is to be accessed or called
from C must be declared with the global directive in the assembler. This
defines the symbol as external and allows the linker to resolve references
to it.

Likewise, to access a C function or object from assembly, declare the C
object with .global. This creates an undefined external reference that the
linker will resolve.

Predefined Symbols

The assembler has several predefined symbols that allow you to write
assembly code that is compatible with the different runtime models. You can
conditionally assemble code corresponding to different models by using these
symbols as control switches when you invoke the assembler with the
appropriate options (this happens automatically when you use cl30):

Symbols Value Description
.TMS320C30 1 or 0 1 if –v30 option used
.TMS320C40 1 or 0 1 if –v40 option used
.REGPARM 1 or 0 1 if –mr option used
.BIGMODEL 1 or 0 1 if –mb option used

An Example of an Assembly Language Function

Example 4–1 illustrates a C function called main, which calls an assembly
language function called asmfunc. The asmfunc function takes its single
argument, adds it to the C global variable called gvar, and returns the result.
Note that this example can be used with either of the argument-passing
conventions.

In the assembly language code in Example 4–1, note the underscores on all
the C symbol names. Note also how the DP must be set only when accessing
global variables in the big model. For the small model, the LDP instruction can
be omitted. To use this example with either the large or small model, use the
predefined symbol .BIGMODEL to conditionally assemble the LDP statement.

Interfacing C With Assembly Language

4-25Runtime Environment

Example 4–1. An Assembly Language Function Called From C

FP .set AR3 ; FP is AR3

.global _asmfunc ; Declare external function

.global _gvar ; Declare external variable

_asmfunc:

.if .REGPARM = 0 ; standard runtime model
PUSH FP ; Save old FP
LDI SP,FP ; Point to top of stack
LDI *–FP(2),AR2 ; Load argument into AR2
.endif ; Both runtime models
.if .BIGMODEL
LDP _gvar ; Set DP to page of gvar
.endif ;(BIG MODEL ONLY)
LDI @_gvar, RO
ADDI AR2,RO ; RO = gvar + argument
 if .REGPARM = 0 ; Standard runtime model
POP FP ;Restore FP
.endif
RETS

extern int asmfunc(); /* declare extern asm function*/
int gvar; /* define global variable */

main()
{

int i;
i = asmfunc(i); /* call function normally */

}

(a) C Program

(b) Assembly Language Program

In the C program in Example 4–1, the extern declaration of asmfunc is optional
because the function returns an int. Like C functions, assembly functions need
be declared only if they return noninteger values. If you are using the
register-argument runtime model, all functions, including assembly language
functions, should have prototypes so that the arguments are passed correctly.

4.5.2 Accessing Assembly Language Variables From C

It is sometimes useful for a C program to access variables or constants defined
in assembly language. There are three different methods that you can use to
accomplish this, depending on where and how the item is defined; a variable
defined in the .bss section, a variable not defined in the .bss section, or a
constant.

Interfacing C With Assembly Language

 4-26

Accessing Variables Defined in the .bss Section

Accessing uninitialized variables from the .bss section is straightforward:
� Use the .bss directive to define the variable.
� Use the .global directive to make the definition external.
� Remember to precede the name with an underscore.
� In C, declare the variable as extern, and access it normally.

 Example 4–2 shows an example that accesses a variable defined in .bss.

Example 4–2. Accessing a Variable Defined in .bss From C

(b) C Program

(a) Assembly Language Program

* Note the use of underscores in the following lines

.bss _var,1 ; Define the variable

.global _var ; Declare it as external

extern int var; /* External variable */
var = 1; /* Use the variable */

Accessing Variables Not Defined in the .bss Section

It is more difficult to access a variable from C when the variable is not defined
in the .bss section and you are using the small memory model and the variable
is not allocated on the same data page as the .bss sections generated by the
compiler. Note that using the big memory model causes the compiler to load
the data page pointer prior to each direct memory access to variables;
therefore, the following method is not needed.

Consider a lookup table, defined in assembly, that you do not want to put in
RAM. In this case, you must define a pointer to the object and access it
indirectly from C.

The first step is to define the object. You can define the object in its own section
(either initialized or uninitialized), or you can define it in an existing section.
After defining the object, declare a global label that points to the beginning of
the object.

If the object has its own section, it can easily be linked anywhere into the
memory space (this task is a little more difficult if the object is sharing an exist-
ing section). To access it in C, you must declare an additional C variable to
point to the object. Initialize the pointer with the assembly language label
declared for the object; remember to remove the underscore.

Interfacing C With Assembly Language

4-27Runtime Environment

Note: Use the –mf Option When Using the Optimizer

The optimizer, by default, assumes that all variables are defined in the .bss
section. As a result of this assumption, the optimizer is free to change indirect
memory accesses to direct ones if it is more efficient to do so. If you are
accessing a variable that is not defined in .bss, this assumption is invalid. Use
the –mf option to force the optimizer to preserve indirect memory access.

Example 4–3 shows an example for accessing a variable that is not defined
in .bss.

Example 4–3. Accessing a Variable Not Defined in .bss From C

(b) C Program

(a) Assembly Language Program

.global _sine ; Declare variable as external

.sect ”sine_tab” ; Make a separate section
_sine: ; The table starts here

.float 0.0

.float 0.015987

.float 0.022145

extern float sine[]; /* This is the object */
float *sine_p = sine; /* Declare pointer to it */
f = sine_p[4]; /* Access sine as normal array */

A reference such as sine[4] will not work because the object is not in .bss and
because a direct reference such as this generates incorrect code.

Alternatively, the following can be used in C:

extern float sine;
float * sine_p = &sine;
f = sine_p[4];

or the following can be used in the assembly program:

.global _sine
_sine .usect “sine_tab”, 4

or

.global _sine

.bss _sine, 4

In the last case, use the C method only if the .bss section generated by the
assembler is not allocated (by the linker) on the same data page as the .bss
output section generated by the compiler.

Interfacing C With Assembly Language

 4-28

Accessing Assembly Language Constants

You can define global constants in assembly language by using the .set and
.global directives or in a linker command file using a linker assignment
statement. These constants are accessible from C, but it is not straightforward.

For normal variables defined in C or assembly language, the symbol table
contains the address of the value of the variable. For assembler constants,
however, the symbol table contains the value of the constant. The compiler
cannot tell which items in the symbol table are values and which are
addresses.

If you try to access an assembler (or linker) constant by name, the compiler
attempts to fetch a value from the address represented in the symbol table. To
prevent this unwanted fetch, you must use the & (address of) operator to get
the value. In other words, if _x is an assembly language constant, its value in
C is &x.

You can use casts and #defines to ease the use of these symbols in your pro-
gram, as in Example 4–4.

Example 4–4. Accessing an Assembly Language Constant From C

(b) C Program

(a) Assembly Language Program

_table_size .set 10000 ; define the constant

.global _table_size ; make it global

extern int table size; /* external ref */

#define TABLE_SIZE ((int) (&table_size))

. /* use cast to hide address–of */

.

.

for (i–0; i<TABLE_SIZE; ++i)

/* use like normal symbol */

Because you are referencing only the symbol’s value as stored in the symbol
table, the symbol’s declared type is unimportant. In Example 4–4, int is used.
You can reference linker-defined symbols in a similar manner.

4.5.3 Inline Assembly Language

Within a C program, you can use the asm statement to inject a single line of
assembly language into the assembly language file that the compiler creates.

Interfacing C With Assembly Language

4-29Runtime Environment

A series of asm statements places sequential lines of assembly language into
the compiler output with no intervening code.

The asm statement is provided so that you can access features of the
hardware that would be otherwise inaccessible from C. For example, you can
modify the interrupt control registers to enable or disable interrupts. You can
also access the status, interrupt enable, and interrupt flag registers.

Note: Avoid Disrupting the C Environment With asm Statements

Be extremely careful not to disrupt the C environment with asm statements.
The compiler does not check the inserted instructions. Inserting jumps and
labels into C code can cause unpredictable results in variables manipulated
in or around the inserted code. Directives that change sections or otherwise
affect the assembly environment can also be troublesome. Be especially
careful when you use the optimizer with asm statements. Although the
optimizer cannot remove asm statements, it can significantly rearrange the
code order near asm statements, possibly causing undesired results. The
asm command is provided so that you can access features of the hardware,
which, by definition, C is unable to access.

The asm statement is also useful for inserting comments in the compiler
output; simply start the assembly code string with an asterisk (*) as shown
below:

asm(”**** this is an assembly language comment”);

Interrupt Handling

 4-30

4.6 Interrupt Handling

Interrupts can be handled directly with C functions by using a special naming
convention:

c_int nn

nn is a two-digit interrupt number between 00 and 99. For example:

c_int01

Using one of these function names defines an interrupt routine. When the
compiler encounters one of these function names, it generates code that
allows the function to be activated from an interrupt trap.

Note that c_int00 is the C boot routine and should not be used as an interrupt
routine. See Section 4.8 on page 4-36 for further information on this routine.

A C interrupt routine is like any other C function in that it can have local
variables and register variables; however, it should be declared with no
arguments. Interrupt handling functions should not be called directly.

4.6.1 Saving Registers During Interrupts

When C code or assembly code is interrupted, all registers must be preserved,
including the status registers. A problem arises with the extended-precision
registers R0–R7 (R0–R11 on the ‘C4x): these registers can contain either
integer or floating-point values, and an interrupt routine cannot determine the
type of value in a register. Thus, an interrupt routine must preserve all 40 bits
of any of these registers that it modifies. This involves saving both the integer
part (lower 32 bits) and the floating-point part (upper 32 bits).

The following code illustrates the entry and exit sequences for an interrupt ser-
vice routine that has two local variables and uses registers FP, SP, ST, R3, R4,
and AR4:

PUSH FP ; save old FP
LDI SP,FP ; set up new FP
ADDI 2,SP ; allocate local frame
PUSH ST ; save ST
PUSH R3 ; save lower 32 bits of R3
PUSHF R3 ; save upper 32 bits of R3
PUSH R4 ; save lower 32 bits of R4
PUSHF R4 ; save upper 32 bits of R3
PUSH AR4 ; save AR4

Interrupt Handling

4-31Runtime Environment

Exit

POP AR4 ; restore AR4
POPF R4 ; restore upper 32 bits of R4
POP R4 ; restore lower 32 bits of R4
POPF R3 ; restore upper 32 bits of R3
POP R3 ; restore lower 32 bits of R3
POP ST ; restore ST
SUBI 2,SP ; deallocate local frame
POP FP ; restore FP
RETI ; return from interrupt

Notice how the upper and lower bits of R3 and R4 are saved and restored sep-
arately. Any extended-precision register must be saved in two parts. All other
registers can be saved as integers.

4.6.2 Assembly Language Interrupt Routines

Interrupts can also be handled with assembly language code, as long as the
register conventions are followed. Like all assembly functions, interrupt
routines can use the stack, access global C variables, and call C functions nor-
mally. When calling C functions, be sure that all nondedicated registers are
preserved because the C function can modify any of them. Of course, dedi-
cated registers need not be saved because they are preserved by the C func-
tion. Interrupt handler functions, whether in C or assembly, must be installed
by placing their address in the interrupt vector table. On the TMS320C3x, this
table is located in the first 64 words of the address space. On the TMS320C4x,
the table can be located anywhere on any 512 word boundary in the address
space. The lVTP register points to the location of the interrupt vector table.

Runtime-Support Arithmetic Routines

 4-32

4.7 Runtime-Support Arithmetic Routines

The runtime-support library contains a number of assembly language func-
tions that provide arithmetic routines for C math operators that the
TMS320C3x/C4x instruction set does not provide, such as division. There are
as many as three different versions of each of these functions. The versions
are distinguished from each other by the number appended to the function
name. For example, DlV_F30 is the version of DlV_F that is called when the
code is compiled for the TMS320C3x, DIV_F40 is for the ‘C4x, and DIV_F is
the version called by code compiled by version 4.10 (and all earlier versions)
of the compiler.

The TMS320C3x MPYl (multiply integer) instruction does not perform full
32-bit multiplication (the TMS320C4x MPYl instruction does); it uses only the
lower 24 bits of each operand. Because standard C requires full 32-bit
multiplication, a runtime-support function, MPY_I30, is provided to implement
32-bit integer multiplication for the TMS320C3x. This function does not follow
the standard C calling sequence; instead, operands are passed in registers R0
and R1. The 32-bit product is returned in R0.

Note that using the shell option –mp causes the code generator to inline 32-bit
by 32-bit and 32-bit by 16-bit integer multiplication, rather than call MPY_I30.
Inlining this multiplication significantly reduces cycle time. In addition, the
MPY_I30 function is not used for squares (such as i * i); an inline squaring func-
tion is used, which also reduces cycle time.

The compiler uses the TMS320C3x MPYl instruction only in cases where
address arithmetic is performed (such as during array indexing); because no
address can have more than 24 bits, a 24 x 24 multiply is sufficient. You can
use the –mm option to force the compiler to use MPYl instructions for all integer
multiplies.

Because the TMS320C4x MPYl instruction performs full 32-bit multiplication,
there is no MPY_I40 function.

Because the TMS320C3x/C4x has no division instructions, integer and
floating-point division are performed via calls to additional runtime-support
functions named DlV_I30 and DIV_F30 (or DIV_I40 and DlV_F40 for the
TMS320C4x). Another function, MOD_I30, performs the integer modulo
operation. Corresponding functions named DlV_U30 and MOD_U30 are used
for unsigned integer division and modulo. Like MPY_I30, these functions take
their arguments from R0 and R1 and return the result in R0. These functions
differ for the TMS320C3x and the TMS320C4x because the ‘C4x division func-
tions take advantage of the RCPF instruction (16-bit reciprocal).

Runtime-Support Arithmetic Routines

4-33Runtime Environment

There are three runtime-support arithmetic functions specifically for extended-
precision arithmetic: MPY_LD (multiply), DIV_LD (divide), and INV_LD
(inverse/reciprocals). These functions support the 40-bit long double data
type.

The runtime-support arithmetic functions can use expression registers without
saving them. Each function has individual register-use conventions, and the
compiler respects these conventions. Register use is fully documented in the
source to each of the functions.

The arithmetic functions are written in assembly language. Because of the
special calling conventions these functions use, you cannot access them
from C.

Object code for them is provided in any of the runtime object libraries provided
(listed in Section 2.3 on page 2-34). Any of these functions that your program
needs are linked in automatically if you name one of these libraries as input
at link time.

The source code for these functions is provided in the source library rts.src.
The source code has comments that describe the operation and timing of the
functions. You can extract, inspect, and modify any of the math functions; be
sure you follow the special calling conventions and register-saving rules out-
lined in this section.

Table 4–4 summarizes the runtime-support functions used for arithmetic.

Runtime-Support Arithmetic Routines

 4-34

Table 4–4. Summary of Runtime-Support Arithmetic Functions

Function Description Defined In Registers Used

MPY_l30 Integer multiply mpyi.asm R0, R1, AR0, AR1

MPY_K30 Integer multiply by constant mpyk.asm R0, R1, AR0, AR1

MPY_LD 40–bit float multiply mpyld.asm R0, R1, R2, R3, BK

DIV_l30 Integer divide divi.asm RC, RS, RE

DIV_I40 Integer divide divi.asm RC, RS, RE

DIV_U30 Unsigned integer divide divu.asm R0, R1, AR0, AR1, RC, RS, RE

DIV_U40 Unsigned integer divide divu.asm R0, R1, AR0, AR1, RC, RS,RE

DIV_F30 Floating-point divide divf.asm R0, R1, AR0, AR1

DIV_F40 Floating-point divide divf.asm R0, R1, AR0, AR1, R10

DIV_LD 40–bit float divide divld.asm R0, R1, R2, R3, R5, RC, BK

INV_F30 Floating-point reciprocal invf.asm R0, R1, AR0, AR1

INV_F40 Floating-point reciprocal invf.asm R0, R1, AR0, AR1

INV_LD 40–bit float reciprocal invld.asm R0, R1, R2, R3, BK

MOD_I30 Integer modulo modi.asm R0, R1, AR0, AR1

MOD_I40 Integer modulo modi.asm R0, R1, AR0, AR1

MOD_U30 Unsigned integer modulo modu.asm R0, R1, AR0, AR1, RC, RS, RE

MOD_U40 Unsigned integer modulo modu.asm R0, R1, AR0, AR1, RC, RS,RE

Functions Provided for Compatibility With Previous Compiler Versions

MPY_I Integer multiply arith410.asm R0–R3

MPY_X Integer multiply for early
versions of ’C30

arith410.asm R0–R3

DIV_l Integer divide arith410.asm R0–R3, RC, RS, RE

DIV_U Unsigned integer divide arith410.asm R0–R3, RC, RS, RE

DIV_F Floating-point divide arith410.asm R0–R3

MOD_I Integer modulo arith410.asm R0–R3, RC, RS, RE

MOD_U Unsigned integer modulo arith410.asm R0–R3, RC, RS, RE

Runtime-Support Arithmetic Routines

4-35Runtime Environment

4.7.1 Precision Considerations

The compiler will replace costly mathematical operations with narrower
precision equivalents if the containing expression does not require the use of
high-precision functions. For example, on the ’C3x, if the outermost operation
causes the precision of the entire expression to be limited to 24 bits or less,
all multiplies within the expression will be performed with the MPYI instruction
instead of with the MPY_I30 function. Bit masks and shift counts may be
reduced to fit within an immediate value rather than requiring a space in the
constant table.

For example, consider the following code fragment:

int offset, index, i,j,k,l,m,n,o;

i = 0xFFF & (offset * index);
j = (offset * index) << 12;
k = (0x00FFFFFF & offset) << 24;
l = array[0xFF & (offset * index)];
m = array[(offset * index) << 12];
n = array[(0xFFFFFF & offset) << 24];
o = (0xFFFFFFF & (offset * index)) << 24;

In all of the cases above, the compiler recognizes that the interior
multiplications will be precision-limited by the various masks and/or shifts spe-
cified. It will then avoid using the MPY_I30 runtime support function, even
though the variables offset and index are 32-bit integers. The MPYI instruction
or a series of shifts will be used instead. In the assignment of variable o, the
precision requirements introduced by the shift left of 24 allow the compiler to
convert the value 0xFFFFFFF into 0xFF, eliminating the need to store this val-
ue on the constant table.

System Initialization

 4-36

4.8 System Initialization

Before you can run a C program, the C runtime environment must be created.
This task is performed by the C boot routine, which is a function called c_int00.

The c_int00 function can be branched to, called, or vectored by reset hardware
to begin running the system. The function is in the runtime-support library and
must be linked with the other C object modules. This occurs automatically
when you use the –c or –cr option in the linker and include a runtime-support
library created from rts.src as one of the linker input files. When C programs
are linked, the linker sets the entry point value in the executable output module
to the symbol c_int00.

The c_int00 function performs the following tasks in order to initialize the
C environment:

� Defines a section called .stack for the system stack and sets up the initial
stack and frame pointers

� Autoinitializes global variables by copying the data from the initialization
tables in .cinit to the storage allocated for the variables in .bss. In the small
model, the constant tables are also copied from .cinit to .bss. Note this
does not refer to data in the .const section

In the RAM initialization model, a loader performs this step before the
program runs (it is not performed by the boot routine). For more
information, refer to subsection 4.8.1.

� Small memory model only –– sets up the page pointer DP to point to the
global storage page in .bss

� Calls the function main to begin running the C program

You can replace or modify the boot routine to meet your system requirements.
However, the boot routine must perform the four operations listed above in
order to correctly initialize the C environment. The runtime-support source
library contains the source to this routine in a module named boot.asm.

4.8.1 Autoinitialization of Variables and Constants

Some global variables must have initial values assigned to them before a
C program starts running. The process of retrieving these variables’ data and
initializing the variables with the data is called autoinitialization .

The compiler builds tables in a special section called .cinit that contains data
for initializing global and static variables. Each compiled module contains
these initialization tables. The linker combines them into a single table (a single
.cinit section). The boot routine uses this table to initialize all the variables that
need values before the program starts running.

System Initialization

4-37Runtime Environment

Note: Initializing Variables

In standard C, global and static variables that are not explicitly initialized are
set to 0 before program execution. The TMS320C3x/C4x C compiler does
not perform any preinitialization of uninitialized variables. Any variable that
must have an initial value of 0 must be explicitly initialized. An alternative is
to have a loader or boot.obj clear the .bss section before the program starts
running.

In the small memory model, any tables of long constant values or constant
addresses must also be copied into the global data page at this time. Data for
these tables is incorporated into the initialization tables in .cinit and thus is
automatically copied at initialization time.

There are two methods for copying the initialization data into memory: RAM
and ROM. The RAM model of initialization is discussed on page 4-38; the ROM
model of initialization is discussed on page 4-39.

Initialization Tables

The tables in the .cinit section consist of initialization records with varying
sizes. Each initialization record has the following format:

Figure 4–3. Format of Initialization Records in the .cinit Section

Initialization Record 1

Initialization Record n

Initialization Record 2

Initialization Record 3

.cinit Section

Size in
Bytes

Pointer to
Variable
 in .bss

Initialization
Data

Initialization Record

•
•
•

� The first field (word 0, record 1) is the size (in words) of the initialization
data for the variable.

� The second field (word 1, record 2) is the starting address of the area in
the .bss section into which the initialization data must be copied. (This field
points to a variable’s space in .bss.)

� The third field (word 2, record 3, through n) contains the data that is copied
into the variable to initialize it.

System Initialization

 4-38

The .cinit section contains an initialization record for each variable that must
be initialized. For example, suppose two initialized variables are defined in C
as follows:

int i = 23;
int a[5] = { 1, 2, 3, 4, 5 };

The initialization tables would appear as follows:

.sect ”.cinit” ; Initialization section
* Initialization record for variable i

.word 1 ; Length of data (1 word)

.word _i ; Address in .bss

.word 23 ; Data to initialize i
* Initialization record for variable a

.word 5 ; Length of data (5 words)

.word _a ; Address in .bss

.word 1,2,3,4,5 ; Data to initialize a

The .cinit section contains only initialization tables in this format. If you are
interfacing assembly language modules to your C program, do not use the
.cinit section for any other purpose.

When you link a program with the –c or –cr option, the linker links together the
.cinit sections from all the C modules and appends a null word to the end of
the entire section. This appears as a record with a size field of 0 and marks the
end of the initialization tables.

Initializing Variables in the RAM Model

The RAM model, specified with the –cr linker option, allows variables to be
initialized at load time instead of at runtime. This can enhance performance
by reducing boot time and by saving the memory used by the initialization
tables.
The RAM option requires the use of a smart loader to perform the initialization
as it copies the program from the object file into memory.

In the RAM model, the linker marks the .cinit section with a special attribute
(STYP_CPY equals 1). This means that the section is not loaded into memory
and does not occupy space in the memory map. The linker also sets the sym-
bol cinit to –1 to indicate to the C boot routine that the initialization tables are
not present in memory; accordingly, no runtime initialization is performed at
boot time.

Instead, when the program is loaded into memory, the loader must detect the
presence of the .cinit section and its special attribute. Instead of loading the
section into memory, the loader uses the initialization tables directly from the
object file to initialize the variables in .bss. To use the RAM model, the loader
must understand the format of the initialization tables so that it can use them.

System Initialization

4-39Runtime Environment

A loader is not part of the compiler package. The loader used in TI emulator
and simulator products is a smart loader.

Figure 4–4. RAM Model of Autoinitialization

Object File Memory

.bss
section

.cinit
Section Loader

Initializing Variables in the ROM Model

The ROM model is the default model for autoinitialization. To use the ROM
model, invoke the linker with the –c option.

Under this method, the .cinit section is loaded into memory (possibly ROM)
along with all the other sections, and global variables are initialized at runtime.
The linker defines a special symbol called cinit that points to the beginning of
the initialization tables in memory. When the program begins running, the C
boot routine copies data from the tables (pointed to by cinit) into the specified
variables in .bss. This allows initialization data to be stored in ROM and then
copied to RAM each time the program is started.

System Initialization

 4-40

Figure 4–5. ROM Model of Autoinitialization

Boot
Routine

Object File Memory

.bss
Section
(RAM)

Initialization
Tables
(ROM)

.cinit
Section Loader

5-1Runtime-Support Functions

Runtime-Support Functions

Some of the tasks that a C program must perform (such as I/O, floating-point
arithmetic, dynamic memory allocation, string operations, and trigonometric
functions) are not part of the C language itself. The runtime-support functions,
which are included with the C compiler, are standard ANSI functions that
perform these tasks. The runtime-support library, rts.src, contains the source
for these functions, as well as for other functions and routines. If you use any
of the runtime-support functions, be sure to build the appropriate library,
according to the desired runtime model, using the library-build utility; then
include that library as linker input when you link your C program.

These are the topics covered in this chapter:

Topic Page

5.1 Runtime-Support Libraries 5-2.

5.2 Header Files 5-4.

5.3 Summary of Runtime-Support Functions and Macros 5-13.

5.4 Functions Reference 5-21.

Chapter 5

Runtime-Support Libraries

 5-2

5.1 Runtime-Support Libraries

Nine runtime-support libraries are included with the TMS320C3x/C4x C
compiler: eight object libraries containing object code for the runtime-support
and a source library containing source code for the functions in the object
libraries.

Runtime Library Processor Option(s) Used

rts30.lib TMS320C3x –mf –mi –o2 –x

rts30g.lib TMS320C3x –mf –mi –o2 –x –g

rts30r.lib TMS320C3x –mf –mi –o2 –x –mr

rts30gr.lib TMS320C3x –mf –mi –o2 –x –g –mr

rts40.lib TMS320C4x –v40 –mf –mi –o2 –x

rts40g.lib TMS320C4x –v40 –mf –mi –o2 –x –g

rts40r.lib TMS320C4x –v40 –mf –mi –o2 –x –mr

rts40gr.lib TMS320C4x –v40 –mf –mi –o2 –x –g –mr

rts.src is the source library. If necessary, you can create your own runtime-
support library from rts.src by using the library-build utility (mk30) described
in Chapter 6.

All object libraries built from rts.src include the standard C runtime-support
functions described in this chapter, the intrinsic arithmetic routines described
in Section 4.7 on page 4-32, and the system startup routine, _c_int00. The
object libraries are built from the C and assembly source contained in rts.src.

When you link your program, you must specify an object library as one of the
linker input files so that references to runtime-support functions can be
resolved. You should usually specify libraries last on the linker command line
because the assembler searches for unresolved references when it
encounters a library on the command line. You can also use the –x linker option
to force repeated searches of each library until it can resolve no more
references. When a library is linked, the linker includes only those library mem-
bers required to resolve undefined references. For more information about
linking, refer to Section 2.10 on page 2-64.

Runtime-Support Libraries

5-3Runtime-Support Functions

5.1.1 Modifying a Library Function

You can inspect or modify library functions by using the archiver to extract the
appropriate source file or files from rts.src. For example, the following
command extracts two source files:

ar30 x rts.src atoi.c strcpy.c

To modify a function, extract the source as in the previous example. Make the
required changes to the code, recompile, and then reinstall the new object file
or files into the library:

cl30 – options atoi.c strcpy.c ;recompile
ar30 r rts.lib atoi.obj strcpy.obj ;rebuild library

You can also build a new library this way, rather than rebuilding back into rts.lib.
For more information about the archiver, refer to Chapter 8 of the
TMS320C3x/C4x Assembly Language Tools User’s Guide.

5.1.2 Building a Library With Different Options

You can create a new library from rts.src by using the library-build utility, mk30.
For example, use this command to build an optimized runtime-support library
for the TMS320C4x using the big memory model and the register-argument
runtime model:

mk30 ––u –mr –v40 –mb –o2 –x rts.src –1 rts40rb.lib

The –u option tells the mk30 utility to use the header files in the current
directory, rather than extracting them from the source archive. The new library
is compatible with any code compiled for the ’C4x (–v40) using the big memory
model (–mb) and the register-argument runtime model (–mr). The use of the
optimizer (–o2) and inline function expansion (–x) options does not affect
compatibility with code compiled without these options.

Header Files

 5-4

5.2 Header Files

Each runtime-support function is declared in a header file. Each header file
declares the following:

� A set of related functions (or macros)
� Any types that you need to use the functions
� Any macros that you need to use the functions

These are the header files that declare the runtime-support functions:

assert.h limits.h stdio.h
ctype.h math.h stdlib.h
errno.h setjmp.h string.h
file.h stdarg.h time.h
float.h stddef.h

In order to use a runtime-support function, you must first use the #include
preprocessor directive to include the header file that declares the function. For
example, the isdigit function is declared by the ctype.h header. Before you can
use the isdigit function, you must first include ctype.h:

#include <ctype.h>
.
.
.
val = isdigit(num);

You can include headers in any order. You must include a header before you
reference any of the functions or objects that it declares.

Subsections 5.2.1 through 5.2.7 describe the header files that are included
with the TMS320C3x/C4x C compiler. Section 5.3, page 5-13, lists the
functions that these headers declare.

5.2.1 Diagnostic Messages (assert.h)

The assert.h header defines the assert macro, which inserts diagnostic failure
messages into programs at runtime. The assert macro tests a runtime
expression.

� If the expression is true (nonzero), the program continues running.

� If the expression is false, the macro outputs a message that contains the
expression, the source file name, and the line number of the statement
that contains the expression; then, the program terminates (via the abort
function).

The assert.h header refers to another macro named NDEBUG (assert.h does
not define NDEBUG). If you have defined NDEBUG as a macro name when
you include assert.h, then assert is turned off and does nothing. If NDEBUG
is not defined, assert is enabled.

Header Files

5-5Runtime-Support Functions

5.2.2 Character-Typing and Conversion (ctype.h)

The ctype.h header declares functions that test and convert characters.

For example, a character-typing function may test a character to determine
whether it is a letter, a printing character, a hexadecimal digit, etc. These
functions return a value of true (a nonzero value) or false (0).

The character-conversion functions convert characters to lower case, upper
case, or ASCII and return the converted character.

Character-typing functions have names in the form isxxx (for example, isdigit).
Character-conversion functions have names in the form toxxx (for example,
toupper).

The ctype.h header also contains macro definitions that perform these same
operations; the macros run faster than the corresponding functions. The typing
macros expand to a lookup operation in an array of flags (this array is defined
in ctype.c). The macros have the same name as the corresponding functions,
but each macro is prefixed with an underscore (for example, _isdigit).

5.2.3 Error Reporting (errno.h)

Errors can occur in a math function if the invalid parameter values are passed
to the function or if the function returns a result that is outside the defined range
for the type of the result. When this happens, a variable named errno is set to
the value of one of the following macros:

� EDOM, for domain errors (invalid parameter)
� ERANGE, for range errors (invalid result)

C code that calls a math function can read the value of errno to check for error
conditions. The errno variable is declared in errno.h and defined in errno.c.

5.2.4 Low-Level I/O Functions (file.h)

The file.h header declares the low-level I/O functions used to implement input
and output operations.

The C I/O functions make it possible to access the host’s operating system to
perform I/O (using the debugger). For example, printf statements executed in
a program appear in the debugger command window. When used in
conjunction with the debugging tools, the capability to perform I/O on the host
gives you more options when debugging and testing code.

For detailed information on using the low–level I/O functions, see Appendix B.

Header Files

 5-6

5.2.5 Limits (float.h and limits.h)

The float.h and limits.h headers define macros that expand to useful limits and
parameters of the TMS320C3x/C4x numeric representations. Table 5–1 and
Table 5–2 list these macros and the limits with which they are associated.

Table 5–1. Macros That Supply Integer Type Range Limits (limits.h)

 Macro Value Description

CHAR_BIT 32 Number of bits in type char

SCHAR_MIN –2147483648 Minimum value for a signed char

SCHAR_MAX 2147483647 Maximum value for a signed char

UCHAR_MAX 4294967295 Maximum value for an unsigned char

CHAR_MIN SCHAR_MIN Minimum value for a char

CHAR_MAX SCHAR_MAX Maximum value for a char

SHRT_MIN –2147483648 Minimum value for a short int

SHRT_MAX 2147483647 Maximum value for a short int

USHRT_MAX 4294967295 Maximum value for an unsigned short int

INT_MIN –2147483648 Minimum value for an int

INT_MAX 2147483647 Maximum value for an int

UINT_MAX 4294967295 Maximum value for an unsigned int

LONG_MIN –2147483648 Minimum value for a long int

LONG_MAX 2147483647 Maximum value for a long int

ULONG_MAX 4294967295 Maximum value for an unsigned long int

Note: Negative values in this table are defined as expressions in the actual header file so that
their type is correct.

Header Files

5-7Runtime-Support Functions

Table 5–2. Macros That Supply Floating-Point Range Limits (float.h)

Macro Value Description

FLT_RADIX 2 Base or radix of exponent representation

FLT_ROUNDS –1 Rounding mode for floating-point
addition

FLT_DIG
DBL_DIG
LDBL_DIG

6
6
8

Number of decimal digits of precision for
a float, double, or long double

FLT_MANT_DIG
DBL_MANT_DIG
LDBL_MANT_DIG

24
24
32

Number of base-FLT_RADIX digits in the
mantissa of a float, double, or long double

FLT_MIN_EXP
DBL_MIN_EXP
LDBL_MIN_EXP

–126 Minimum negative integer such that
FLT_RADIX raised to that power minus 1
is a normalized float, double, or long
double

FLT_MAX_EXP
DBL_MAX_EXP
LDBL_MAX_EXP

128 Maximum negative integer such that
FLT_RADIX raised to that power minus 1
is a representable finite float, double, or
long double

FLT_EPSILON
DBL_EPSILON
LDBL_EPSILON

1.1920929E–07

1.1920929E–07

1.19209287E–07

Minimum positive float, double, or long
double number x such that 1.0 + x ≠ 1.0

FLT_MIN
DBL_MIN
LDBL_MIN

5.8774817E–39

5.8774817E–39

5.87747175E–39

Minimum positive float, double, or long
double

FLT_MAX
DBL_MAX
LDBL_MAX

3.4028235E+38

3.4028235E+38

3.40282367E+38

Maximum float, double, or long double

FLT_MIN_10_EXP
DBL_MIN_10_EXP
LDBL_MIN_10_EXP

–39 Minimum negative integers such that 10
raised to that power is in the range of
normalized floats, doubles, or long
doubles

FLT_MAX_10_EXP
DBL_MAX_10_EXP
LDBL_MAX_10_EXP

38 Maximum positive integers such that 10
raised to that power is in the range of
representable finite floats, doubles, or
long doubles

Key to prefixes:
FLT_ applies to type float
DBL_ applies to type double
LDBL_ applies to type long double

Header Files

 5-8

5.2.6 Floating-Point Math (math.h)

The math.h header defines several trigonometric, exponential, and hyperbolic
math functions. These math functions expect double precision floating point
arguments and return double precision floating point values. Except where
indicated, all trigonometric functions use angles expressed in radians.

The math.h header also defines one macro named HUGE_VAL; the math
functions use this macro to represent out-or-range values. When a function
produces a floating-point return value that is too large to be represented, it
returns HUGE_VAL instead.

5.2.7 Nonlocal Jumps (setjmp.h)

The setjmp.h header defines one type, one macro, and one function for
bypassing the normal function call and return discipline. These include:

� jmpbuf, an array type suitable for holding the information needed to
restore a calling environment.

� setjmp, a macro that saves its calling environment in its jmp_buf argument
for later use by the longjmp function.

� longjmp, a function that uses its jmp_buf argument to restore the program
environment.

5.2.8 Variable Arguments (stdarg.h)

Some functions can have a variable number of arguments whose types can
differ; such functions are called variable-argument functions. The stdarg.h
header declares three macros and a type that help you to use variable-
argument functions:

� The three macros are va_start, va_arg, and va_end. These macros are
used when the number and type of arguments may vary each time a
function is called.

� The type, va_list, is a pointer type that can hold information for va_start,
va_end, and va_arg.

A variable-argument function can use the macros declared by stdarg.h to step
through its argument list at runtime, when it knows the number and types of
arguments actually passed to it.

Note: Variable–Argument Functions Must Have Prototypes

A variable-argument function must have a prototype to ensure that the
arguments are passed correctly.

Header Files

5-9Runtime-Support Functions

5.2.9 Standard Definitions (stddef.h)

The stddef.h header defines two types and two macros. The types include:

� ptrdiff_t, a signed integer type that is the resul from the subtraction of two
pointers

� size_t, an unsigned integer type that is the data type of the sizeof operator

The macros include:

� The NULL macro, which expands to a null pointer constant(0)

� The offsetof(type, identifier) macro, which expands to an integer that has
type size_t. The result is the value of an offset in bytes to a structure
member (identifier) from the beginning of its structure (type)

These types and macros are used by several of the runtime-support functions.

5.2.10 stdio.h—I/O Functions

The stdio.h header defines types and macros and declares functions.

Type Declarations

The following table lists the types defined in stdio.h:

Type Description

size_t An unsigned integer type that is the data type of the sizeof
operator

fpos_t An unsigned long type that can uniquely specify every position
within a file

FILE A structure type to record all the information necessary to control
a stream

Header Files

 5-10

Macro Declarations

The following table lists the macros defined in stdio.h:

Macro Description

NULL Expands to a null pointer constant(0). Originally defined in
stddef.h. It is not redefined if it was already defined.

BUFSIZ Expands to the size of the buffer that setbuf() uses

EOF The end-of-file marker

FOPEN_MAX Expands to the largest number of files that can be open at
one time

FILENAME_MAX Expands to the length of the longest file name in
characters

L_tmpnam Expands to the longest filename string that tmpnam() can
generate

SEEK_CUR
SEEK_SET
SEEK_END

Expand to indicate the position (current, start-of-file, or
end-of-file, respectively) in a file

TMP_MAX Expands to the maximum number of unique filenames that
tmpnam() can generate

stderr
stdin
stdout

Pointers to the standard error, input, and output files, re-
spectively

5.2.11 General Utilities (stdlib.h)

The stdlib.h header declares several functions, one macro, and two types. The
macro is named RAND_MAX. The types include:

� div_t, a structure type that is the type of the value returned by the div
function

� ldiv_t, a structure type that is the type of the value returned by the ldiv
function

The stdlib.h header also declares many of the common library functions:

� String conversion functions that convert strings to numeric
representations

� Searching and sorting functions that allow you to search and sort arrays

� Sequence-generation functions that allow you to generate a
pseudorandom sequence and allow you to choose a starting point for a
sequence

Header Files

5-11Runtime-Support Functions

� Program-exit functions that allow your program to terminate normally or
abnormally

� Integer-arithmetic that is not provided as a standard part of the C
language

5.2.12 String Functions (string.h)

The string.h header declares standard functions that allow you to perform the
following tasks with character arrays (strings):

� Move or copy entire strings or portions of strings
� Concatenate strings
� Compare strings
� Search strings for characters or other strings
� Find the length of a string

In C, all character strings are terminated with a 0 (null) character. The string
functions named str xxx all operate according to this convention. Additional
functions that are also declared in string.h allow you to perform corresponding
operations on arbitrary sequences of bytes (data objects), where a 0 value
does not terminate the object. These functions have names such as memxxx.

When you use functions that move or copy strings, be sure that the destination
is large enough to contain the result.

5.2.13 Time Functions (time.h)

The time header declares one macro, several types, and functions that
manipulate dates and times. Times are represented in two different ways:

� As an arithmetic value of type time_t. When expressed in this way, a time
is represented as a number of seconds since 12:00 AM January 1, 1900.
The time_t is a synonym for the type unsigned long.

� As a structure of type struct_tm. This structure contains members for
expressing time as a combination of years, months, days, hours, minutes,
and seconds. A time represented like this is called broken-down time. The
structure has the following members.

int tm_sec; /* seconds after the minute (0–59) */
int tm_min; /* minutes after the hour (0–59) */
int tm_hour; /* hours after midnight (0–23) */
int tm_mday; /* day of the month (1–31) */
int tm_mon; /* months since January (0–11) */
int tm_year; /* years since 1900 (0–99) */
int tm_wday; /* days since Saturday (0–6) */
int tm_yday; /* days since January 1 (0–365) */
int tm_isdst; /* Daylight Savings Time flag */

Header Files

 5-12

A time, whether represented as a time_t or a struct tm, can be expressed from
different points of reference.

� Calendar time represents the current Gregorian date and time.

� Local time is the calendar time expressed for a specific time zone.

Local time may be adjusted for daylight savings time. Obviously, local time
depends on the time zone. The time.h header declares a structure type called
tmzone and a variable of this type called _tz. You can change the time zone
by modifying this structure, either at runtime or by editing tmzone.c and
changing the initialization. The default time zone is U.S. central standard time.

The basis for all the functions in time.h are two system functions: clock and
time. Time provides the current time (in time_t format), and clock provides the
system time (in arbitrary units). The value returned by clock can be divided by
the macro CLOCKS_PER_SEC to convert it to seconds. Since these functions
and the CLOCKS_PER_SEC macro are system specific, only stubs are
provided in the library. To use the other time functions, you must supply custom
versions of these functions.

Summary of Runtime-Support Functions and Macros

5-13Runtime-Support Functions

5.3 Summary of Runtime-Support Functions and Macros

Refer to the following pages for information about functions and macros:

Function or Macro Page
Error Message Macro 5-14.
Character-Typing Conversion Functions 5-14.
Floating-Point Math Functions 5-14.
Variable-Argument Functions and Macros 5-15.
General Utilities 5-17.
String Functions 5-19.
Setjmp Function and Longjmp Macro 5-20.
Time Functions 5-19.

Summary of Runtime-Support Functions and Macros

 5-14

Error Message Macro (assert.h) Description

void assert (int expression);‡ Inserts diagnostic messages into programs

Character-Typing Conversion
Functions (ctype.h)

Description

int isalnum(char c);† Tests c to see if it’s an alphanumeric ASCII character

int isalpha (char c);† Tests c to see if it’s an alphabetic ASCII character

int isascii (char c);† Tests c to see if it’s an ASCII character

int iscntrl (char c);† Tests c to see if it’s a control character

int isdigit (char c);† Tests c to see if it’s a numeric character

int isgraph (char c); † Tests c to see if it’s any printing character except a space

int islower (char c); † Tests c to see if it’s a lowercase alphabetic ASCII character

int isprint (char c);† Tests c to see if it’s a printable ASCII character (including spaces)

int ispunct (char c);† Tests c to see if it’s an ASCII punctuation character

int isspace (char c);† Tests c to see if it’s an ASCII spacebar, tab (horizontal or vertical),
carriage return, formfeed, or newline character

int isupper (char c);† Tests c to see if it’s an uppercase ASCII alphabetic character

int isxdigit (char c);† Tests c to see if it’s a hexadecimal digit

char toascii (char c);† Masks c into a legal ASCII value

char tolower (int char c);† Converts c to lowercase if it’s uppercase

char toupper (int char c);† Converts c to uppercase if it’s lowercase

Floating-Point Math Functions (math.h) Description

double acos (double x); Returns the arccosine of x

double asin (double x); Returns the arcsine of x

double atan (double x); Returns the arctangent of x

double atan2 (double y, double x); Returns the arctangent of y/x

double ceil (double x);† Returns the smallest integer greater than or equal to x

double cos (double x); Returns the cosine of x

double cosh (double x); Returns the hyperbolic cosine of x

double exp (double x); Returns the exponential function of x

double fabs (double x);§ Returns the absolute value of x

double floor (double x);† Returns the largest integer less than or equal to x

double fmod (double x, double y);† Returns the floating-point remainder of x/y

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Summary of Runtime-Support Functions and Macros

5-15Runtime-Support Functions

Floating-Point Math Functions
(continued)

Description

double frexp (double value, int *exp); Breaks value into a normalized fraction and an integer power of 2

double ldexp (double x, int exp); Multiplies x by an integer power of 2

double log (double x); Returns the natural logarithm of x

double log10 (double x); Returns the base-10 logarithm of x

double modf (double value, int *iptr); Breaks value into a signed integer and a signed fraction

double pow (double x, double y); Returns x raised to the power y

double sin (double x); Returns the sine of x

double sinh (double x); Returns the hyperbolic sine of x

double sqrt (double x); Returns the nonnegative square root of x

double tan (double x); Returns the tangent of x

double tanh (double x); Returns the hyperbolic tangent of x

Variable-Argument Functions and
Macros (stdarg.h)

Description

type va_arg (va_list ap);‡ Accesses the next argument of type type in a variable-argument
list

void va_end (va_list ap);‡ Resets the calling mechanism after using va_arg

void va_start (va_list ap);‡ Initializes ap to point to the first operand in the variable-argument
list

I/O Functions (stdio.h) Description

void clearerr (FILE *p); Clears the EOF and error indicators for the stream that p points to

int fclose (FILE *iop); Flushes the stream that iop points to and closes the file associated
with that stream

int feof (FILE *p); Tests the EOF indicator for the stream that p points to

int ferror (FILE *p); Tests the error indicator for the stream that p points to

int fflush (register FILE *iop); Flushes the I/O buffer for the stream that iop points to

int fgetc (register FILE *fp); Reads the next character in the stream that fp points to

int fgetpos (FILE *iop, fpos_t *pos); Stores the object that pos points to to the current value of the file
position indicator for the stream that iop points to

char *fgets (char *ptr, register int size,
register FILE *iop);

Reads the next size minus 1 character from the stream that iop
points to into array ptr

FILE *fopen (const char *file,
const char *mode);

Opens the file that file points to; mode points to a string describing
how to open the file

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Summary of Runtime-Support Functions and Macros

 5-16

I/O Functions (continued) Description

int fprintf (FILE *iop, const char *format,
...);

Writes to the stream that iop points to

int fputc (int c, register FILE *fp); Writes a single character, c, to the stream that fp points to

int fputs (const char *ptr, register FILE
*iop);

Writes the string pointed to by ptr; points to the stream pointed to
by iop

size_t fread (void *ptr, size_t size,
size_t count, FILE *iop);

Reads from the stream pointed to by iop and stores the input to the
array pointed to by ptr

FILE *freopen (const char *file,
const char *mode,
register FILE *iop);

Opens the file that file points to using the stream that iop points to;
mode points to a string describing how to open the file

int fscanf (FILE *iop, const char *fmt, ...); Reads from the stream pointed to by iop

int fseek (register FILE *iop, long offset,
int ptrname);

Sets the file position indicator for the stream pointed to by iop

int fsetpos (FILE *iop, const fpos_t *pos); Sets the file position indicator for the stream that iop points to pos;
the pointer pos must be a value from fgetpos() on the same stream

long ftell (FILE *iop); Obtains the current value of the file position indicator for the
stream that iop points to

size_t fwrite (const void *ptr, size_t size,
size_t count, register FILE *iop);

Writes a block of data from the memory pointed to by ptr to the
stream that iop points to

int getc (FILE *p); A macro that calls fgetc()

int getchar (void); A macro that calls fgetc() and supplies stdin as the argument

void perror (const char *s); Maps the error number in s to a string and prints the error message

int printf (const char *format, ...); Performs the same function as fprintf but uses stdout as its output
stream

int putc (int x, FILE *p); A macro that performs like fputc()

int putchar (int x); Writes a character to the standard output device

int puts (const char *ptr); Writes a string (pointed to by ptr) to the standard output device

int remove (const char *file); Makes the file pointed to by file no longer available by that name

int rename (const char *old,
const char *new);

Renames the file pointed to by old to the name pointed to by new

void rewind (register FILE *iop); Sets the file position indicator for a stream to the beginning of the
file pointed to by iop

int scanf (const char *format, ...); Reads the stream from the standard input device

void setbuf (register FILE *iop, char *buf); Specifies the buffer used by the stream pointed to by iop

int setvbuf (register FILE *iop,
register char *buf, register int type,
register size t_size);

Defines and associates a buffer with a stream

Summary of Runtime-Support Functions and Macros

5-17Runtime-Support Functions

I/O Functions (continued) Description

int sprintf (char *string,
const char *format, ...);

Writes to the array pointed to by string

int sscanf (const char *str,
const char *format, ...);

Reads from the string pointed to by str

FILE *tmpfile (void); Creates a temporary file

char *tmpnam (char *s); Generates a string that is a valid filename

int ungetc (int c, FILE *p); Writes the character c to a stream pointed to by p

int vfprintf (FILE *iop, const char *format,
va_list ap);

Writes to the stream pointed to by iop.

int vprintf (const char *format, va_list ap); Writes to the standard output device

int vsprintf (char *string, const char *format,
va_list ap);

Writes to the array pointed to by string

General Utilities(stdlib.h) Description

int abs (int j);§ Returns the absolute value of j

void abort (void) Terminates a program abnormally

void atexit (void (*fun)(void)); Registers the function pointed to by fun, to be called without
arguments at normal program termination

double atof (char *nptr); Converts a string to a floating-point value

int atoi (char *nptr); Converts a string to an integer value

long atol (char *nptr); Converts a string to a long integer value

void *bmalloc (size_t _size);
void *bmalloc8 (size_t _size);
void *bmalloc16 (size_t _size);

Allocate memory on a boundary
– 8-bit version (TMS320C32 only)
– 16-bit version (TMS32C32 only)

void *bsearch (void *key, void *base,
size_t n, size_t size,
int (*compar) (void));

Searches through an array of n objects for the object that key
points to

void *calloc (size_t n, size_t size);
void *calloc8 (size_t _num,

size_t _size);
void *calloc16 (size_t _num,

size_t _size);

Allocates and clears memory for n objects, each of size bytes;
– 8-bit version (TMS320C32 only)

– 16-bit version (TMS320C32 only)

div_t div (int numer, int denom); Divides numer by denom producing a quotient and a remainder

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Summary of Runtime-Support Functions and Macros

 5-18

General Utilities (continued) Description

void exit (int status); Terminates a program normally

void free (void *ptr);

void free8 (void *_prt);
void free16 (void *_prt);

Deallocates memory space allocated by malloc, calloc, or
realloc
– 8-bit version (TMS320C32 only)
– 16-bit version (TMS320C32 only)

long labs (long j);§ Returns the absolute value of j

ldiv_t ldiv (long numer, long denom); Divides numer by denom producing a quotient and a remainder

int ltoa (long n, char *buffer); Converts n to the equivalent digit string

void *malloc (size_t size);
void *malloc8 (size_t _size);
void *malloc16 (size_t _size);

Allocates memory for an object of size bytes
– 8-bit version (TMS320C32 only)
– 16-bit version (TMS320C32 only)

void minit (void);

void minit8 (void);
void minit16 (void);

Resets all the memory previously allocated by malloc, calloc,
or realloc
– 8-bit version (TMS320C32 only)
– 16-bit version (TMS320C32 only)

void qsort (void *base, size_t n,
size_t _size, int (*_compar) (void));

Sorts an array of n members; base points to the first member
of the unsorted array, and size specifies the size of members

int rand (void); Returns a sequence of pseudorandom integers in the range 0
to RAND_MAX

void *realloc (void *ptr, size_t size);
void *realloc8 (void *_ptr, size_t _size);
void *realloc16 (void *_ptr, size_t _size);

Changes the size of memory pointed to by ptr to size bytes
– 8-bit version (TMS320C32 only)
–16-bit version (TMS320C32 only)

void srand (unsigned seed); Resets the random number generator

double strtod (char *nptr, char **endptr); Converts a string to a floating-point value

long strtol (char *nptr, char **endptr, int
base);

Converts a string to a long integer value

unsigned long strtoul(char *nptr, char **endptr,
int base);

Converts a string to an unsigned long integer value

int ti_sprintf (char *s,
const char *format);

Supports conversion functions required by time()

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Summary of Runtime-Support Functions and Macros

5-19Runtime-Support Functions

String Functions(string.h) Description

void *memchr (void *s, int c, size_t n);† Finds the first occurrence of c in the first n characters of s

int memcmp (void *s1,void *s2,
size_t n);†

Compares the first n characters of s1 to s2

void *memcpy (void *s1, void *s2,
size_t n);†

Copies n characters from s1 to s2

void *memmove (void *s1, void *s2,
size_t n);

Moves n characters from s1 to s2

void *memset (void *s, int c, size_t n);† Copies the value of c into the first n characters of s

char *strcat (char *s1, char *s2);† Appends s2 to the end of s1

char *strchr (char *s, int c);† Finds the first occurrence of character c in s

int strcmp (char *s1, char *s2);† Compares strings and returns one of the following values: <0
if s1 is less than s2; =0 if s1 is equal to s2; >0 if s1 is > s2

int *strcoll (char *s1, char *s2); Compares strings and returns one of the following values, de-
pending on the locale: <0 if s1 is less than s2; =0 if s1 is equal
to s2; >0 if s1 is greater than s2

char *strcpy (char *s1, char *s2);† Copies string s2 into s1

size_t strcspn (char *s1, char *s2); Returns the length of the initial segment of s1 that is made up
entirely of characters that are not in s2

char *strerror (int errnum); Maps the error number in errnum to an error message string

size_t strlen (char *s);† Returns the length of a string

char *strnca t(char *s1, char *s2,
size_t n);

Appends up to n characters from s1 to s2

int strncmp (char *s1, char *s2,
size_t n);

Compares up to n characters in two strings

char *strncpy (char *s1, char *s2,
size_t n);

Copies up to n characters of a s2 to s1

char *strrchr (char *s, char c);† Finds the last occurrence of character c in s

char *strpbrk (char *s1, char *s2); Locates the first occurrence in s1 of any character from s2

size_t strspn (char *s1, char *s2); Returns the length of the initial segment of s1, which is entirely
made up of characters from s2

char *strstr (char *s1, char *s2); Finds the first occurrence of s2 in s1

char *strtok (char *s1, char *s2); Breaks s1 into a series of tokens, each delimited by a character
from s2

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Summary of Runtime-Support Functions and Macros

 5-20

Nonlocal Jumps (setjmp.h) Description

int setjmp (jmp_buf env);‡ Saves calling environment for later use by longjmp function

void longjmp (jmp_buf env,
int returnval);

Uses jmp_buf argument to restore a previously saved
environment

char *asctime (struct tm *timeptr); Converts a time to a string

Time Functions (time.h) Description

clock_t clock (void); Determines the processor time used

char *ctime (struct time *timeptr); Converts time to a string

double difftime (time_t time1, time_t
time0);

Returns the difference between two calendar times

struct tm *gmtime (time_t *timer); Converts local time to Greenwich Mean Time

struct tm *localtime (time_t *timer); Converts time_t value to broken down time

time_t mktime (struct tm *timeptr); Converts broken down time to a time_t value

size_t strftime (char *s,*format, size_t
maxsize, struct tm *timeptr);

Formats a time into a character string

time_t time (time_t *timer); Returns the current calendar time

† Expands inline if –x is used
‡ Macro
§ Expands inline unless –x0 is used

Functions Reference

5-21Runtime-Support Functions

5.4 Functions Reference

This section contains an alphabetical list of the functions and macros declared
in the header files. The following table lists the functions and macros and
directs you to the detailed description of the function or macro:

Function
or Macro Page

Function
or Macro Page

Function
or Macro Page

Function
or Macro Page

abort 5-22. floor 5-39. memcmp 5-49. strchr 5-64.
abs 5-22. fmod 5-39. memcpy 5-49. strcmp/strcoll 5-64.
acos 5-22. fopen 5-39. memmove 5-50. . . . strcpy 5-65.
add_device 5-23. . . fprintf 5-40. memset 5-50. strcspn 5-65.
asctime 5-25. fputc 5-40. minit 5-51. strerror 5-66.
asin 5-25. fputs 5-40. mktime 5-52. strftime 5-66.
assert 5-26. fread 5-40. modf 5-53. strlen 5-67.
atan 5-27. free 5-41. perror 5-53. strncat 5-68.
atan2 5-27. freopen 5-41. pow 5-54. strncmp 5-69.
atexit 5-27. frexp 5-42. printf 5-54. strncpy 5-70.
atof/atoi/atol 5-28. . fscanf 5-42. putc 5-54. strpbrk 5-71.
bsearch 5-30. fseek 5-42. putchar 5-55. strrchr 5-64.
calloc 5-31. fsetpos 5-43. puts 5-55. strspn 5-72.
ceil 5-32. ftell 5-43. printf 5-54. strstr 5-72.
clearerr 5-32. fwrite 5-43. qsort 5-56. strtod 5-73.
clock 5-33. getc 5-43. rand 5-57. strtok 5-74.
cos 5-33. getchar 5-44. realloc 5-57. strtol/strtoul 5-73. . .
cosh 5-34. getenv 5-44. remove 5-58. strxfrm 5-74.
ctime 5-34. gets 5-44. rename 5-58. tan 5-75.
difftime 5-34. gmtime 5-44. rewind 5-59. tanh 5-75.
div 5-35. isxxx 5-45. scanf 5-59. time 5-76.
exit 5-36. labs 5-22. setbuf 5-59. tmpfile 5-76.
exp 5-36. ldexp 5-46. setjmp 5-60. tmpnam 5-76.
fabs 5-36. ldiv 5-35. setvbuf 5-61. toascii 5-76.
fclose 5-37. localtime 5-46. sin 5-61. tolower/toupper 5-77
feof 5-37. log 5-46. sinh 5-62. ungetc 5-77.
ferror 5-37. log10 5-47. sprintf 5-62. va_arg/va_end/
fflush 5-37. lonjmp 5-60. sqrt 5-62. va_start 5-78. . . .
fgetc 5-38. itoa 5-47. srand 5-57. vfprintf 5-79.
fgetpos 5-38. malloc 5-48. sscanf 5-63. vprintf 5-79.
fgets 5-38. memchr 5-49. strcat 5-63. vsprintf 5-79.

abort, abs/labs, acos Alphabetical Summary of Runtime-Support Functions

5-22

Abortabort

Syntax #include <stdlib.h>

void abort(void);

Defined in exit.c in rts.src

Description The abort function usually terminates a program with an error code. The
TMS320C3x/C4x implementation of the abort function calls the exit function
with a value of 0, and is defined as follows:

void abort ()
{
 exit(0);
}

This makes the abort function equivalent to the exit function.

Absolute Valueabs/labs

Syntax #include <stdlib.h>

int abs(int j);
long int labs(long int k);

Defined in abs.c in rts.src

Description The C compiler supports two functions that return the absolute value of an
integer:

� The abs function returns the absolute value of an integer j.

� The labs function returns the absolute value of a long integer k.

Since int and long int are functionally equivalent types in TMS320C3x/C4x C,
the abs and labs functions are also functionally equivalent. The abs and labs
functions are expanded inline unless the –x0 option is used.

Example int x = –5;

int y = abs (x); /* abs returns 5 */

Arc Cosineacos

Syntax #include <math.h>

double acos(double x);

Defined in acos.c in rts.src

Description The acos function returns the arc cosine of a floating-point argument x. x must
be in the range [–1,1]. The return value is an angle in the range [0,π] radians.

Example double realval, radians;

realval = 0.0;
radians = acos(realval); /* acos return π/2 */
return (radians);

 Alphabetical Summary of Runtime-Support Functions add_device

5-23 Runtime-Support Functions

Add Device to Device Tableadd_device

Syntax #include <stdio.h>

int add_device(char *name,
unsigned flags,
int (* dopen)(),
int (* dclose)(),
int (* dread)(),
int (* dwrite)(),
int (* dlseek)(),
int (* dunlink)(),
int (* drename)());

Defined in lowlev.c in rts.src

Description Adds a device record to the device table, allowing that device to be used for
input/output from C. The first entry in the device table is predefined to be the
host device on which the debugger is running. The function, add_device(),
finds the first empty position in the device table and initializes the fields of the
structure that represent a device.

To open a stream on a newly-added device, use fopen() with a string of the for-
mat devicename:filename as the first argument.

Parameters name Character string denoting the device name

flags Device characteristics. The flags denote the following:

_SSA The device supports only one open stream at
a time

_MSA The device supports multiple open streams

More flags can be added by defining them in stdio.h.

dopen, dclose,
dread, dwrite,
dlseek, dunlink,
drename

Function pointers to the device drivers are called by the
low-level functions to perform I/O on the specified device.
You must declare these functions with the interface
specified in subsection B.2, Overview of Low-Level I/O
Implementation, on page B-3. The device drivers for the
host that the ’C3x/’C4x debugger is run on are included in
the C I/O library.

Return Value 0 if successful
–1 if it fails

add_device Alphabetical Summary of Runtime-Support Functions

5-24

Example This example does the following:

� Adds the device mydevice to the device table
� Opens a file named test on that device and associate it with the file *fid
� Writes the string Hello, world into the file
� Closes the file

#include <stdio.h>

/**/
/* Declarations of the user–defined device drivers */
/**/
extern int my_open(char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, char *buffer, unsigned count);
extern int my_lseek(int fno, long offset, int origin);
extern int my_unlink(char *path);
extern int my_rename(char *old_name, char *new_name);

main()
{

 FILE *fid;
 add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek,
 my_unlink, my_rename);

 fid = fopen(”mydevice:test”,”w”);

 fprintf(fid,”Hello, world\n”);

 fclose(fid);
}

 Alphabetical Summary of Runtime-Support Functions asctime, asin

5-25 Runtime-Support Functions

Internal Time to Stringasctime

Syntax #include <time.h>

char *asctime(struct tm *timeptr);

Defined in asctime.c in rts.src

Description The asctime function converts a broken-down time into a string with the
following form:

Mon Jan 11 11:18:36 1988 \n\0

The function returns a pointer to the converted string.

For more information about the functions and types that the time.h header
declares, refer to subsection 5.2.13, page 5-11.

Arc Sineasin

Syntax #include <math.h>

double asin(double x);

Defined in asin.c in rts.src

Description The asin function returns the arc sine of a floating-point argument x. x must
be in the range [–1,1]. The return value is an angle in the range [–π/2,π/2]
radians.

Example double realval, radians;

realval = 1.0;

radians = asin(realval); /* asin returns π/2 */

assert Alphabetical Summary of Runtime-Support Functions

5-26

Insert Diagnostic Information Macroassert

Syntax #include <assert.h>

void assert(int expression);

Defined in assert.h as a macro

Description The assert macro tests an expression; depending upon the value of the
expression, assert either aborts execution and issues a message or continues
execution. This macro is useful for debugging.

� If expression is false, the assert macro writes information about the partic-
ular call that failed to the standard output, and then aborts execution.

� If expression is true, the assert macro does nothing.

The header file that declares the assert macro refers to another macro,
NDEBUG. If you have defined NDEBUG as a macro name when the assert.h
header is included in the source file, then the assert macro is defined to have
no effect.

If NDEBUG is not defined when assert.h is included, the assert macro is de-
fined to test the expression and, if false, write a diagnostic message including
the source filename, line number, and test of expression.

The assert macro is defined with the printf function, which is not included in the
library. To use assert, you must either:

� Provide your own version of printf, or

� Modify assert to output the message by other means

Example In this example, an integer i is divided by another integer j. Since dividing by
0 is an illegal operation, the example uses the assert macro to test j before the
division. If j = = 0 when this code runs, a message such as:

Assertion failed (j), file foo.c, line 123

is sent to standard output.

int i, j;
assert(j);
q = i/j;

 Alphabetical Summary of Runtime-Support Functions atan, atan2, atexit

5-27 Runtime-Support Functions

Polar Arc Tangentatan

Syntax #include <math.h>

double atan(double x);

Defined in atan.c in rts.src

Description The atan function returns the arc tangent of a floating-point argument x. The
return value is an angle in the range [–π/2,π/2] radians.

Example double realval, radians;

realval = 1.0;
radians = atan(realval); /* return value = π/4*/

Cartesian Arc Tangentatan2

Syntax #include <math.h>

double atan2(double y, x);

Defined in atan.c in rts.src

Description The atan2 function returns the arc tangent of y/x. The function uses the signs
of the arguments to determine the quadrant of the return value. Both
arguments cannot be 0. The return value is an angle in the range [–π,π]
radians.

Example atan2 (1.0, 1.0) /* returns π/4 */

atan2 (1.0, –1.0) /* returns 3 π/4 */

atan2 (–1.0, 1.0) /* returns ±π/4 */

atan2 (–1.0, –1.0) /* returns –3 π/4 */

Exit Without Argumentsatexit

Syntax #include <stdlib.h>

void atexit(void (*fun)(void));

Defined in exit.c in rts.src

Description The atexit function registers the function that is pointed to by fun, to be called
without arguments at normal program termination. Up to 32 functions can be
registered.

When the program exits through a call to the exit function, a call to abort, or
a return from the main function, the functions that were registered are called,
without arguments, in reverse order of their registration.

atof/atoi/atol Alphabetical Summary of Runtime-Support Functions

5-28

Convert ASCII to Numberatof/atoi/atol

Syntax #include <stdlib.h>

double atof(char *nptr);
int atoi(char *nptr);
long int atol(char *nptr);

Defined in atof.c and atoi.c in rts.src

Description Three functions convert strings to numeric representations:

� The atof function converts a string into a floating-point value. Argument
nptr points to the string; the string must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The atoi function converts a string into an integer. Argument nptr points
to the string; the string must have the following format:

[space] [sign] digits

� The atol function converts a string into a long integer. Argument nptr
points to the string; the string must have the following format:

[space] [sign] digits

The space is indicated by one or more of the following characters: a space
(character), a horizontal or vertical tab, a carriage return, a form feed, or a
newline. Following the space is an optional sign, and then digits that represent
the integer portion of the number. The fractional part of the number follows,
then the exponent, including an optional sign.

The first character that cannot be part of the number terminates the string.

Since int and long are functionally equivalent in TMS320C3x/C4x C, the atoi
and atol functions are also functionally equivalent.

The functions do not handle any overflow resulting from the conversion.

Example int i;

double d;

i = atoi (“–3291”); /* i = –3291 */

d = atof (“1.23e–2); /* d = .0123 */

 Alphabetical Summary of Runtime-Support Functions bmalloc

5-29 Runtime-Support Functions

Allocate Memory on a Boundarybmalloc

Syntax #include <stdlib.h>

void *bmalloc(size_t _size);
void *bmalloc8(size_t _size);
void *bmalloc16(size_t _size);

Defined in memory.c in rts.src

Description The bmalloc function allocates space for an object of size bytes and returns
a pointer to the space. The packet of the given size is aligned on a boundary
suitable for TMS320C3x and TMS320C4x circular buffers and bit–reversed
address buffers. See the TMS320C3x User’s Guide for information on circular
buffers and bit–reversed addressing.

The memory that bmalloc uses is in a special memory pool or heap, defined
in an uninitialized named section called .sysmem in memory.c. The linker sets
the size of this section from the value specified by the –heap option. Default
heap size is 1K words.

For the TMS320C32 processor, 8-bit and 16-bit versions of the bmalloc
function are provided. The functions bmalloc8 and bmalloc16 are analogous
to bmalloc; however, memory is allocated from the uninitialized sections
.sysm8 and .sysm16, respectively. The linker creates a .sysm8 or .sysm16
section when a size is specified using the –heap8 or –heap16 option. It will
create a section of the default size (1K of 8-bit or 16-bit words) when the
bmalloc8 and bmalloc16 functions are used and the –heap8 and –heap16
options are not.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

bsearch Alphabetical Summary of Runtime-Support Functions

5-30

Array Searchbsearch

Syntax #include <stdlib.h>

void *bsearch(void *key, void *base, size_t nmemb,
size_t size, int (*compar)(void));

Defined in bsearch.c in rts.src

Description The bsearch function searches through an array of nmemb objects for a
member that matches the object that key points to. Argument base points to
the first member in the array; size specifies the size (in bytes) of each member.

The contents of the array must be in ascending, sorted order. If a match is
found, the function returns a pointer to the matching member of the array; if
no match is found, the function returns a null pointer (0).

Argument compar points to a user-defined function that compares key to the
array elements. The comparison function should be declared as:

int cmp(const void *ptr1, const void *ptr2);

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2.
 0 if *ptr1 is equal to *ptr2.
> 0 if *ptr1 is greater than *ptr2.

In order for the search to work properly, the comparison must return <0, 0, >0.

Example #include <stdlib.h>

#include <stdio.h>

int list [] = {1, 3, 4, 6, 8, 9};
int diff (const void *, const void *0;

main()
{

int key = 8;
int p = bsearch (&key, list, 6, 1, idiff);

/* p points to list[4] */
}
int idiff (const void *il, const void *i2)
{

return *(int *) i1 – *(int *) i2;
}

 Alphabetical Summary of Runtime-Support Functions calloc

5-31 Runtime-Support Functions

Allocate and Clear Memorycalloc

Syntax #include <stdlib.h>

void *calloc(size_t nmemb, size_t size);
void *calloc8(size_t _num, size_t _size);
void *calloc16(size_t _num, size_t _size);

Defined in memory.c in rts.src

Description The calloc function allocates size bytes for each of nmemb objects and re-
turns a pointer to the space. The function initializes the allocated memory to
all 0s. If it cannot allocate the memory (that is, if it runs out of memory), it re-
turns a null pointer (0).

The memory that calloc uses is in a special memory pool or heap, defined in
an uninitialized named section called .sysmem in memory.c. The linker sets
the size of this section from the value specified by the –heap option. Default
heap size is 1K words.

For the TMS320C32 processor, 8-bit and 16-bit versions of the calloc function
are provided. The functions calloc8 and calloc16 are analogous to calloc; how-
ever, memory is allocated from the uninitialized sections .sysm8 and .sysm16,
respectively. The linker creates a .sysm8 or .sysm16 section when a size is
specified using the –heap8 or –heap16 option. It will create a section of the
default size (1K of 8-bit or 16-bit words) when the calloc8 and calloc16
functions are used and the –heap8 and –heap16 options are not.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

Example This example uses the calloc routine to allocate and clear 10 bytes.

ptr = calloc (10,2) ; /*Allocate and clear 20 bytes */

ceil, clearerr Alphabetical Summary of Runtime-Support Functions

5-32

Ceilingceil

Syntax #include <math.h>

double ceil(double x);

Defined in ceil.c in rts.src

Description The ceil function returns a floating-point number that represents the smallest
integer greater than or equal to x. The ceil function is inlined if the –x2 option
is used.

Example double answer;

answer = ceil(3.1415); /* answer = 4.0 */

answer = ceil(–3.5); /* answer = –3.0 */

Clear EOF and Error Indicatorsclearerr

Syntax #include <stdio.h>

void clearerr(FILE *p);

Defined in clearerr.c in rts.src

Description Clears the EOF and error indicators for the stream that p points to.

 Alphabetical Summary of Runtime-Support Functions clock, cos

5-33 Runtime-Support Functions

Processor Timeclock

Syntax #include <time.h>

clock_t clock(void);

Defined in clock.c in rts.src

Description The clock function determines the amount of processor time used. It returns
an approximation of the processor time used by a program since the program
began running. The return value can be converted to seconds by dividing by
the value of the macro CLOCKS_PER_SEC.

If the processor time is not available or cannot be represented, the clock func-
tion returns the value of –1.

Note: Writing Your Own Clock Function

The clock function is target-system specific, so you must write your own
clock function. You must also define the CLOCKS_PER_SEC macro accord-
ing to the granularity of your clock so that the value returned by clock() (num-
ber of clock ticks) can be divided by CLOCKS_PER_SEC to produce a value
in seconds.

For more information about the functions and types that the time.h header de-
clares, refer to subsection 5.2.13, page 5-11.

Cosinecos

Syntax #include <math.h>

double cos(double x);

Defined in cos.c in rts.src

Description The cos function returns the cosine of a floating-point number x. The angle x
is expressed in radians. An argument with a large magnitude may produce a
result with little or no significance.

Example double radians, cval; /* cos returns cval */

radians = 3.1415927;

cval = cos(radians); /* return value = –1.0 */

cosh, ctime, difftime Alphabetical Summary of Runtime-Support Functions

5-34

Hyperbolic Cosinecosh

Syntax #include <math.h>

double cosh(double x);

Defined in cosh.c in rts.src

Description The cosh function returns the hyperbolic cosine of a floating-point number x.
A range error occurs if the magnitude of the argument is too large.

Example double x, y;

x = 0.0;
y = cosh(x); /* return value = 1.0 */

Calendar Timectime

Syntax #include <time.h>

char *ctime(time_t *timer);

Defined in ctime.c in rts.src

Description The ctime function converts the calendar time (pointed to by timer and repre-
sented as a value of type time_t) to a string. This is equivalent to:

asctime(localtime(timer))

The function returns the pointer returned by the asctime function.

For more information about the functions and types that the time.h header
declares, refer to subsection 5.2.13, page 5-11.

Time Differencedifftime

Syntax #include <time.h>

double difftime(time_t time1, time_t time0);

Defined in difftime.c in rts.src

Description The difftime function calculates the difference between two calendar times,
time1 minus time0. The return value is expressed in seconds.

For more information about the functions and types that the time.h header
declares, refer to subsection 5.2.13, page 5-11.

 Alphabetical Summary of Runtime-Support Functions div/ldiv

5-35 Runtime-Support Functions

Divisiondiv/ldiv

Syntax #include <stdlib.h>

div_t div(int numer, long denom);
ldiv_t ldiv(long numer, long denom);

Defined in div.c in rts.src

Description Two functions support integer division by returning numer divided by denom.
You can use these functions to get both the quotient and the remainder in a
single operation.

� The div function performs integer division. The input arguments are inte-
gers; the function returns the quotient and the remainder in a structure of
type div_t. The structure is defined as follows:

typedef struct
{

int quot; /* quotient */
int rem; /* remainder */

} div_t;

� The ldiv function performs long integer division. The input arguments are
long integers; the function returns the quotient and the remainder in a
structure of type ldiv_t. The structure is defined as follows:

typedef struct
{

long int quot; /* quotient */
long int rem; /* remainder */

} ldiv_t;

If the division produces a remainder, the sign of the quotient is the same as the
algebraic quotient, and the magnitude of the resulting quotient is the largest
integer less than the magnitude of the algebraic quotient. The sign of the re-
mainder is the same as the sign of numer.

Because ints and longs are equivalent types in TMS320C3x/C4x C, these
functions are also equivalent.

Example int i = –10

int j = 3;

div_t result = div (i, j) ; /* result.quot == –3 */

/* result.rem == –1 */

exit, exp, fabs Alphabetical Summary of Runtime-Support Functions

5-36

Normal Terminationexit

Syntax #include <stdlib.h>

void exit(int status);

Defined in exit.c in rts.src

Description The exit function terminates a program normally. All functions registered by
the atexit function are called in reverse order of their registration.

You can modify the exit function to perform application-specific shutdown
tasks. The unmodified function simply runs in an infinite loop until the system
is reset.

Note that the exit function cannot return to its caller.

Exponentialexp

Syntax #include <math.h>

double exp(double x);

Defined in exp.c in rts.src

Description The exp function returns the exponential function of x. The return value is the
number e raised to the power x. A range error occurs if the magnitude of x is
too large.

Example double x, y;

x = 2.0;
y = exp(x); /* y = 7.38905, which is e**2 */

Absolute Valuefabs

Syntax #include <math.h>

double fabs(double x);

Defined in fabs.c in rts.src

Description The fabs function returns the absolute value of a floating-point number x. The
fabs function is expanded inline unless the –x0 option is used.

Example double x, y;

x = –57.5;
y = fabs(x); /* return value = +57.5 */

 Alphabetical Summary of Runtime-Support Functions fclose, feof, ferror, fflush

5-37 Runtime-Support Functions

Close Filefclose

Syntax #include <stdio.h>

int fclose(FILE *iop);

Defined in fclose.c in rts.src

Description Flushes the stream that iop points to. When the stream is flushed, the function
closes the file associated with the stream.

Test EOF Indicatorfeof

Syntax #include <stdio.h>

int feof(FILE *p);

Defined in feof.c in rts.src

Description Tests the EOF indicator for a stream. The stream is pointed to by p.

Test Error Indicatorferror

Syntax #include <stdio.h>

int ferror(FILE *p);

Defined in ferror.c in rts.src

Description Tests the error indicator for a stream. The stream is pointed to by p.

Flush I/O Bufferfflush

Syntax #include <stdio.h>

int fflush(register FILE *iop);

Defined in fflush.c in rts.src

Description Flushes the I/O buffer for a stream. The stream is pointed to by iop.

fgetc, fgetpos, fgets Alphabetical Summary of Runtime-Support Functions

5-38

Read Next Characterfgetc

Syntax #include <stdio.h>

int fgetc(register FILE *fp);

Defined in fgetc.c in rts.src

Description Reads the next character in a stream. the stream is pointed to by fp.

Store Objectfgetpos

Syntax #include <stdio.h>

int fgetpos(FILE *iop, fpos_t *pos);

Defined in fgetpos.c in rts.src

Description Stores the object pointed to by pos. The object is stored to the current value
of the file position indicator for the stream pointed to by iop.

Read Next Charactersfgets

Syntax #include <stdio.h>

char *fgets(char *ptr, register int size, register FILE *iop);

Defined in fgets.c in rts.src

Description Reads the specified number of characters from the stream pointed to by iop.
The characters are placed in the array named by ptr. The number of characters
read is size –1.

 Alphabetical Summary of Runtime-Support Functions floor, fmod, fopen

5-39 Runtime-Support Functions

Floorfloor

Syntax #include <math.h>

double floor(double x);

Defined in floor.c in rts.src

Description The floor function returns a floating-point number that represents the largest
integer less than or equal to x. The floor function is expanded inline if the –x
option is used.

Example double answer;

answer = floor(3.1415); /* answer = 3.0 */
answer = floor(–3.5); /* answer = –4.0 */

Floating-Point Remainderfmod

Syntax #include <math.h>

double fmod (double x, double y);

Defined in fmod.c in rts.src

Description The fmod function returns the remainder after dividing x by y an integral num-
ber of times. If y==0, the function returns 0.

Example double x, y, r;

x = 11.0;
y = 5.0;
r = fmod(x, y); /* fmod returns 1.0 */

Open Filefopen

Syntax #include <stdio.h>

FILE *fopen(const char *file, const char *mode);

Defined in fopen.c in rts.src

Description Opens the file that file points to. How to open the file is described by a string
pointed to by mode.

fprintf, fputc, fputs, fread Alphabetical Summary of Runtime-Support Functions

5-40

Write Streamfprintf

Syntax #include <stdio.h>

int fprintf(FILE *iop, const char *format, ...);

Defined in fprintf.c in rts.src

Description Writes to the stream pointed to by iop. How to write the stream is described by
a string pointed to by format.

Write Characterfputc

Syntax #include <stdio.h>

int fputc(int c, register FILE *fp);

Defined in fputc.c in rts.src

Description Writes a character to a stream. The stream is pointed to by fp.

Write Stringfputs

Syntax #include <stdio.h>

int fputs(const char *ptr, register FILE *iop);

Defined in fputs.c in rts.src

Description Writes the string pointed to by ptr to a stream. The stream is pointed to by iop.

Read Streamfread

Syntax #include <stdio.h>

size_t fread(void *ptr, size_t size, size_t count, FILE *iop);

Defined in fread.c in rts.src

Description Reads from the stream pointed to by iop. Stores the input in the array pointed
to by ptr. The number of objects read is count. The size of the objects is size.

 Alphabetical Summary of Runtime-Support Functions free, freopen

5-41 Runtime-Support Functions

Deallocate Memoryfree

Syntax #include <stdlib.h>

void free(void *ptr);
void free8(void *_ptr);
void free16(void *_ptr);

Defined in memory.c in rts.src

Description The free function deallocates memory space (pointed to by ptr) that was pre-
viously allocated by a malloc, calloc, or realloc call. This makes the memory
space available again. If you attempt to free unallocated space, the function
takes no action and returns.

For the TMS320C32 processor, 8-bit and 16-bit versions of the free function
are provided. The functions free8 and free16 are analogous to the 32-bit
version.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

Example This example allocates 10 bytes and then frees them.

char *x;
x = malloc(10); /* allocate 10 bytes */
free(x) ; /* free 10 bytes */

Open Filefreopen

Syntax #include <stdio.h>

FILE *freopen(const char *file, const char *mode, register FILE *iop);

Defined in fopen.c in rts.src

Description Opens the file pointed to by file, and associates with it the stream pointed to
by iop. How to open the file is described by a string pointed to by mode.

frexp, fscanf, fseek Alphabetical Summary of Runtime-Support Functions

5-42

Fraction and Exponentfrexp

Syntax #include <math.h>

double frexp(double value, int *exp);

Defined in frexp30.asm in rts.src

Description The frexp function breaks a floating-point number into a normalized fraction
and an integer power of 2. The function returns a number x, with a magnitude
in the range [1/2,1) or 0, so that value == x ×2exp. The frexp function stores the
power in the int pointed to by exp. If value is 0, both parts of the result are 0.

Example double fraction;

int exp;

fraction = frexp(3.0, &exp);

/* after execution, fraction is .75 and exp is 2 */

Read Streamfscanf

Syntax #include <stdio.h>

int fscanf(FILE *iop, const char *format, ...);

Defined in fscanf.c in rts.src

Description Reads from the stream pointed to by iop. How to read the stream is described
by a string pointed to by format.

Set File Position Indicatorfseek

Syntax #include <stdio.h>

int fseek(register FILE *iop, long offset, int ptr);

Defined in fseek.c in rts.src

Description Sets the file position indicator for the stream pointed to by iop. The position is
specified by ptr. For a binary file, use offset to position the indicator from ptr.
For a text file, offset must be 0.

 Alphabetical Summary of Runtime-Support Functions fsetpos, ftell, fwrite, getc

5-43 Runtime-Support Functions

Set File Position Indicatorfsetpos

Syntax #include <stdio.h>

int fsetpos(FILE *iop, const fpos_t *pos);

Defined in fsetpos.c in rts.src

Description Sets the file position indicator for the stream pointed to by iop to pos. The
pointer pos must be a value from fgetpos() on the same stream.

Get Current File Position Indicatorftell

Syntax #include <stdio.h>

long ftell(FILE *iop);

Defined in ftell.c in rts.src

Description Gets the current value of the file position indicator for a stream. The stream is
pointed to by iop.

Write Block of Datafwrite

Syntax #include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t count, register FILE *iop);

Defined in fwrite.c in rts.src

Description Writes a block of data from the memory pointed to by ptr to a stream. The
stream is pointed to by iop.

Read Next Charactergetc

Syntax #include <stdio.h>

int getc(FILE *p);

Defined in fgetc.c in rts.src

Description Reads the next character in a file. The file is pointed to by p.

getchar, getenv, gets, gmtime Alphabetical Summary of Runtime-Support Functions

5-44

Read Next Character From Standard Inputgetchar

Syntax #include <stdio.h>

int getchar(void);

Defined in fgetc.c in rts.src

Description Reads the next character from the standard input device.

Get Environment Informationgetenv

Syntax #include <stdlib.h>

char *getenv(const char *name);

Defined in lddrv.c in rts.src

Description Returns the environment information associated with name.

Read Next From Standard Inputgets

Syntax #include <stdio.h>

char *gets(char *ptr);

Defined in fgets.c in rts.src

Description Reads an input line from the standard input device. The characters are placed
in the array named by ptr.

Greenwich Mean Timegmtime

Syntax #include <time.h>

struct tm *gmtime(time_t *timer);

Defined in gmtime.c in rts.src

Description The gmtime function converts a local time pointed to by timer into Greenwich
Mean Time (represented as a broken-down time).

The adjustment from local time to GMT is dependent on the local time zone.
The current time zone is represented by a structure called _tz, of type struct
tmzone, defined in tmzone.c. Change this structure for the appropriate time
zone.

For more information about the functions and types that the time.h header de-
clares, refer to subsection 5.2.13, page 5-11.

 Alphabetical Summary of Runtime-Support Functions isxxx

5-45 Runtime-Support Functions

Character Typingisxxx

Syntax #include <ctype.h>

int isalnum(char c); int islower(char c);
int isalpha(char c); int isprint(char c);
int isascii(char c); int ispunct(char c);
int iscntrl(char c); int isspace(char c);
int isdigit(char c); int isupper(char c);
int isgraph(char c); int isxdigit(char c);

Defined in isxxx.c and ctype.c in rts.src
Also defined in ctype.h as macros

Description These functions test a single argument c to see if it is a particular type of char-
acter —alphabetic, alphanumeric, numeric, ASCII, etc. If the test is true (the
character is the type of character that it was tested to be), the function returns
a nonzero value; if the test is false, the function returns 0. All of the character-
typing functions are expanded inline if the –x option is used. The character-
typing functions include:

isalnum identifies alphanumeric ASCII characters (tests for any character
for which isalpha or isdigit is true).

isalpha identifies alphabetic ASCII characters (tests for any character for
which islower or isupper is true).

isascii identifies ASCII characters (any character from 0–127).

iscntrl identifies control characters (ASCII characters 0–31 and 127).

isdigit identifies numeric characters between 0 and 9 (inclusive).

isgraph identifies any non-space character.

islower identifies lowercase alphabetic ASCII characters.

isprint identifies printable ASCII characters, including spaces (ASCII
characters 32–126).

ispunct identifies ASCII punctuation characters.

isspace identifies ASCII spacebar, tab (horizontal or vertical), carriage re-
turn, form feed, and new line characters.

isupper identifies uppercase ASCII alphabetic characters.

isxdigit identifies hexadecimal digits (0–9, a–f, A–F).

The C compiler also supports a set of macros that perform these same
functions. The macros have the same names as the functions but are prefixed
with an underscore; for example, _isascii is the macro equivalent of the isascii
function. In general, the macros execute more efficiently than the functions.

ldexp, localtime, log Alphabetical Summary of Runtime-Support Functions

5-46

Multiply by a Power of Twoldexp

Syntax #include <math.h>

double ldexp(double x, int exp);

Defined in ldexp30.asm in rts.src

Description The ldexp function multiplies a floating-point number x by a power of 2 given
by exp and returns x × 2exp. The exponent (exp) can be a negative or a positive
value. A range error may occur if the result is too large.

Example double result;

result = ldexp(1.5, 5); /* result is 48.0 */
result = ldexp(6.0, –3); /* result is 0.75 */

Local Timelocaltime

Syntax #include <time.h>

struct tm *localtime(time_t *timer);

Defined in localtime.c in rts.src

Description The localtime function converts a calendar time represented as a value of
type time_t into a broken-down time in a structure. The function returns a point-
er to the structure representing the converted time.

For more information about the functions and types that the time.h header
declares, refer to subsection 5.2.13, page 5-11.

Natural Logarithmlog

Syntax #include <math.h>

double log(double x);

Defined in log.c in rts.src

Description The log function returns the natural logarithm of a real number x. A domain
error occurs if x is negative; a range error occurs if x is 0.

Example float x, y;

x = 2.718282;
y = log(x); /* Return value = 1.0 */

 Alphabetical Summary of Runtime-Support Functions log10, ltoa

5-47 Runtime-Support Functions

Common Logarithmlog10

Syntax #include <math.h>

double log10(double x);

Defined in log10.c in rts.src

Description The log10 function returns the base-10 logarithm (or common logarithm) of a
real number x. A domain error occurs if x is negative; a range error occurs if
x is 0.

Example float x, y;

x = 10.0;
y = log(x); /* Return value = 1.0 */

Convert Long Integer to ASCIIltoa

Syntax #include <stdlib.h>

int ltoa(long n, char *buffer);

Defined in ltoa.c in rts.src

Description The ltoa function converts a long integer n to the equivalent ASCII string and
writes it into buffer with a null terminator. If the input number n is negative, a
leading minus sign is output. The ltoa function returns the number of
characters placed in the buffer, not including the terminator.

Example int i;

char s[10];
i = ltoa (–92993L, s) ; /* i = 6, s = ”–92993”*/

malloc Alphabetical Summary of Runtime-Support Functions

5-48

Allocate Memorymalloc

Syntax #include <stdlib.h>

void *malloc(size_t size);
void *malloc8(size_t _size);
void *malloc16(size_t _size);

Defined in memory.c in rts.src

Description The malloc function allocates space for an object of size bytes and returns a
pointer to the space. If malloc cannot allocate the packet (that is, if it runs out
of memory), it returns a null pointer (0). This function does not modify the
memory it allocates.

The memory that malloc uses is in a special memory pool or heap, defined in
an uninitialized named section called .sysmem in memory.c. The linker sets
the size of this section from the value specified by the –heap option. Default
heap size is 1K words.

For the TMS320C32 processor, 8-bit and 16-bit versions of the malloc function
are provided. The functions malloc8 and malloc16 are analogous to malloc;
however, memory is allocated from the uninitialized sections .sysm8 and
.sysm16, respectively. The linker creates a .sysm8 or .sysm16 section when
a size is specified using the –heap8 or –heap16 option. It will create a section
of the default size (1K of 8-bit or 16-bit words) when the malloc8 and malloc16
functions are used and the –heap8 and –heap16 options are not.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

Example This example allocates free space for a structure.

struct xyz *p;
p = malloc (sizeof (struct xyz));

 Alphabetical Summary of Runtime-Support Functions memchr, memcmp, memcpy

5-49 Runtime-Support Functions

Find First Occurrence of Bytememchr

Syntax #include <string.h>

void *memchr(void *s, char c, size_t n);

Defined in memchr.c in rts.src

Description The memchr function finds the first occurrence of c in the first n characters of
the object that s points to. If the character is found, memchr returns a pointer
to the located character; otherwise, it returns a null pointer (0).

The memchr function is similar to strchr, except that the object that memchr
searches can contain values of 0, and c can be 0. The memchr function is
expanded inline when the –x option is used.

Memory Comparememcmp

Syntax #include <string.h>

int memcmp(void *s1, void *s2, size_t n);

Defined in memcmp.c in rts.src

Description The memcmp function compares the first n characters of the object that s2
points to with the object that s1 points to. The function returns one of the follow-
ing values:

< 0 if *s1 is less than *s2.
0 if *s1 is equal to *s2.

> 0 if *s1 is greater than *s2.

The memcmp function is similar to strncmp, except that the objects that
memcmp compares can contain values of 0. The memcmp function is expand-
ed inline when the –x option is used.

Memory Block Copy — Nonoverlappingmemcpy

Syntax #include <string.h>

void *memcpy(void *s1, void *s2, size_t n);

Defined in memcpy.c in rts.src

Description The memcpy function copies n characters from the object that s2 points to into
the object that s1 points to. If you attempt to copy characters of overlapping
objects, the function’s behavior is undefined. The function returns the value of
s1.

The memcpy function is similar to strncpy, except that the objects that memcpy
copies can contain values of 0. The memcpy function is expanded inline when
the –x option is used.

memmove, memset Alphabetical Summary of Runtime-Support Functions

5-50

Memory Block Copy — Overlappingmemmove

Syntax #include <string.h>

void *memmove(void *s1, void *s2, size_t n);

Defined in memmove.c in rts.src

Description The memmove function moves n characters from the object that s2 points to
into the object that s1 points to; the function returns the value of s1. The
memmove function correctly copies characters between overlapping objects.

Duplicate Value in Memorymemset

Syntax #include <string.h>

void *memset(void *s, int c, size_t n);

Defined in memset.c in rts.src

Description The memset function copies the value of c into the first n characters of the ob-
ject that s points to. The function returns the value of s. The memset function
is expanded inline when the –x option is used.

 Alphabetical Summary of Runtime-Support Functions minit

5-51 Runtime-Support Functions

Reset Dynamic Memory Poolminit

Syntax #include <stdlib.h>

void minit(void);
void minit8(void);
void minit16(void);

Defined in memory.c in rts.src

Description The minit function resets all the space that was previously allocated by calls
to the malloc, calloc, or realloc functions.

Note: Accessing Objects After Calling the minit Function

Calling the minit function makes all the memory space in the heap available
again. Any objects that you allocated previously will be lost; do not try
to access them.

The memory that minit uses is in a special memory pool or heap, defined in
an uninitialized named section called .sysmem in memory.c. The linker sets
the size of this section from the value specified by the –heap option. Default
heap size is 1K words.

For the TMS320C32 processor, 8-bit and 16-bit versions of the minit function
are provided. The functions minit8 and minit16 are analogous to the 32-bit
version; however, memory is allocated from the uninitialized sections .sysm8
and .sysm16, respectively. The linker creates a .sysm8 or .sysm16 section
when a size is specified using the –heap8 or –heap16 option.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

mktime Alphabetical Summary of Runtime-Support Functions

5-52

Convert to Calendar Timemktime

Syntax #include <time.h>

time_t *mktime(struct tm *timeptr);

Defined in mktime.c in rts.src

Description The mktime function converts a broken-down time, expressed as local time,
into a time value of type time_t. The timeptr argument points to a structure that
holds the broken-down time.

The function ignores the original values of tm_wday and tm_yday and does not
restrict the other values in the structure. After successful completion of time
conversions, tm_wday and tm_yday are set appropriately, and the other
components in the structure have values within the restricted ranges. The final
value of tm_mday is not sent until tm_mon and tm_year are determined.

The return value is encoded as a value of type time_t. If the calendar time
cannot be represented, the function returns the value –1.

Example This example determines the day of the week that July 4, 2001 falls on.

#include <time.h>
static const char *const wday[] = {

”Sunday”, ”Monday”, ”Tuesday”, ”Wednesday”,
”Thursday”, ”Friday”, ”Saturday” };

struct tm time_str;

time_str.tm_year = 2001 – 1900;
time_str.tm_mon = 7;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = 1;

mktime(&time_str); /* After calling this function,
 time_str.tm_wday contains the day of
 the week for July 4, 2001 */

printf (”result is %s\n”, wday[time_str.tm_wday]);

For more information about the functions and types that the time.h header
declares, refer to subsection 5.2.13, on page 5-11.

 Alphabetical Summary of Runtime-Support Functions modf, perror

5-53 Runtime-Support Functions

Signed Integer and Fractionmodf

Syntax #include <math.h>

double modf(double value, double *iptr);

Defined in modf30.asm in rts.src

Description The modf function breaks a value into a signed integer and a signed fraction.
Each of the two parts has the same sign as the input argument. The function
returns the fractional part of value and stores the integer part as a double at
the object pointed to by iptr.

Example double value, ipart, fpart;

value = –3.1415;

fpart = modf(value, &ipart);

/* After execution, ipart contains –3.0, */
/* and fpart contains –0.1415. */

Map Error Numberperror

Syntax #include <stdio.h>

void perror(const char *s);

Defined in perror.c in rts.src

Description Maps the error number in s to a string. The function then prints the error mes-
sage.

pow, printf, putc Alphabetical Summary of Runtime-Support Functions

5-54

Raise to a Powerpow

Syntax #include <math.h>

double pow(double x, double y);

Defined in pow.c in rts.src

Description The pow function returns x raised to the power y. A domain error occurs if x = 0
and y ≤ 0, or if x is negative and y is not an integer. A range error may occur
if the result is too large to represent.

Example double x, y, z;

x = 2.0;
y = 3.0;
z = pow(x, y); /* return value = 8.0 */

Write to Standard Outputprintf

Syntax #include <stdio.h>

int printf(const char *format, ...);

Defined in printf.c in rts.src

Description Writes to the standard output device. How to write the stream is described by
a string pointed to by format.

Write Characterputc

Syntax #include <stdio.h>

int putc(int x, FILE *p);

Defined in fputc.c in rts.src

Description Writes a character to a stream. The stream is pointed to by p.

 Alphabetical Summary of Runtime-Support Functions putchar, puts

5-55 Runtime-Support Functions

Write Character to Standard Outputputchar

Syntax #include <stdlib.h>

int putchar(int x);

Defined in fputc.c in rts.src

Description Writes a character to the standard output device.

Write to Standard Outputputs

Syntax #include <stdlib.h>

int puts(const char *ptr);

Defined in fputs.c in rts.src

Description Writes a string to the standard output device. The string is pointed to by ptr.

qsort Alphabetical Summary of Runtime-Support Functions

5-56

Array Sortqsort

Syntax #include <stdlib.h>

void qsort(void *base, size_t n, size_t size, int (*compar) (void));

Defined in qsort.c in rts.src

Description The qsort function sorts an array of n members. Argument base points to the
first member of the unsorted array; argument size specifies the size of each
member.

This function sorts the array in ascending order.

Argument compar points to a function that compares key to the array
elements. The comparison function should be declared as:

int cmp(void * ptr1, void *ptr2);

The cmp function compares the objects that ptr1 and ptr2 point to and returns
one of the following values:

< 0 if *ptr1 is less than *ptr2.
0 if *ptr1 is equal to *ptr2.

> 0 if *ptr1 is greater than *ptr2.

The array sort will not work correctly if the CMP function fails to return the cor-
rect values for all three conditions.

Example In the following example, a short list of integers is sorted with qsort.

#include <stdlib.h>

int list[] = {3, 1, 4, 1, 5, 9, 2, 6};
int idiff (const void *, const void *);

main()
{

qsort (list, 8, 1, idiff) ;
/* after sorting, list[]=={ 1, 1, 2, 3, 4, 5, 6, 9} */

}

int idiff (const void *i1, const void *i2)
{

return *(int *)i1 – *(int *)i2;
}

 Alphabetical Summary of Runtime-Support Functions rand/srand, realloc

5-57 Runtime-Support Functions

Random Integerrand/srand

Syntax #include <stdlib.h>

int rand(void);
void srand(unsigned int seed);

Defined in rand.c in rts.src

Description Two functions work together to provide pseudorandom sequence generation:

� The rand function returns pseudorandom integers in the range
0—RAND_MAX. For the TMS320C3x/C4x C compiler, the value of
RAND_MAX is 2147483646 (231 –2).

� The srand function sets the value of the random number generator seed
so that a subsequent call to the rand function produces a new sequence
of pseudorandom numbers. The srand function does not return a value.

If you call rand before calling srand, rand generates the same sequence it
would produce if you first called srand with a seed value of 1. If you call srand
with the same seed value, rand generates the same sequence of numbers.

Change Heap Sizerealloc

Syntax #include <stdlib.h>

void *realloc(void *ptr, size_t size);
void *realloc8(void *_ptr, size_t _size);
void *realloc16(void *_ptr, size_t _size);

Defined in memory.c in rts.src

Description The realloc function changes the size of the allocated memory pointed to by
ptr, to the size specified in bytes by size. The contents of the memory space
(up to the lesser of the old and new sizes) is not changed.

� If ptr is 0, realloc behaves like malloc.

� If ptr points to unallocated space, the function takes no action and returns.

� If the space cannot be allocated, the original memory space is not
changed, and realloc returns 0.

� If size = 0 and ptr is not null, realloc frees the space that ptr points to.

remove, rename Alphabetical Summary of Runtime-Support Functions

5-58

If, in order to allocate more space, the entire object must be moved, realloc
returns a pointer to the new space. Any memory freed by this operation is
deallocated. If an error occurs, the function returns a null pointer (0).

The memory that realloc uses is in a special memory pool or heap, defined in
an uninitialized named section called .sysmem in memory.c. The linker sets
the size of this section from the value specified by the –heap option. Default
heap size is 1K words.

For the TMS320C32 processor, 8-bit and 16-bit versions of the realloc function
are provided. The functions realloc8 and realloc16 are analogous to realloc;
however, memory is allocated from the uninitialized sections .sysm8 and
.sysm16, respectively. The linker creates a .sysm8 or .sysm16 section when
a size is specified using the –heap8 or –heap16 option. It will create a section
of the default size (1K of 8-bit or 16-bit words) when the realloc8 and realloc16
functions are used and the –heap8 and –heap16 options are not.

For more information, refer to subsection 4.1.3, Dynamic Memory Allocation,
on page 4-4.

Remove Fileremove

Syntax #include <stdio.h>

int remove(const char *file);

Defined in remove.c in rts.src

Description Makes the file pointed to no longer available by that name. The file is pointed
to by file.

Rename Filerename

Syntax #include <stdio.h>

int rename(const char *old, const char *new);

Defined in lowlev.c in rts.src

Description Renames the file pointed to by old. The new name is pointed to by new.

 Alphabetical Summary of Runtime-Support Functions rewind, scanf, setbuf

5-59 Runtime-Support Functions

Position File Position Indicator to Beginning of Filerewind

Syntax #include <stdio.h>

void rewind(register FILE *iop);

Defined in rewind.c in rts.src

Description Sets the file position indicator for a stream to the beginning of the file. The file
is pointed to by iop.

Read Stream From Standard Inputscanf

Syntax #include <stdio.h>

int scanf(const char *format, ...);

Defined in fscanf.c in rts.src

Description Reads from the stream from the standard input device. How to read the stream
is described by a string pointed to by format.

Specify Buffer for Streamsetbuf

Syntax #include <stdio.h>

void setbuf(register FILE *iop, char *buf);

Defined in setbuf.c in rts.src

Description Specifies the buffer used by the stream pointed to by iop. If buf is set to null,
buffering is turned off. No value is returned.

setjmp/longjmp Alphabetical Summary of Runtime-Support Functions

5-60

Nonlocal Jumpssetjmp/longjmp

Syntax #include <setjmp.h>

int setjmp (jmp_buf env);
void longjmp (jmp_buf env, int returnval);

Defined in setjmp.asm in rts.src

Description The setjmp.h header defines one type, one macro, and one function for
bypassing the normal function call and return discipline:

� The jmp_buf type is an array type suitable for holding the information
needed to restore a calling environment.

� The setjmp macro saves its calling environment in the jmp_buf argument
for later use by the longjmp function.

If the return is from a direct invocation, the setjmp macro returns the value
zero. If the return is from a call to the longjmp function, the setjmp macro
returns a nonzero value.

� The longjmp function restores the environment that was saved in the
jmp_buf argument by the most recent invocation of the setjmp macro. If
the setjmp macro was not invoked, or if it terminated execution irregularly,
the behavior of longjmp is undefined.

After longjmp is completed, the program execution continues as if the
corresponding invocation of setjmp had just returned returnval. The
longjmp function will not cause setjmp to return a value of zero even if
returnval is zero. If returnval is zero, the setjmp macro returns the value 1.

Example These functions are typically used to effect an immediate return from a deeply
nested function call:

#include <setjmp.h>

jmp_buf env;

main()
{

int errcode;

if ((errcode = setjmp(env)) == 0)
nest1();

else
switch (errcode)

. . .
}

. . .
nest42()
{

if (input() == ERRCODE42)
/* return to setjmp call in main */

longjmp (env, ERRCODE42) ;
. . .

}

 Alphabetical Summary of Runtime-Support Functions setvbuf, sin

5-61 Runtime-Support Functions

Define and Associate Buffer With Streamsetvbuf

Syntax #include <stdio.h>

int setvbuf(register FILE *iop, register char *buf, register int type,
 register size t_size);

Defined in setbuf.c in rts.src

Description Defines and associates the buffer used by the stream pointed to by iop. If buf
is set to null, a buffer is allocated. If buf names a buffer, that buffer is used for
the stream. The t_size parameter specifies the size of the buffer. The type pa-
rameter specifies the type of buffering as follows:

_IOFBF Full buffering occurs
_IOLBF Line buffering occurs
_IONBF No buffering occurs

Sinesin

Syntax #include <math.h>

double sin(double x);

Defined in sin.c in rts.src

Description The sin function returns the sine of a floating-point number x. x is an angle ex-
pressed in radians. An argument with a large magnitude may produce a result
with little or no significance.

Example double radian, sval; /* sval is returned by sin */

radian = 3.1415927;

sval = sin(radian) ; /* sin returns –1.0 */

sinh, sprintf, sqrt Alphabetical Summary of Runtime-Support Functions

5-62

Hyperbolic Sinesinh

Syntax #include <math.h>

double sinh(double x);

Defined in sinh.c in rts.src

Description The sinh function returns the hyperbolic sine of a floating-point number x. A
range error occurs if the magnitude of the argument is too large.

Example double x, y;

x = 0.0;
y = sinh(x); /* return value = 0.0 */

Write Streamsprintf

Syntax #include <stdio.h>

int sprintf(char *string, const char *format, ...);

Defined in sprintf.c in rts.src

Description Writes to the array pointed to by string. How to write the stream is described
by a string pointed to by format.

Square Rootsqrt

Syntax #include <math.h>

double sqrt(double x);

Defined in sqrt30.asm in rts.src

Description The sqrt function returns the non-negative square root of a real number x. A
domain error occurs if the argument is negative.

Example double x, y;

x = 100.0;
y = sqrt(x); /* return value = 10.0 */

 Alphabetical Summary of Runtime-Support Functions sscanf, strcat

5-63 Runtime-Support Functions

Read Streamsscanf

Syntax #include <stdio.h>

int sscanf(const char *str, const char *format, ...);

Defined in sscanf.c in rts.src

Description Reads from the string pointed to by str. How to read the stream is described
by a string pointed to by format.

Concatenate Stringsstrcat

Syntax #include <string.h>

char *strcat(char *s1, char *s2);

Defined in strcat.c in rts.src

Description The strcat function appends a copy of s2 (including the terminating null
character) to the end of s1. The initial character of s2 overwrites the null char-
acter that originally terminated s1. The function returns the value of s1. The
strcat function is expanded inline if the –x option is used.

Example In the following example, the character strings pointed to by a, b, and c were
assigned to point to the strings shown in the comments. In the comments, the
notation “\0” represents the null character:

char *a, *b, *c;
.
.
.

/* a ––> ”The quick black fox\0” */
/* b ––> ” jumps over \0” */
/* c ––> ”the lazy dog.\0” */

strcat (a,b);

/* a ––> ”The quick black fox jumps over \0” */

strcat (a,c);

/* a ––> ”The quick black fox jumps over the lazy dog.\0”*/

strchr, strcmp/strcoll Alphabetical Summary of Runtime-Support Functions

5-64

Find First Occurrence of a Characterstrchr

Syntax #include <string.h>

char *strchr(char *s, char c);

Defined in strchr.c in rts.src

Description The strchr function finds the first occurrence of c in s. If strchr finds the charac-
ter, it returns a pointer to the character; otherwise, it returns a null pointer (0).
The strchr function is expanded inline if the –x option is used.

Example char *a = ”When zz comes home, the search is on for z’s.”;

char *b;

char the_z = ’z’;

b = strchr(a,the_z);

After this example, b points to the first z in zz.

String Comparestrcmp/strcoll

Syntax #include <string.h>

int strcmp(char *s1, char *s2);
int strcoll(char *s1, char *s2);

Defined in strcmp.c in rts.src

Description The strcmp and strcoll functions compare s2 with s1. The functions are
equivalent; both functions are supported to provide compatibility with ANSI C.
The strcmp function is expanded inline if the –x option is used.

The functions return one of the following values:

< 0 if *s1 is less than *s2.
0 if *s1 is equal to *s2.

> 0 if *s1 is greater than *s2.

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why ask why”;

if (strcmp(stra, strb) > 0)
{

/* statements here will be executed */
}

if (strcoll(stra, strc) == 0)
{

/* statements here will be executed also */
}

 Alphabetical Summary of Runtime-Support Functions strcpy, strcspn

5-65 Runtime-Support Functions

String Copystrcpy

Syntax #include <string.h>

char *strcpy(char *s1, char *s2);

Defined in strcpy.c in rts.src

Description The strcpy function copies s2 (including the terminating null character) into
s1. If you attempt to copy strings that overlap, the function’s behavior is
undefined. The function returns a pointer to s1. The strcpy function is expand-
ed inline if the –x option is used.

Example In the following example, the strings pointed to by a and b are two separate
and distinct memory locations. In the comments, the notation “\0” represents
the null character:

char *a = ”The quick black fox”;
char *b = ” jumps over ”;

/* a ––> ”The quick black fox\0” */
/* b ––> ” jumps over \0” */

strcpy(a,b);

/* a ––> ” jumps over \0” */
/* b ––> ” jumps over \0” */

Find Number of Unmatching Charactersstrcspn

Syntax #include <string.h>

size_t strcspn(char *s1, char *s2);

Defined in strcspn.c in rts.src

Description The strcspn function returns the length of the initial segment of s1, which is
made up entirely of characters that are not in s2. If the first character in s1 is
in s2, the function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn(stra,strb); /* length = 0 */
length = strcspn(stra,strc) ; /* length = 9 */

strerror, strftime Alphabetical Summary of Runtime-Support Functions

5-66

String Errorstrerror

Syntax #include <string.h>

char *strerror(int errnum);

Defined in strerror.c in rts.src

Description The strerror function returns the string error. This function is supplied to pro-
vide ANSI compatibility.

Format Timestrftime

Syntax #include <time.h>

size_t *strftime(char *s, size_t maxsize, char *format,
 struct tm *timeptr);

Defined in strftime.c in rts.src

Description The strftime function formats a time (pointed to by timeptr) according to a
format string and returns the formatted result in the string s. Up to maxsize
characters can be written to s. The format parameter is a string of characters
that tells the strftime function how to format the time. The following list shows
the valid characters and describes what each character expands to.

Character is replaced by ...

%a the abbreviated weekday name (Mon, Tue, . . .)
%A the full weekday name.
%b the abbreviated month name (Jan, Feb, . . .)

%B the locale’s full month name
%c the date and time representation

%d the day of the month as a decimal number (0–31)
%H the hour (24-hour clock) as a decimal number (00–23)

%I the hour (12-hour clock) as a decimal number (01–12)
%j the day of the year as a decimal number (001–366)

%m the month as a decimal number (01–12)

%M the minute as a decimal number (00–59)

%p the locale’s equivalent of either A.M. or P.M.
%S the second as a decimal number (00–50)

%U the week number of the year (Sunday is the first day of the week) as a
decimal number (00–52)

 Alphabetical Summary of Runtime-Support Functions strlen

5-67 Runtime-Support Functions

%x the date representation
%X the time representation
%y the year without century as a decimal number (00–99)
%Y the year with century as a decimal number
%Z the time zone name, or by no characters if no time zone exists

For more information about the functions and types that the time.h header de-
clares, refer to subsection 5.2.13, page 5-11.

Find String Lengthstrlen

Syntax #include <string.h>

size_t strlen(char *s);

Defined in strlen.c in rts.src

Description The strlen function returns the length of s. In C, a character string is terminated
by the first byte with a value of 0 (a null character). The returned result does
not include the terminating null character. The strlen function is expanded in-
line if the –x option is used.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strlen(stra); /* length = 13 */
length = strlen(strb); /* length = 26 */
length = strlen(strc); /* length = 7 */

strncat Alphabetical Summary of Runtime-Support Functions

5-68

Concatenate Stringsstrncat

Syntax #include <string.h>

char *strncat(char *s1, char *s2, size_t n);
Defined in strncat.c in rts.src

Description The strncat function appends up to n characters of s2 (including the terminat-
ing null character) to the end of s1. The initial character of s2 overwrites the
null character that originally terminated s1; strncat appends a null character
to the result. The function returns the value of s1.

Example In the following example, the character strings pointed to by a, b, and c were
assigned the values shown in the comments. In the comments, the notation
“\0” represents the null character:

char *a, *b, *c;
size_t size = 13;
.
.
.

/* a––> ”I do not like them,\0” */;
/* b––> ” Sam I am, \0” */;
/* c––> ”I do not like green eggs and ham\0” */;

strncat (a,b,size);

/* a––> ”I do not like them, Sam I am, \0” */;

strncat (a,c,size);

/* a––> ”I do not like them, Sam I am, I do not like\0” */;

 Alphabetical Summary of Runtime-Support Functions strncmp

5-69 Runtime-Support Functions

Compare Stringsstrncmp

Syntax #include <string.h>

int strncmp(char *s1, char *s2, size_t n);

Defined in strncmp.c in rts.src

Description The strncmp function compares up to n characters of s2 with s1. The function
returns one of the following values:

< 0 if *s1 is less than *s2.
0 if *s1 is equal to *s2.

> 0 if *s1 is greater than *s2.

Example char *stra = ”why ask why”;

char *strb = ”just do it”;

char *strc = ”why not?”;

size_t size = 4;

if (strcmp(stra, strb, size) > 0)
{

/* statements here will get executed */
}

if (strcmp(stra, strc, size) == 0)
{

/* statements here will get executed also */
}

strncpy Alphabetical Summary of Runtime-Support Functions

5-70

String Copystrncpy

Syntax #include <string.h>

char *strncpy(char *s1, char *s2, size_t n);

Defined in strncpy.c in rts.src

Description The strncpy function copies up to n characters from s2 into s1. If s2 is n
characters long or longer, the null character that terminates s2 is not copied.
If you attempt to copy characters from overlapping strings, the function’s
behavior is undefined. If s2 is shorter than n characters, strncpy appends null
characters to s1 so that s1 contains n characters. The function returns the val-
ue of s1.

Example Note that strb contains a leading space to make it five characters long. Also
note that the first five characters of strc are an “I“, a space, the word “am”, and
another space, so that after the second execution of strncpy, stra begins with
the phrase “I am” followed by two spaces. In the comments, the notation “\0”
represents the null character.

char *stra = ”she’s the one mother warned you of”;
char *strb = ” he’s”;
char *strc = ”I am the one father warned you of”;
char *strd = ”oops”;
size_t length = 5;

strncpy (stra,strb,length);

/* stra––> ” he’s the one mother warned you of\0” */;
/* strb––> ” he’s\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

strncpy (stra,strc,length);

/* stra––> ”I am the one mother warned you of\0” */;
/* strb––> ” he’s\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

strncpy (stra,strd,length);

/* stra––> ”oops\0” */;
/* strb––> ” he’s\0” */;
/* strc––> ”I am the one father warned you of\0” */;
/* strd––> ”oops\0” */;

 Alphabetical Summary of Runtime-Support Functions strpbrk, strrchr

5-71 Runtime-Support Functions

Find Any Matching Characterstrpbrk

Syntax #include <string.h>

char *strpbrk(char *s1, char *s2);

Defined in strpbrk.c in rts.src

Description The strpbrk function locates the first occurrence in s1 of any character in s2.
If strpbrk finds a matching character, it returns a pointer to that character;
otherwise, it returns a null pointer (0).

Example char *stra = ”it wasn’t me”;

char *strb = ”wave”;

char *a;

a = strpbrk (stra,strb);

After this example, a points to the “w” in wasn’t.

Find Last Occurrence of a Characterstrrchr

Syntax #include <string.h>

char *strrchr(char *s, int c);

Defined in strrchr.c in rts.src

Description The strrchr function finds the last occurrence of c in s. If strrchr finds the char-
acter, it returns a pointer to the character; otherwise, it returns a null pointer
(0). The strrchr function is expanded inline if the –x option is used.

Example char *a = ”When zz comes home, the search is on for z’s”;

char *b;

char the_z = ’z’;

 b = strrchr(a,the_Z);

After this example, b points to the z in zs near the end of the string.

strspn, strstr Alphabetical Summary of Runtime-Support Functions

5-72

Find Number of Matching Charactersstrspn

Syntax #include <string.h>

size_t *strspn(int *s1, int *s2);

Defined in strspn.c in rts.src

Description The strspn function returns the length of the initial segment of s1, which is
entirely made up of characters in s2. If the first character of s1 is not in s2, the
strspn function returns 0.

Example char *stra = ”who is there?”;

char *strb = ”abcdefghijklmnopqrstuvwxyz”;

char *strc = ”abcdefg”;

size_t length;

length = strcspn(stra,strb); /* length = 3 */
length = strcspn(stra,strc) ; /* length = 0 */

Find Matching Stringstrstr

Syntax #include <string.h>

char *strstr(char *s1, char *s2);

Defined in strstr.c in rts.src

Description The strstr function finds the first occurrence of s2 in s1 (excluding the
terminating null character). If strstr finds the matching string, it returns a pointer
to the located string; if it doesn’t find the string, it returns a null pointer. If s2
points to a string with length 0, strstr returns s1.

Example char *stra = ”so what do you want for nothing?”;

char *strb = ”what”;

char *ptr;

ptr = strstr(stra,strb);

The pointer ptr now points to the “w” in “what” in the first string.

 Alphabetical Summary of Runtime-Support Functions strtod/strtol/strtoul

5-73 Runtime-Support Functions

Convert String to Numeric Valuestrtod/strtol/
strtoul

Syntax #include <stdlib.h>

double strtod(char *nptr, char **endptr);

long int strtol(char *nptr, char **endptr, int base);

unsigned long int strtoul(char *nptr, char **endptr, int base);

Defined in strtod.c in rts.src, strtol.c in rts.src and strtoul.c in rts.src

Description Three functions convert ASCII strings to numeric values. For each function,
argument nptr points to the original string. Argument endptr points to a pointer;
the functions set this pointer to point to the first character after the converted
string. The functions that convert to integers also have a third argument, base,
which tells the function on which base to interpret the string.

� The strtod function converts a string to a floating-point value. The string
must have the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The function returns the converted string; if the original string is empty or
does not have the correct format, the function returns a 0. If the converted
string would cause an overflow, the function returns +HUGE_VAL; if the
converted string would cause an underflow, the function returns 0. If the
converted string causes an overflow or an underflow, errno is set to the
value of ERANGE.

� The strtol function converts a string to a long integer. The string must have
the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

� The strtoul function converts a string to an unsigned long integer. The
string must be specified in the following format:

[space] [sign] digits [.digits] [e|E [sign] integer]

The space is indicated by one or more of the following characters: space bar,
horizontal or vertical tab, carriage return, form feed, or newline. Following the
space is an optional sign, and then digits that represent the integer portion of
the number. The fractional part of the number follows, then the exponent, in-
cluding an optional sign.

The first unrecognized character terminates the string. The pointer that endptr
points to is set to point to this character.

strtok, strxfrm Alphabetical Summary of Runtime-Support Functions

5-74

Break String into Tokenstrtok

Syntax #include <string.h>

char *strtok(char *s1, char *s2);

Defined in strtok.c in rts.src

Description Successive calls to the strtok function break s1 into a series of tokens, each
delimited by a character from s2. Each call returns a pointer to the next token.
The first call to strtok uses the string s1. Successive calls use a null pointer as
the first argument. The value of s2 can change at each invocation. It is impor-
tant to note that s1 is altered by the strtok function.

Example After the first invocation of strtok in the example below, the pointer stra points
to the string “excuse” because strtok has inserted a null character where the
first space used to be. In the comments, the notation “\0” represents the null
character.

char *stra = ”excuse me while I kiss the sky”;
char *ptr;

ptr = strtok (stra,” ”); /* ptr ––> ”excuse\0” */
ptr = strtok (0,” ”); /* ptr ––> ”me\0” */
ptr = strtok (0,” ”); /* ptr ––> ”while\0” */

Convert Charactersstrxfrm

Syntax #include <string.h>

size_t strxfrm(char *tostring, const char *fromstring, size_t n);

Defined in strxfrm.c in rts.src

Description Converts the characters of one string into another string. The n number of
characters pointed to by fromstring are converted into the n characters pointed
to by tostring.

 Alphabetical Summary of Runtime-Support Functions tan, tanh

5-75 Runtime-Support Functions

Tangenttan

Syntax #include <math.h>

double tan(double x);

Defined in tan.c in rts.src

Description The tan function returns the tangent of a floating-point number x. x is an angle
expressed in radians. An argument with a large magnitude may produce a re-
sult with little or no significance.

Example double x, y;

x = 3.1415927/4.0;
y = tan(x); /* return value = 1.0 */

Hyperbolic Tangenttanh

Syntax #include <math.h>

double tanh(double x);

Defined in tanh.c in rts.src

Description The tanh function returns the hyperbolic tangent of a floating-point number x.

Example double x, y;

x = 0.0;
y = tanh(x); /* return value = 0.0 */

time, tmpfile, tmpnam, toascii Alphabetical Summary of Runtime-Support Functions

5-76

Timetime

Syntax #include <time.h>

time_t time(time_t *timer);

Defined in time.c in rts.src

Description The time function determines the current calendar time, represented as a val-
ue of type time_t. The value is the number of seconds since 12:00 A.M., Jan
1, 1900. If the calendar time is not available, the function returns –1. If timer
is not a null pointer, the function also assigns the return value to the object that
timer points to.

For more information about the functions and types that the time.h header de-
clares, refer to subsection 5.2.13, page 5-11.

Note: Writing Your Own Time Function

The time function is target-system specific, so you must write your own time
function.

Create Temporary Filetmpfile

Syntax #include <stdlib.h>

FILE *tmpfile(void);

Defined in tmpfile.c in rts.src

Description Creates a temporary file.

Generate Valid Filenametmpnam

Syntax #include <stdlib.h>

char *tmpnam(char *s);

Defined in tmpnam.c in rts.src

Description Generates a string that is a valid filename.

Convert to ASCIItoascii

Syntax #include <ctype.h>

int toascii(char c);

Defined in toascii.c in rts.src

Description The toascii function ensures that c is a valid ASCII character by masking the
lower seven bits. There is also an equivalent macro, _toascii.

 Alphabetical Summary of Runtime-Support Functions tolower/toupper, ungetc

5-77 Runtime-Support Functions

Convert Casetolower/toupper

Syntax #include <ctype.h>

int tolower(char c);
int toupper(char c);

Defined in tolower.c in rts.src
toupper.c in rts.src

Description Two functions convert the case of a single alphabetic character, c, to upper or
lower case:

� The tolower function converts an uppercase argument to lowercase. If c
is not an uppercase letter, tolower returns it unchanged.

� The toupper function converts a lowercase argument to uppercase. If c
is not a lowercase letter, toupper returns it unchanged.

The functions have macro equivalents named _tolower and _toupper.

Example tolower (’A’) /* returns ’a’ */

tolower (’+’) /* returns ’+’ */

Write Character to Streamungetc

Syntax #include <stdio.h>

int ungetc(int c, FILE *p);

Defined in ungetc.c in rts.src

Description Writes the character c to a stream. The stream is pointed to by p.

va_arg/va_end/va_start Alphabetical Summary of Runtime-Support Functions

5-78

Variable-Argument Macros/Functionsva_arg/va_end/
va_start

Syntax #include <stdarg.h>

type va_arg(ap, type);
void va_end(ap);
void va_start(ap, parmN);
va_list *ap;

Defined in stdarg.h as macros

Description Some functions can be called with a varying number of arguments that have
varying types. Such functions, called variable-argument functions, can use the
following macros to step through argument lists at runtime. The ap parameter
points to an argument in the variable-argument list.

� The va_start macro initializes ap to point to the first argument in an argu-
ment list for the variable-argument function. The parmN parameter points
to the rightmost parameter in the fixed, declared list.

� The va_arg macro returns the value of the next argument in a call to a
variable-argument function. Each time you call va_arg, it modifies ap so
that successive arguments for the variable-argument function can be
returned by successive calls to va_arg (va_arg modifies ap to point to the
next argument in the list). The type parameter is a type name; it is the type
of the current argument in the list.

� The va_end macro resets the stack environment after va_start and
va_arg are used.

Note that you must call va_start to initialize ap before calling va_arg or
va_end.

Example #include<stdarg.h>

int printf(char *fmt, ...)
{
int i;
char* s;

va_list ap;
va_start(ap, fmt);

/* ... */

i = va_arg(ap, int); /* Get next arg, an integer */
 s = va_arg(ap, char *); /* Get next arg, a string */

i = va_arg(ap, long); /* Get next arg, a long */

va_end(ap); /* Reset */
}

 Alphabetical Summary of Runtime-Support Functions vfprintf, vprintf, vsprintf

5-79 Runtime-Support Functions

Write to Streamvfprintf

Syntax #include <stdio.h>

int vfprintf(FILE *iop, const char *format, va_list ap);

Defined in vfprintf.c in rts.src

Description Writes to the stream pointed to by iop. How to write the stream is described by
a string pointed to by format. The ap parameter is the argument list.

Write to Standard Outputvprintf

Syntax #include <stdio.h>

int vprintf(const char *format, va_list ap);

Defined in vprintf.c in rts.src

Description Writes to the standard output device. How to write the stream is described by
a string pointed to by format. The ap parameter is the argument list.

Write Streamvsprintf

Syntax #include <stdio.h>

int vsprintf(char *string, const char *format, va_list ap);

Defined in vsprintf.c in rts.src

Description Writes to the array pointed to by string. How to write the stream is described
by a string pointed to by format. The ap parameter is the argument list.

5-80

6-1Library-Build Utility

Library-Build Utility

When using the TMS320C3x/C4x C compiler, you can compile your code
under a number of different configurations and options, which are not neces-
sarily compatible with one another. Since it would be cumbersome to include
all possible combinations in individual runtime-support libraries, this package
includes the source file, rts.src, that contains all runtime-support functions,
and all floating-point support functions. By using the mk30 utility described in
this chapter you can custom build your own runtime-support libraries for the
options you select.

These are the topics covered in this chapter:

Topic Page

6.1 Invoking the Library-Build Utility 6-2.

6.2 Options Summary 6-4.

Chapter 6

Invoking the Library-Build Utility

 6-2

6.1 Invoking the Library-Build Utility

The general syntax for invoking the library utility is:

mk30 [options] src_arch1 [–lobj.lib1] [src_arch2 [–lobj.lib2]]

mk30 is the command that invokes the utility.

options can appear anywhere on the command line or in a command file.
(Options are discussed in Section 6.2 and below.)

src_arch is the name of a source archive file. For each source archive
named, mk30 will build an object library according to the runtime
model specified by the command line options.

–lobj.lib is the optional object library name. If you do not specify a name
for the library, mk30 uses the name of the source archive and
appends a .lib suffix. For each source archive file specified, a cor-
responding object library file is created. An object library cannot
be built from multiple source archive files.

The mk30 utility runs the shell program cl30 on each source file in the archive
to either compile or assemble it. It then collects all the object files into the out-
put library. All the tools must be in your PATH. The utility ignores and disables
the environment variables TMP, C_OPTION, and C_DIR.

Library Utility Specific Options

Most of the options that are included on the command line correspond directly
to options of the same name used with the compiler and assembler. The follow-
ing options apply only to the library-build utility.

––c extracts C source files contained in the source archive from the
library and leaves them in the current directory after the utility has
completed execution.

––h instructs mk30 to use header files contained in the source archive
and leave them in the current directory after the utility has com-
pleted execution. You will probably want to use this option to install
the runtime-support header files from the rts.src archive that is
shipped with the tools.

––k instructs the mk30 utility to over-write files. By default, the utility
aborts any time it attempts to create an object file when an object
file of the same name already exists in the current directory, re-
gardless of whether you specified the name or the utility derived
it.

––q instructs mk30 to suppress header information (quiet).

Invoking the Library-Build Utility

6-3Library-Build Utility

––u instructs mk30 not to use the header files contained in the source
archive when building the object library. If the desired headers are
already in the current directory, there is no reason to reinstall
them. This option also gives you some flexibility in modifying
runtime-support functions to suit your application.

––v prints progress information to the screen during execution of the
utility. Normally, the utility operates silently (no screen messages).

Example: The following command builds the standard runtime support library
as an object library named rts40r.lib. The library is compiled for the
TMS320C4x (–v40), optimized with inline function expansion (–x and –o), and
uses the register-argument runtime conventions. The example assumes that
the runtime support headers already exist in the current directory (––u).

mk30 – –u –v40 –o –x –mr rts.src –1 rts40r.lib

Options Summary

 6-4

6.2 Options Summary

Options for the mk30 utility correspond directly to the options that the compiler
uses. These options are described in detail in subsection 2.1.3 on page 2-5.

General Options Effect

–g symbolic debugging

–vxx specify processor TMS320Cxx (v30, v32, v40, v44)

Parser Options Effect

–pk K&R compatible; compatible with previous C standards

–pw suppress warning messages

–p? enable trigraph expansion

Optimizer Options Effect

–o0 level 0; register optimization

–o1 level 1; level 0 + local optimization

–o2 (or –o) level 2; level 1 + global optimization

–o3 level 3; level 2 + file optimization

–ox (equivalent to –x2) defines _INLINE + invokes optimizer at level 2

Inlining Options Effect

–x1 default inlining level

–x2 (or –x) defines _INLINE + invokes optimizer at level 2

Runtime Model Options Effect

–ma assumes aliased variables

–mb big memory model

–mc fast float to int conversion

–mf far pointers

–mi avoid RPTS loops

–ml runtime support assembly calls use far calls

–mm use MPYI for multiply

–mn enables optimization disabled by –g

–mp perform speed optimizations at cost of increased code
size

–mr register argument conventions

–ms assume all memory accessible when optimizing

–mt generate Ada compatible frame structure

–mtc generate Tartan LAJ–compatible function prolog

Type Checking Options Effect

–tf relax prototype checking

Options Summary

6-5Library-Build Utility

–tp relax pointer combination checking

Assembler Options Effect

–as keep labels as symbols

 6-6

A-1

Appendix A

Description of Compiler Optimizations

The TMS320C3x/C4x C compiler uses a variety of optimization techniques to
improve the execution speed of your C programs and to reduce their size.
Optimization occurs at various levels throughout the compiler. Most of the
optimizations described here are performed by the separate optimizer pass
that you enable and control with the –o compiler options. (For details about the
–o options, refer to Section 2.4 on page 2-37.) However, the code generator
performs some optimizations, particularly the target-specific optimizations,
that you cannot selectively enable or disable.

This appendix describes two categories of optimizations: general and target-
specific. General optimizations improve any C code, and target-specific
optimizations are designed especially for the TMS320C3x/C4x architecture.
Both kinds of optimizations are performed throughout the compiler. Some of
the examples in this section were compiled with the –v40 option, and some with
–v30. The code produced will be slightly different different depending on the
version. For example, Example A–1 shows code produced with the –v40 option,
so one of its local variables is assigned to register R8 (a register the ’C3x doesn’t
have). Unless otherwise noted, the differences between –v30 and –v40 code
are minimal.

These are the optimizations covered in this appendix:

Target-Specific Optimizations General Optimizations
Register variables Algebraic reordering, symbolic
Register tracking/targeting simplification, constant folding
Cost-based register allocation Alias disambiguation
Autoincrement addressing Copy propagation
Repeat blocks Common subexpression elimination
Parallel instructions Redundant assignment elimination
Conditional instructions Branch optimizations, control-flow
Delayed branches simplification, delayed branches
TMS320C4x-specific features Loop induction variable optimizations,

strength reduction
Loop unrolling
Loop rotation
Loop invariant code motion
Inline function expansion

Appendix A

Effective Register Use

A-2

Effective register use

The TMS320C3x/C4x DSPs have a large and versatile set of registers. The
compiler is designed to make effective use of the registers, for both general
computations and in cases where specific registers can be used in specialized
ways.

� Register variables

The compiler helps maximize the use of registers for storing local variables,
parameters, and temporary values. Variables stored in registers can be
accessed more efficiently than variables in memory. Register variables are
particularly effective for pointers. See Example A–1 and Example A–2.

� Register tracking/targeting

The compiler tracks the contents of registers so that it avoids reloading values
if they are used again soon. Variables, constants, and structure references
such as (a.b) are tracked through both straight-line code and forward
branches. The compiler also uses register targeting to compute expressions
directly into specific registers when required, as in the case of assigning to reg-
ister variables or returning values from functions. See Example A–1.

 Effective Register Use

A-3 Description of Compiler Optimizations

Example A–1. Register Variables and Register Tracking/Targeting

int gvar;
reg(int i, int j)
{

 gvar = call () & i;
j = gvar + i;

return j;
}

}

* TMS320C30 C COMPILER Version X.XX *

; ac30 –mr a1.c a1.if
; opt30 –r –02 a1.if a1.opt
; cg30 –p a1.opt a1.asm a1.tmp

.version 30
FP .set AR3

.globl _gvar

.globl _reg

* FUNCTION DEF : _reg *

_reg:

PUSH R4
*
* R4 assigned to parameter i
*

LDI AR2,R4
CALL _call
AND R4,R0,R2
STI R2,@_gvar
ADDI R4,R2,R0

EPIO_1:
POP R4
RETS
.globl _gvar
.bss _gvar,1

* UNDEFINED REFERENCES *

.globl _call

.end

Effective Register Use/Autoincrement Addressing/Repeat Blocks/Parallel Instructions

A-4

� Cost-based register allocation

The optimizer, when enabled, allocates registers to user variables and
compiler temporary values according to their type, use, and frequency. Vari-
ables used within loops are weighted to have priority over others, and those
variables whose uses don’t overlap may be allocated to the same register.
Variables with specific requirements are allocated into registers that can
accommodate them. For example, the compiler tries to allocate loop counters
into RC. The allocation algorithm also minimizes pipeline conflicts that can
result from performing calculations using address generation registers in the
vicinity of indirection.

� Passing arguments in registers

The compiler supports a new, optional calling sequence that passes
arguments to registers rather than pushing them onto the stack. This can result
in significant improvement in execution performance, especially if calls are
important in the application. See Example A–5.

Autoincrement addressing

For pointer expressions of the form *p++ , *p–– , *++p , or *––p, the compil-
er uses efficient TMS320C3x/C4x autoincrement addressing modes. In many
cases, where code steps through an array in a loop, such as for

(i = 0; i < N; ++i) a[i]... , the loop optimizations convert the array
references to indirect references through autoincremented register variable
pointers. See Example A–2.

Repeat blocks

The TMS320C3x/C4x supports zero-overhead loops with the RPTS
(repeat single) and RPTB (repeat block) instructions. With the optimizer, the
compiler can detect loops controlled by counters and generate code for them
using the efficient repeat forms: RPTS for single-instruction loops, or RPTB for
larger loops. For both forms, the iteration count can be either a constant or an
expression. See Example A–2 and Example A–8.

Parallel instructions

Several TMS320C3x/C4x instructions such as load/load, store/operate, and
multiply/add can be paired with each other and executed in parallel. When
adjacent instructions match the addressing requirements, the compiler
combines them in parallel. Although the code generator performs this
optimization, the optimizer greatly increases effectiveness because operands
are more likely to be in registers. See Example A–2 and Example A–8.

 Parallel Instructions

A-5 Description of Compiler Optimizations

Example A–2. Repeat Blocks, Autoincrement Addressing, Parallel Instructions, Strength
Reduction, Induction Variable Elimination, Register Variables, and Loop
Test Replacement

float a[10], b[10];
float dot_product ()
{
 int i;

float sum;
for (i=0; i<10; i++)

sum += a[i] * b[i];
return sum

}

* TMS320C30 C COMPILER Version X.XX *

; ac30 –mr a2.c a2.if
; opt30 –r –02 a2.if a2.opt
; cg30 –p a2.opt a2.asm a2.tmp

.version 30
FP .set AR3

.globl _a

.globl _b

.globl _dot_product

* FUNCTION DEF : _dot_product *

_dot_product:

PUSH AR4
*
* R2 assigned to variable sum
*

LDI @CONST+0,AR4
LDI @CONST+1,AR2
MPYF *AR2++,*AR4++,R0
RPTS 8
ADDF R0,R2

|| MPYF *AR2++,*AR4++,R0
ADDF R0,R2
LDF R2,R0

EPI0_1:
POP AR4
RETS
.globl _a
.bss _a,10
.globl _b
.bss _b,10

* DEFINE CONSTANTS *

.bss CONST,2

.sect ”.cinit”

.word 2,CONST
. .word _a ;0

.word _b ;1

.end

Conditional Instructions/Delayed Branches

A-6

Conditional instructions

The load instructions in the TMS320C3x/C4x can be executed conditionally.
For simple assignments such as

a = condition ? exprl : expr2 or if (condition) a = b;

the compiler can use conditional loads to avoid costly branches.

Delayed branches

The TMS320C3x/C4x provides delayed branch instructions that can be
inserted three instructions early in an instruction stream, avoiding costly
pipeline flushes associated with normal branches. The compiler uses
unconditional delayed branches wherever possible, and conditional delayed
branches for counting loops. See Example A–3.

Example A–3. TMS320C3x/C4x Delayed Branch Instructions

wait(volatile int *p)
{

 for(;;)

 if (*p & 0x08) *p |= 0xF0
}

* TMS320C30 C COMPILER Version X.XX *

; ac30 –mr a3.c a3.if
; opt30 –r –02 a3.if a3.opt
; cg30 –p a3.opt a3.asm a3.tmp

.version 30
FP .set AR3

.globl _wait

* FUNCTION DEF : _wait *

_wait
*
* AR2 assigned to parameter p
*
L2

LDI 8,R0
TSTB R0.*AR2
BZ L2
LDI 240,R1
OR R1,*AR2,R2
STI R2.*AR2

*** B L2 ;BRANCH OCCURS
.end

 TMS320C4x-Specific Features

A-7 Description of Compiler Optimizations

TMS320C4x-specific features

The TMS320C4x has several instructions and addressing modes that are
particularly useful in compiled code. The instructions include store integer
immediate (STIK), load address register (LDA), load data page pointer
(LDPK), and a 32×32 integer multiply (MPYI). The new addressing modes
allow constants and indirect+offset operands to be used in 3-operand
instructions. In addition, separate AR interlocks eliminate the pipeline delays
associated with independent use of the AR registers. Example A–4 illustrates
some of the new ’C4x features.

TMS320C4x-Specific Features

A-8

Example A–4. TMS320C4x-Specific Features
typedef struct S {int i, j, k; } s;
sval (s *p)
{

p–>j = 5;
p–>k *= 10;
return p–>i;

}

* TMS320C30 C COMPILER Version X.XX *

; ac30 –v40 a4.c a4.if

; opt30 –v40 –02 a4.if a4.opt

; cg30 –v40 a4.opt a4.asm a4.tmp

.version 40

FP .set AR3

.globl _sval

* FUNCTION DEF : _sval *

_sval

PUSH FP

LDI SP, FP

*

* AR2 assigned to parameter p

*

LDA *–FP,(2),AR2

STIK 5,*+AR2(1)

MPYI 10,*+AR2(2),R0

STI R0,*+AR2(2)

LDI *AR2,R0

EPIO_1:

LDI *–FP(1),R1

BD R1

LDI *FP,FP

NOP

SUB1 2,SP

B R1 ;BRANCH OCCURS

.end

 Expression Simplification/Alias Disambiguation

A-9 Description of Compiler Optimizations

Expression simplification

For optimal evaluation, the compiler simplifies expressions into equivalent
forms requiring fewer instructions or registers. For example, the expression
(a + b) – (c + d) requires 5 instructions and 2 registers to evaluate; it can be
optimized to ((a + b) – c) – d, which takes only 4 instructions and 1 register.
Operations between constants are folded into single constants. For example,
a = (b + 4) – (c + 1) becomes a = b – c + 3. See Example A–5.

Alias disambiguation

Programs written in the C language generally use many pointer variables.
Frequently, compilers are unable to determine whether or not two or more
I (lowercase L) values (symbols, pointer references, or structure references)
refer to the same memory location. This aliasing of memory locations often
prevents the compiler from retaining values in registers, because it cannot be
sure that the register and memory continue to hold the same values over time.
Alias disambiguation is a technique that determines when two pointer expres-
sions cannot point to the same location, allowing the compiler to optimize such
expressions.

Data-Flow Optimizations

A-10

Data-flow optimizations

Collectively, the following three data-flow optimizations replace expressions
with less costly ones, detect and remove unnecessary assignments, and avoid
operations that produce values already computed. The optimizer performs
these data flow optimizations both locally (within basic blocks) and globally
(across entire functions). See Example A–5 and Example A–6.

� Copy propagation

Following an assignment to a variable, the compiler replaces references to
the variable with its value. The value could be another variable, a constant,
or a common subexpression. This may result in increased opportunities
for constant folding, common subexpression elimination, or even total
elimination of the variable. See Example A–5 and Example A–6.

� Common subexpression elimination

When the same value is produced by two or more expressions, the
compiler computes the value once, saves it, and reuses it. See
Example A–5.

� Redundant assignment elimination

Often, copy propagation and common subexpression elimination
optimizations result in unnecessary assignments to variables (variables
with no subsequent reference before another assignment or before the
end of the function). The optimizer removes these dead assignments. See
Example A–5.

 Data-Flow Optimizations

A-11 Description of Compiler Optimizations

Example A–5. Data-Flow Optimizations

simp(int j)

{

int a = 3;

int b = (j * a) + (j * 2);

int c = (j << a);

int d = (j << 3) + (j << b);

call(a,b,c,d);

}

* TMS320C30 C COMPILER Version X.XX *

; ac30 –mr a5.c a5.if
; opt30 –r –02 a5.if a5.opt
; cg30 –p a5.opt a5.asm a5.tmp

. version 30
FP .set AR3

.globl _simp

* FUNCTION DEF : _simp *

_simp
*
* AR2 assigned to parameter j
*

LDI 2,R0
LSH R0,AR2,R1
ADDI R1,AR2,R2
LDI 3,R1
LSH R1,AR2,R3
LSH R2,AR2,RC
ADDI R3,RC
LDI 3,AR2
CALL _call

EPIO_1:
RETS

* UNDEFINED REFERENCES *

.globl _call

.end

Branch Optimizations/Control-Flow Simpification

A-12

Branch optimizations / control-flow simplification

The compiler analyzes the branching behavior of a program and rearranges
the linear sequences of operations (basic blocks) to remove branches or
redundant conditions. Unreachable code is deleted, branches to branches are
bypassed, and conditional branches over unconditional branches are
simplified to a single conditional branch. When the value of a condition can be
determined at compile time (through copy propagation or other data flow anal-
ysis), a conditional branch can be deleted. Switch case lists are analyzed in
the same way as conditional branches and are sometimes eliminated entirely.
Some simple control-flow constructs can be reduced to conditional instruc-
tions, totally eliminating the need for branches. See Example A–6.

 Control-Flow Simplification/Loop Induction Variable Optimizations/Strength Reduction

A-13 Description of Compiler Optimizations

Example A–6. Copy Propagation and Control-Flow Simplification

fsm()
{

enum { ALPHA, BETA, GAMMA, OMEGA } state = ALPHA;
int *input;

while (state != OMEGA)
switch (state)
{

case ALPHA: state = (*input++ == 0) ? BETA: GAMMA; break;
case BETA : state = (*input++ == 0) ? GAMMA: ALPHA; break;
case GAMMA: state = (*input++ == 0) ? GAMMA: OMEGA; break;

}
}

* TMS320C40 C COMPILER Version X.XX*

; ac30 –v40 a6.c a6.if
; opt30 –v40 –02 a6.if a6.opt
; cg30 –v40 a6.opt a6.asm a6.tmp

.version 40
FP .set AR3

.globl _fsm
**** ***
* FUNCTION DEF : _fsm *

_fsm
*
* AR2 assigned to variable input
*

LDI *AR2++,R0
BNZ L4

L2:
LDI *AR2++,R0
BZ L4
LDI AR2++,R0
BZ L2

L4:
LDI *AR2++,R0
BZ L4

EPIO_1:
RETS
.end

Loop induction variable optimizations / strength reduction

Loop induction variables are variables whose value within a loop is directly
related to the number of executions of the loop. Array indices and control vari-
ables of for loops are very often induction variables. Strength reduction is the
process of replacing costly expressions involving induction variables with
more efficient expressions. For example, code that indexes into a sequence
of array elements is replaced with code that increments a pointer through the
array. Loops controlled by incrementing a counter are written as
TMS320C3x/C4x repeat blocks or by using efficient decrement-and-branch

Strength Reduction/Loop Unrolling

A-14

instructions. Induction variable analysis and strength reduction together often
remove all references to your loop control variable, allowing it to be eliminated
entirely. See Example A–2 and Example A–8.

Loop Unrolling

When the compiler can determine that a short loop is executed a low, constant
number of times, it replicates the body of the loop rather than generating the
loop. This avoids any branches or use of the repeat registers. (“Low” and
“short” are subjective judgments made by the compiler.) See Example A–7.

Example A–7. Loop Unrolling

add3(int a[3])
{

int i, sum = 0;
for (i=0; i<3; i++) sum += a[i]

return sum;
}

* TMS320C30 C COMPILER Version X.XX*

; ac30 a7.c a7.if
; opt30 –02 a7.if a7.opt
; cg30 a7.opt a7.asm a7.tmp

.version 30
FP .set AR3

.globl _add3

* FUNCTION DEF : _add3 *

_add3:

PUSH FP
LDI SP, FP

*
* R2 assigned to variable sum
*

LDI *–FP(2),AR2
LDI O,R2
ADDI *AR2++,R2
ADDI *AR2++,R2
ADDI *AR2,R2
LDI R2,R0

EPIO_1:
LDI *–FP(1),R1
BD R1
LDI *FP,FP
NOP
SUBI 2,SP

*** B R1 ;BRANCH OCCURS
.end

 Loop Rotation/Loop Invariant Code Motion/Inline Function Expansion

A-15 Description of Compiler Optimizations

Loop rotation

The compiler evaluates loop conditionals at the bottom of loops, saving a cost-
ly extra branch out of the loop. In many cases, the initial entry conditional check
and the branch are optimized out.

Loop invariant code motion

This optimization identifies expressions within loops that always compute the
same value. The computation is moved in front of the loop, and each occur-
rence of the expression in the loop is replaced by a reference to the
precomputed value. See Example A–8.

Inline function expansion

The special keyword inline directs the compiler to replace calls to a function
with inline code, saving the overhead associated with a function call as well as
providing increased opportunities to apply other optimizations. See
Example A–8 and Example A–9. The optimizer inlines small functions not de-
clared as inline when invoked with the –o3 option. The size of code growth al-
lowed may be changed using the –oisize option.

Example A–8. Inline Function Expansion, part one

inline blkcpy (char *to, char *from, int n)
{

if (n > 0)
do *to++ = *from++; while (––n != 0);

}
struct s {int a , b, c[10]; };
initstr (struct s *ps, char t[12])
{

blkcpy((char *)ps, t, 12);
}

Inline Function Expansion

A-16

Example A–9. Inline Function Expansion, part two

* TMS320C30 C COMPILER Version X.XX *

; ac30 –mr a8.c a8.if
; opt30 –r –02 a8.if a8.opt
; cg30 –p a8.opt a8.asm a8.tmp

.version 30
FP .set AR3

.globl _blkcpy

* FUNCTION DEF : _blkcpy *

_blkcpy:

PUSH AR4
*
* R3 assigned to parameter n
* AR2 assigned to parameter to
* AR4 assigned to parameter from
*

LDI R2,AR4
CMPI 0,R3
BLE EPI0_1
LDI R3,RC
SUBI 1,RC
RPTB L5
LDI *AR4++,R0

L5: STI R0,*AR2++
EPI0_1:

POP AR4
RETS
.globl _initstr

* FUNCTION DEF : _initstr *

_initstr

PUSH AR4
*
* AR2 assigned to parameter ps
* AR2 assigned to variable to
* AR4 assigned to parameter to
* AR4 assigned to variable from
*

LDI R2,AR4
* >>>ENTERING blkcpy()

LDI *AR4++,R0
RPTS 10
STI R0,*AR2++

|| LDI *AR4++,R0
STI R0,*AR2++

EPI0_2:
POP AR4
RETS
.end

B-1

Appendix A

The C I/O Functions

Some of the tasks that a C program performs (such as I/O, dynamic memory
allocation, string operations, and trigonometric functions) are not part of the
C language itself. However, the ANSI C standard defines a set of runtime-
support functions that perform these tasks. The TMS320C3x/C4x C compiler
implements the complete ANSI standard library, except for those facilities that
handle exception conditions and locale issues (properties that depend on local
language, nationality, or culture). Using the ANSI standard library ensures a
consistent set of functions that provide for greater portability.

In addition to the ANSI-specified functions, the TMS320C3x/C4x runtime-
support library includes routines that give you direct C language I/O requests.

Topic Page

B.1 Using the I/O Functions B-2.

B.2 Overview of Low-Level I/O Implementation B-3.

B.3 Adding a Device For C I/O B-5.

Appendix B

Using the I/O Functions

B-2

B.1 Using the I/O Functions

The C I/O functions make it possible to access the host’s operating system to
perform I/O (using the debugger). For example, printf statements executed in
a program appear in the debugger command window. When used in
conjunction with the debugging tools, the capability to perform I/O on the host
gives you more options when debugging and testing code.

To use the I/O functions:

� Include the header file stdio.h for each module that references a function.

� Invoke the debugger with the –o option to enable I/O support. For more
information about the debugger –o option, see the TMS320C3x C Source
Debugger User’s Guide or the TMS320C4x C Source Debugger User’s
Guide.

With properly written device drivers, the library also offers facilities to perform
I/O on a user-specified device.

If there is not enough space on the heap for a C I/O buffer, buffered operations
on the file will fail. If a call to printf() mysteriously fails, this may be the reason.
Check the size of the heap. To set the heap size, use the –heap option when
linking. For information on the –heap option, see the Linker Description
chapter of the TMS320C3x/C4x Assembly Language Tools User’s Guide.

For example, given the following program in a file named main.c:

#include <stdio.h>

main()
{
 FILE *fid;

 fid = fopen(”myfile”,”w”);
 fprintf(fid,”Hello, world\n”);
 fclose(fid);

 printf(”Hello again, world\n”);
}

Issuing the following shell command compiles, links, and creates the file
main.out:

cl30 main.c –z –heap 400 –l rts.lib –o main.out

Executing main.out under the debugger on a SPARC host accomplishes the
following:

1) Opens the file myfile in the directory where the debugger was invoked
2) Prints the string Hello, world into that file
3) Closes the file
4) Prints the string Hello again, world in the debugger command window

 Overview of Low-Level I/O Implementation

B-3 The C I/O Functions

B.2 Overview of Low-Level I/O Implementation

The code that implements I/O is logically divided into layers: high level, low
level, and device level.

The high-level functions are the standard C library of stream I/O routines
(printf, scanf, fopen, getchar, and so on). These routines map an I/O request
to one or more of the I/O commands that are handled by the low-level routines.

The low-level routines are comprised of basic I/O functions: OPEN, READ,
WRITE, CLOSE, LSEEK, RENAME, and UNLINK. These low-level routines
are declared in file.h and provide the interface between the high-level
functions and the device-level drivers that actually perform the I/O command
on the specified device.

The low-level functions also define and maintain a stream table that
associates a file descriptor with a device. The stream table interacts with the
device table to ensure that an I/O command performed on a stream executes
the correct device-level routine.

The data structures interact as shown in Figure B–1.

Figure B–1. Interaction of Data Structures in I/O Functions

Device tableStream table

read

open

read

open

file_descriptor2

file_descriptor1

Overview of Low-Level I/O Implementation

B-4

The first three streams in the stream table are predefined to be stdin, stdout,
and stderr, and they point to the host device and associated device drivers.

Figure B–2. The First Three Streams in the Stream Table

file_descriptor3

Device table

read

open

read

open

file_descriptor2

file_descriptor1

Host

Stream table

stdin

stdout

stderr

At the next level are the user-definable device-level drivers. They map directly
to the low-level I/O functions. The runtime-support library includes the device
drivers necessary to perform I/O on the host on which the debugger is running.

The specifications for writing device-level routines to interface with the low-
level routines are shown on pages B-7 to B-10. Each function must set up and
maintain its own data structures as needed. Some function definitions perform
no action and just return.

 Adding a Device For C I/O

B-5 The C I/O Functions

B.3 Adding a Device For C I/O

The low-level functions provide facilities that allow you to add and use a device
for I/O at runtime. The procedure for using these facilities is:

1) Define the device-level functions as described in subsection B.2,
Overview of Low-Level I/O Implementation, on page B-3.

Note: Use Unique Function Names

The function names, OPEN, CLOSE, READ, and so on, are used by the low-
level routines. Use other names for the device-level functions that you write.

2) Use the low-level function add_device() to add your device to the
device_table. The device table is a statically-defined array that supports
n devices, where n is defined by the macro _NDEVICE found in stdio.h.
The structure representing a device is also defined in stdio.h and is
composed of the following fields:

name is the string for device name.

flags specifies whether the device supports multiple
streams or not.

function pointers are pointers to the device-level functions:

� CLOSE
� LSEEK
� OPEN
� READ
� RENAME
� WRITE
� UNLINK

The first entry in the device table is predefined to be the host device on
which the debugger is running. The low-level routine add_device() finds
the first empty position in the device table and initializes the device fields
with the passed-in arguments. For a complete description, see the
add_device function on page 5-23.

3) Once the device is added, call fopen() to open a stream and associate it
with that device. Use devicename:filename as the first argument to
fopen().

Adding a Device For C I/O

B-6

The following program illustrates adding and using a device for C I/O:

#include <stdio.h>

/**/
/* Declarations of the user–defined device drivers */
/**/
extern int my_open(char *path, unsigned flags, int fno);
extern int my_close(int fno);
extern int my_read(int fno, char *buffer, unsigned count);
extern int my_write(int fno, char *buffer, unsigned count);
extern int my_lseek(int fno, long offset, int origin);
extern int my_unlink(char *path);
extern int my_rename(char *old_name, char *new_name);

main()
{
 FILE *fid;

 add_device(”mydevice”, _MSA, my_open, my_close, my_read, my_write, my_lseek,
 my_unlink, my_rename);

 fid = fopen(”mydevice:test”,”w”);

 fprintf(fid,”Hello, world\n”);

 fclose(fid);
}

 Alphabetical Summary of C I/O Functions CLOSE, LSEEK

B-7 The C I/O Library

Close File or Device For I/OCLOSE

Syntax int CLOSE(int file_descriptor);

Description The CLOSE function closes the device or file associated with file_descriptor.

The file_descriptor is the stream number assigned by the low-level routines
that is associated with the opened device or file.

Return Value The function returns one of the following values:

0 if successful

–1 if fails

Set File Position IndicatorLSEEK

Syntax long LSEEK(int file_descriptor, long offset, int origin);

Description The LSEEK function sets the file position indicator for the given file to origin
+ offset. The file position indicator measures the position in characters from
the beginning of the file.

� The file_descriptor is the stream number assigned by the low-level
routines that the device-level driver must associate with the opened file or
device.

� The offset indicates the relative offset from the origin in characters.

� The origin is used to indicate which of the base locations the offset is
measured from. The origin must be a value returned by one of the follow-
ing macros:

SEEK_SET (0x0000) Beginning of file
SEEK_CUR (0x0001) Current value of the file position indicator
SEEK_END (0x0002) End of file

Return Value The function returns one of the following values:

new value of the file-position indicator if successful

EOF if fails

OPEN Alphabetical Summary of C I/O Functions

B-8

Open File or Device For I/OOPEN

Syntax int OPEN(char *path, unsigned flags, int mode);

Description The OPEN function opens the device or file specified by path and prepares it
for I/O.

� The path is the filename of the file to be opened, including path
information.

� The flags are attributes that specify how the device or file is manipulated.
The flags are specified using the following symbols:

O_RDONLY (0x0000) /* open for reading */
O_WRONLY(0x0001) /* open for writing */
O_RDWR (0x0002) /* open for read & write */
O_APPEND (0x0008) /* append on each write */
O_CREAT (0x0100) /* open with file create */
O_TRUNC (0x0200) /* open with truncation */
O_BINARY (0x8000) /* open in binary mode */

These parameters can be ignored in some cases, depending on how data
is interpreted by the device. Note, however, that the high-level I/O calls
look at how the file was opened in an fopen statement and prevent certain
actions, depending on the open attributes.

� The mode is required but ignored.

Return Value The function returns one of the following values:

stream number assigned by the low-level routines that the device-level
driver associates with the opened file or device if successful

< 0 if fails

 Alphabetical Summary of C I/O Functions READ, RENAME

B-9 The C I/O Library

Read Characters From BufferREAD

Syntax int READ(int file_descriptor, char *buffer, unsigned count);

Description The READ function reads the number of characters specified by count to the
buffer from the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level
routines that is associated with the opened file or device.

� The buffer is the location of the buffer where the read characters are
placed.

� The count is the number of characters to read from the device or file.

Return Value The function returns one of the following values:

0 if EOF was encountered before the read was complete

number of characters read in every other instance

–1 if fails

Rename FileRENAME

Syntax int RENAME(char * old_name, char * new_name);

Description The RENAME function changes the name of a file.

� The old_name is the current name of the file.

� The new_name is the new name for the file.

Return Value The function returns one of the following values:

0 if the rename is successful

Non-0 if it fails

UNLINK, WRITE Alphabetical Summary of C I/O Functions

B-10

Delete FileUNLINK

Syntax int UNLINK(char * path);

Description The UNLINK function deletes the file specified by path.

The path is the filename of the file to be opened, including path information.

Return Value The function returns one of the following values:

0 if successful

–1 if fails

Write Characters to BufferWRITE

Syntax int WRITE(int file_descriptor, char * buffer, unsigned count);

Description The WRITE function writes the number of characters specified by count from
the buffer to the device or file associated with file_descriptor.

� The file_descriptor is the stream number assigned by the low-level
routines that is associated with the opened file or device.

� The buffer is the location of the buffer where the write characters are
placed.

� The count is the number of characters to write to the device or file.

Return Value The function returns one of the following values:

number of characters written is successful

–1 if fails

 Glossary

C-1 Glossary

Appendix A

Glossary

A

aliasing: a method of accessing a single data object in more than one way,
as when a pointer points to a named object. The optimizer has logic to
detect aliasing, but aliasing can cause problems for the optimizer.

allocation: A process in which the linker calculates the final memory
addresses of output sections.

archive library: A collection of individual files that have been grouped into
a single file.

archiver: A software program that allows you to collect several individual
files into a single file called an archive library. The archiver also allows
you to delete, extract, or replace members of the archive library, as well
as to add new members.

assembler: A software program that creates a machine-language program
from a source file that contains assembly language instructions,
directives, and macro directives. The assembler substitutes absolute
operation codes for symbolic operation codes, and absolute or
relocatable addresses for symbolic addresses.

assignment statement: A statement that assigns a value to a variable.

autoinitialization: The process of initializing global C variables (contained
in the .cinit section) before beginning program execution.

B

binding: Associating or linking together two complementary software
objects.

block: A set of declarations and statements that are grouped together with
braces.

Appendix C

Glossary

C-2

.bss: One of the default COFF sections. You can use the .bss directive to
reserve a specified amount of space in the memory map that can later
be used for storing data. The .bss section is uninitialized.

C

C compiler: A program that translates C source statements into
TMS320C3x/C4x assembly language source statements.

COFF (common object file format): A binary object file format that
promotes modular programming by supporting the concept of sections.

comment: A source statement (or portion of a source statement) that is
used to document or improve readability of a source file. Comments are
not compiled, assembled, or linked; they have no effect on the object file.

constant: A numeric value that can be used as an operand.

cross-reference lister: A debugging tool that accepts linked object files as
input and produces cross-reference listings as output.

cross-reference listing: An output file created by the assembler that lists
the symbols that were defined, what line they were defined on, which
lines referenced them, and their final values.

D

.data: One of the default COFF sections. The .data section is an initialized
section that contains initialized data. You can use the .data directive to
assemble code into the .data section.

directive: Special-purpose commands that control the actions and
functions of a software tool (as opposed to assembly language
instructions, which control the actions of a device).

E

environment variables: System symbols that you define and assign to a
string. They are usually included in various batch files; for example, in
AUTOEXEC.BAT.

entry point: The starting execution point in target memory.

executable module: An object file that has been linked and can be
executed in a TMS320 system.

 Glossary

C-3 Glossary

expression: A constant, a symbol, or a series of constants and symbols
separated by arithmetic operators.

F

field: For the TMS320, a software-configurable data type whose length can
be programmed to be any value in the range of 1–16 bits.

G

global: A kind of symbol that is either 1) defined in the current module and
accessed in another, or 2) accessed in the current module but defined
in another.

H

high-level language debugging: The ability of a compiler to retain
symbolic and high-level language information (such as type and function
definitions) so that a debugging tool can use this information.

hole: An area between the input sections that compose an output section
that contains no actual code or data.

I

initialized section: A COFF section that contains executable code or
initialized data. An initialized section can be built up with the .data, .text,
or .sect directive.

input section: A section from an object file that will be linked into an
executable module.

K

K & R: The C Programming Language (second edition), by Brian Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs,
New Jersey, 1988. This book describes ANSI C and is used as a refer-
ence in this book. Paragraphs within the book are referred to with this
symbol: §.

L

Glossary

C-4

label: A symbol that begins in column 1 of a source statement and
corresponds to the address of that statement.

linker: A software tool that combines object files to form an object module
that can be allocated into TMS320 system memory and executed by the
TMS320.

listing file: An output file, created by the assembler, that lists source
statements, their line numbers, and their effects on the SPC.

loader: A device that loads an executable module into TMS320 system
memory.

M

macro: A user-defined routine that can be used as an instruction.

macro call: The process of invoking a macro.

macro definition: A block of source statements that define the name and
the code that make up a macro.

macro expansion: The source statements that are substituted for the
macro call and are subsequently assembled.

map file: An output file, created by the linker, that shows the memory
configuration, section composition, and section allocation, as well as
symbols and the addresses at which they were defined.

member: The elements or variables of a structure, union, archive, or
enumeration.

memory map: A map of TMS320 target system memory space, which is
partitioned off into functional blocks.

O

object file: A file that has been assembled or linked and contains
machine-language object code.

object library: An archive library made up of individual object files.

operand: The arguments, or parameters, of an assembly language
instruction, assembler directive, or macro directive.

options: Command parameters that allow you to request additional or
specific functions when you invoke a software tool.

 Glossary

C-5 Glossary

output module: A linked, executable object file that can be downloaded and
executed on a target system.

output section: A final, allocated section in a linked, executable module.

P

protected mode: Thirty-two bit extended DOS mode. These programs re-
quire an extended memory manager and will run only on larger proces-
sors (’386 or better). They can utilize all the available RAM on the com-
puter.

R

RAM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the
–cr option. The RAM model allows variables to be initialized at load time
instead of runtime.

real mode: Sixteen-bit native MS-DOS mode. This mode limits the available
memory to 640K. Calls to DOS may involve switching from protected to
real mode.

ROM model: An autoinitialization model used by the linker when linking C
code. The linker uses this model when you invoke the linker with the
–c option. In the ROM model, the linker loads the .cinit section of data
tables into memory, and variables are initialized at runtime.

S

section: A relocatable block of code or data that will ultimately occupy
contiguous space in the TMS320 memory map.

section header: A portion of a COFF object file that contains information
about a section in the file. Each section has its own header; the header
points to the section’s starting address, contains the section’s size, etc.

static: A kind of variable whose scope is confined to a function or a program.
The values of static variables are not discarded when the function or
program is exited; their previous value is resumed when the function or
program is re-entered.

structure: A collection of one or more variables grouped together under a
single name.

Glossary

C-6

symbol: A string of alphanumeric characters that represents an address or
a value.

symbolic debugging: The ability of a software tool to retain symbolic
information so that it can be used by a debugging tool such as a simulator
or an emulator.

symbol table: A portion of a COFF object file that contains information
about the symbols that are defined and used by the file.

U

uninitialized section: A COFF section that reserves space in the TMS320
memory map but that has no actual contents. These sections are built
up with the .bss and .usect directives.

union: A variable that may hold (at different times) objects of different types
and sizes.

unsigned: A kind of value that is treated as a positive number, regardless
of its actual sign.

V

virtual memory : The ability for a program to use more memory than a com-
puter actually has available as RAM. This is accomplished by using a
swap file on disk to augment RAM. When RAM is not sufficient, part of
the program is swapped out to a disk file until it is needed again. The com-
bination of the swap file and available RAM is the virtual memory. The
TMS320C3x/C4x tools use a memory extender to provide virtual
memory management. This memory extender is not provided as an
executable but is embedded in several of the object programs.

W

word: A 32-bit addressable location in target memory.

Index

Index-1

Index

A
–a linker option 2-23
–aa compiler option 2-22
abort function 5-22
abs function 5-22

as intrinsic 2-53
absolute value 5-22, 5-36
ac30, 2-56
acos function 5-22
–ad compiler option 2-22
add_device function 5-23
–al compiler option 2-22
aliased variables 2-19
aliasing 2-41
alternate directories for include files 2-32
American National Standards Institute, ANSI C

Specification viii
ANSI C 3-1 to 3-22, 5-64, 5-66
ansi_ftoi 2-53
–ar linker option 2-23
AR0 (FP) 4-4
AR1 (SP) 4-4
arc cosine 5-22
arc sine 5-25
arc tangent 5-27
archive library 2-67
archiver 1-3
–as compiler option 2-22
ASCII conversion functions 5-28
asctime function 5-25, 5-34
asin function 5-25
.asm extension 2-13, 2-61
asm statement 2-40, 4-28

C language 3-14

assembler 1-3, 2-56
options 2-22

assembler options 2-22
assembly language and C source statements 2-48
assembly language modules 4-22
assert function 5-26
assert.h header 5-4, 5-14
atan function 5-27
atan2 function 5-27
atexit function 5-27, 5-36
atof function 5-28
atoi function 5-28
atol function 5-28
–au compiler option 2-22
autoinitialization 2-68, 4-6, 4-37, 4-39

RAM model 2-68, 4-37, 4-38
ROM model 2-68, 4-37, 4-39

–ax compiler option 2-22

B
–b interlist utility option 2-63
–b linker option 2-23
base-10 logarithm 5-47
big memory model 2-19
_BIGMODEL 2-30
bit fields 3-3, 3-20
block linker directive, using to force .bss into a 64K

data page 2-35
bmalloc function 5-29
bmalloc16 function 5-29
bmalloc8 function 5-29
boot.obj 2-67, 2-68
branch delay slot filling 3-18
broken-down time 5-11, 5-34, 5-52
bsearch function 5-30

Index

Index-2

.bss section 2-69, 4-3
forcing into a 64K data page 2-35

buffer
define and associate function 5-61
specification function 5-59

BUFSIZE macro 5-9

C
–c compiler option 2-11, 2-27, 2-66
.c extension 2-4, 2-56
C language, characteristics 3-2
– –c library build utility option 6-2
–c linker option 2-23, 2-64, 2-65, 2-68
C source statements and assembly language 2-48
C_DIR environment variable 2-32
_c_int0, 2-68
C_OPTION environment variable 2-11, 2-27
_C30 2-30
_C31 2-30
_C3x 2-30
_C40 2-30
_C4x 2-30
calendar time 5-11, 5-34, 5-52, 5-76
calloc function 4-4, 5-31, 5-41, 5-51
calloc16 function 5-31
calloc8 function 5-31
ceil function 5-32
cg30 2-61
character

conversion functions, a number of
characters 5-74

read function, multiple characters 5-38
read functions, single character 5-38

character constants 3-20
character sets 3-2
character-typing conversion functions 5-5, 5-14

isalnum 5-45
isalpha 5-45
isascii 5-45
iscntrl 5-45
isdigit 5-45
isgraph 5-45
islower 5-45
isprint 5-45
ispunct 5-45

character-typing conversion functions (continued)
isspace 5-45
isupper 5-45
isxdigit 5-45
toascii 5-76
tolower 5-77
toupper 5-77

.cinit section 2-68, 2-69, 4-2, 4-38

.cl extension 2-63
clear EOF function 5-32
clearerr function 5-32
clist 2-63
CLK_TCK macro 5-11, 5-33
clock function 5-33
clock_t type 5-11
close file function 5-37
CLOSE I/O function B-7
code generator 2-55, 2-61

options 2-62
code-E error messages 2-15, 2-50
code-F error messages 2-50
code-I error messages 2-51
code-W error messages 2-50
CODE_SECTION pragma 3-9
COFF, Understanding and Using COFF viii
compare strings 5-69
compatibility 3-19 to 3-20
compiler

branch delay slot filling 3-18
description 2-1 to 2-74
error handling 2-50
far calls 3-17
intrinsics support 2-53
invoking the 2-3
limits 3-21 to 3-22
optimizer 2-55
options 2-5, 2-11 to 2-74
overview 2-55
running as separate passes 2-55 to 2-63
sections 2-69

compiling C code 2-2
concatenate strings 5-63, 5-68
.const section 3-15, 4-2
constants, C language 3-2
conversions 3-3, 5-5

C language 3-3
cos function 5-33

Index

Index-3

cosh function 5-34
cosine 5-33
–cr linker option 2-23, 2-65, 2-68, 4-6
ctime function 5-34
ctype.h header 5-5, 5-14

D
–d compiler option 2-11
.data section 4-3
data types, C language 3-2, 3-4 to 3-6
DATA_SECTION pragma 3-10
__DATE__ 2-30
daylight savings time 5-11
debugging optimized code 2-39
declarations, C language 3-3
default argument promotions 2-18
defining variables in assembly language 4-25
device

adding B-5
functions 5-23

diagnostic information 5-26
diagnostic messages 5-4

assert 5-26
NDEBUG macro. See NDEBUG macro

difftime function 5-34
div function 5-35
div_t type 5-10
division 3-3
dspcl 2-3
dynamic memory allocation 4-4

E
–e compiler option 2-4, 2-13

–ea 2-13
–eo 2-13

–e linker option 2-23
EDOM macro 5-5
entry points

_c_int0 2-68
for C code 2-68
reset vector 2-68

enumerator list, trailing comma 3-20
environment information function 5-44

environment variable 2-27, 2-32
C_DIR 2-31, 2-32
C_OPTION 2-27
TMP 2-27

EOF macro 5-9
EPROM programmer 1-4
ERANGE macro 5-5
errno.h header 5-5
error

indicators function 5-32
mapping function 5-53

error handling 2-50 to 2-52, 3-19
using error options 2-52

error message macros 5-14
assert 5-26

error messages
code-E 2-50
code-F 2-50
code-I 2-51
code-W 2-50
general 2-51

error options 2-52
error reporting 5-5
errors treated as warnings 2-51
escape sequences 3-2, 3-20
exit function 5-22, 5-27, 5-36
exp function 5-36
exponential math function 5-8, 5-36
expressions 3-3

C language 3-3
external declarations 3-19

F
–f compiler option 2-4, 2-14

–fa 2-14
–fc 2-14
–fo 2-14

–f linker option 2-23
–fa file specifier 2-14
fabs function 5-36

as intrinsic 2-53
far calls 3-17
fast_ftoi intrinsic 2-53
fast_imult intrinsic 2-53
fast_invf intrinsic 2-53
fatal errors 2-50, 2-51

Index

Index-4

–fc file specifier 2-14

fclose function 5-37

feof function 5-37

ferror function 5-37

fflush function 5-37

fgetc function 5-38

fgetpos function 5-38

fgets function 5-38

file
removal function 5-58
rename function 5-58

FILE data type 5-9

file extension 2-13
–ea option 2-13
–eo option 2-13

file specifier options 2-13
–e option 2-13
–f option 2-14

file.h header 5-5

__FILE__ 2-30

filename, generate function 5-76

filename extensions 2-4

filename specifications 2-4

FILENAME_MAX macro 5-9

flib.lib 2-67

float.h header 5-6

.float40 section 3-6

floating-point math functions 5-8, 5-14, 5-15
acos 5-22
asin 5-25
atan 5-27
atan2, 5-27
ceil 5-32
cos 5-33
cosh 5-34
exp 5-36
fabs 5-36
floor 5-39
fmod 5-39
frexp 5-42
ldexp 5-46
log 5-46
log10, 5-47
modf 5-53
pow 5-54

floating-point math functions (continued)
sinh 5-62
sqrt 5-62
tan 5-75
tanh 5-75

floating-point remainder 5-39

floor function 5-39

flush I/O buffer function 5-37

fmod function 5-39

–fo file specifier option 2-14

fopen function 5-39

FOPEN_MAX macro 5-9

FP register 4-4, 4-11

fpos_t data type 5-9

fprintf function 5-40

fputc function 5-40

fputs function 5-40

–fr file specifier option 2-14

fread function 5-40

free function 5-41

free16 function 5-41

free8 function 5-41

freopen function, described 5-41

frexp function 5-42

frieee intrinsic 2-53

–fs file specifier option 2-14

fscanf function 5-42

fseek function 5-42

fsetpos function 5-43

–ft file specifier option 2-14

ftell function 5-43

FUNC_CANNOT_INLINE pragma 3-10

FUNC_EXT_CALLED pragma 3-11

FUNC_IS_PURE pragma 3-11

FUNC_IS_SYSTEM pragma 3-12

FUNC_NEVER_RETURNS pragma 3-12

FUNC_NO_GLOBAL_ASG pragma 3-12

FUNC_NO_IND_ASG pragma 3-13

function call conventions 4-15 to 4-21

function calls, using the stack 4-3

function prototypes 2-18, 3-19
listing file 2-15

fwrite function 5-43

Index

Index-5

G
–g compiler option 2-11
–g linker option 2-23

general utility functions 5-10, 5-17
abort 5-22
abs 5-22
atexit 5-27
atof 5-28
atoi 5-28
atol 5-28
bmalloc 5-29
bsearch 5-30
calloc 5-31
div 5-35
exit 5-36
free 5-41
labs 5-22
ldiv 5-35
ltoa 5-47
malloc 5-48
minit 5-51
qsort 5-56
rand 5-57
realloc 5-57, 5-61
srand 5-57
strtod 5-73
strtol 5-73
strtoul 5-73

generating a preprocessed listing file 2-15

generating symbolic debugging directives 2-11
get file-position function 5-43
getc function 5-43

getchar function 5-44
getenv function 5-44

gets function 5-44
Gircys, Gintaras R, Understanding and Using COFF

viii
global variables 3-15

reserved space 4-2
gmtime function 5-44
gregorian time 5-11

H
– –h library build utility option 6-2
–h linker option 2-23

header files 5-4 to 5-12
assert.h header 5-4
ctype.h header 5-5
errno.h header 5-5
file.h header 5-5
float.h header 5-6
limits.h header 5-6
math.h header 5-8
setjmp.h header 5-60
stdarg.h header 5-8
stddef.h header 5-9
stdio.h header 5-9
stdlib.h header 5-10
string.h header 5-11
time.h header 5-11

heap 4-4
reserved space 4-3

–heap linker option 2-23, 5-29, 5-48
–heap16 linker option 2-23
–heap8 linker option 2-23
hex conversion utility 1-4
HUGE_VAL 5-8
hyperbolic cosine 5-34
hyperbolic math function 5-8
hyperbolic sine 5-62
hyperbolic tangent 5-75

I
–i compiler option 2-31, 2-32
–i linker option 2-24
I/O

adding a device B-5
definitions, low-level 5-5
described 5-5, B-2
functions

CLOSE B-7
flush buffer 5-37
LSEEK B-7
OPEN B-8
READ B-9
RENAME B-9
UNLINK B-10
WRITE B-10

implementation overview B-3
I/O functions 5-15
identifiers, C language 3-2
–idir compiler option 2-11

Index

Index-6

.if extension 2-56, 2-59, 2-61
implementation errors 2-51
implementation-defined behavior 3-2 to 3-3
#include files 2-29, 2-31

adding a directory to be searched 2-11
#include preprocessor directive 5-4
initialization 2-68
initialized sections 2-69, 4-2

.const 4-2

.text 4-2

.cinit 4-2
initializing global variables, C language 3-15
initializing static variables, C language 3-15
_INLINE 2-30, 2-45
inline assembly construct (asm) 4-28
inline assembly language 4-28
inline functions 2-43
input/output definitions 5-5
integer division 5-35
interfacing C and assembly language 4-22 to 4-29

asm statement 4-28
interlist utility 2-48, 2-63

options 2-63
using with optimizer 2-39

intermediate file 2-56, 2-58
interrupt handling 4-30 to 4-31
INTERRUPT pragma 3-13
intrinsic operators 2-44

abs 2-53
ansi_ftoi 2-53
fabs 2-53
fast_ftoi 2-53
fast_imult 2-53
fast_invf 2-53
frieee 2-53
labs 2-53
toieee 2-53

inverse tangent of y/x 5-27
invoking the

C compiler 2-3
C compiler tools individually 2-55
code generator 2-61
interlist utility 2-48, 2-63
library build utility 6-2
linker 2-64
optimizer 2-59
parser 2-56

isalnum function 5-45
isalpha function 5-45
isascii function 5-45
iscntrl function 5-45
isdigit function 5-45
isgraph function 5-45
islower function 5-45
isprint function 5-45
ispunct function 5-45
isspace function 5-45
isupper function 5-45
isxdigit function 5-45
isxxx function 5-5, 5-45

K
–k compiler option 2-11
– –k library build utility option 6-2
K&R 2-15

compatibility 3-1 to 3-22
The C Programming Language viii

Kochan, S., Programming in C viii

L
–l library build utility option 6-2
–l linker option 2-24, 2-65, 2-67
L_tmpnam macro 5-9
labs function 5-22

as intrinsic 2-53
ldexp function 5-46
ldiv function 5-35
ldiv_t type 5-10
libraries 5-2
library build utility 1-3, 6-1 to 6-6

optional object library 6-2
options 6-2

limits
compiler 3-21 to 3-22
floating-point types 5-6
integer types 5-6

limits.h header 5-6
line and file information, suppressing 2-16
#line directive 2-33
__LINE__ 2-30

Index

Index-7

linker 2-56
invocation 2-64
lnk30 command 2-64
options

–a 2-23
–ar 2-23
–b 2-23
–c 2-23
–c override option 2-66
–cr 2-23
–e 2-23
–f 2-23
–g 2-23
–h 2-23
–heap 2-23
–heap16, 2-23
–heap8, 2-23
–i 2-24
–l 2-24
–m 2-24
–n 2-24
–o 2-24
–q 2-24
–r 2-24
–s 2-24
–stack 2-24
–u 2-24
–v0, 2-24
–w 2-24
–x 2-24
–z enabling option 2-65

linker command file 2-70 to 2-74

linking C code 2-64 to 2-74

linking with the shell program 2-65

listing file 2-33
generating 2-15

lnk30 2-64, 2-65

loader 3-15

local time 5-11, 5-34

localtime function 5-46, 5-52

log function 5-46

log10 function 5-47

long double data type 3-5

longjmp function 5-60

low–level I/O functions 5-5

LSEEK I/O function B-7

ltoa function 5-47

M
–m linker option 2-24
–ma compiler option 2-19
macro definitions 2-30 to 2-31
macro expansions 2-30 to 2-31
macros

SEEK_CUR 5-10
SEEK_END 5-10
SEEK_SET 5-10
stden 5-10
stdin 5-10
stdout 5-10

malloc function 4-4, 5-41, 5-48, 5-51
malloc16 function 5-48
malloc8 function 5-48
math.h header 5-8, 5-14, 5-15
–mb compiler option 2-19
–mc compiler option 2-19
memchr function 5-49
memcmp function 5-49
memcpy function 5-49
memmove function 5-50
memory management functions

bmalloc 5-29
calloc 5-31
free 5-41
malloc 5-48
minit 5-51
realloc 5-57, 5-61

memory model 4-2 to 4-6
dynamic memory allocation 4-4
RAM model 4-6
ROM model 4-6
sections 4-2
stack 4-4

memory pool 5-29, 5-48
reserved space 4-3

MEMORY_SIZE 5-10
MEMORY_SIZE constant 4-4
memset function 5-50
–mf compiler option 2-20
–mi compiler option 2-20
minit function 5-51
minit16 function 5-51
minit8 function 5-51
mk30 6-2

Index

Index-8

mktime function 5-52

–ml compiler option 2-20
–mm compiler option 2-20

–mn compiler option 2-21
modf function 5-53

modular programming 2-64
–mp compiler option 2-21

–mr compiler option 2-21
–ms compiler option 2-21

–mt compiler option 2-21
–mtc compiler option 2-21

multibyte characters 3-2

N
–n compiler option 2-11
–n linker option 2-24

natural logarithm 5-46
NDEBUG macro 5-4, 5-26

non-local jumps 5-60
NULL macro 5-9

O
.o extension 2-4
–o linker option 2-24, 2-65

.obj extension 2-13
object libraries 2-70

offsetof macro 5-9
–oi compiler option 2-25

–oi optimizer option 2-25
–ol compiler option 2-25

–ol optimizer option 2-25
–ol0 compiler option 2-25

–ol1 compiler option 2-25
–ol2 compiler option 2-25

–oN optimizer option 2-26
–on optimizer option 2-25

–oN0 compiler option 2-26
–oN1 compiler option 2-26

–oN2 compiler option 2-26
–op optimizer option 2-26
–op0 compiler option 2-26

–op1 compiler option 2-26

–op2 compiler option 2-26

open file function 5-39, 5-41

OPEN I/O function B-8

.opt extension 2-59

opt30 2-59

optimization A-1 to A-15
general A-1

algebraic reordering A-9
alias disambiguation A-9
branch optimizations A-12
common subexpression elimination A-10
constant folding A-9
control-flow simplification A-12
copy propagation A-10
inline function expansion A-15
loop induction variable optimizations A-13
loop invariant code motion A-15
loop rotation A-15
redundant assignment elimination A-10
strength reduction A-13
symbolic simplification A-9

information file, options 2-26
library functions, options 2-25
TMS320C30-specific A-1

autoincrement addressing A-4
calls A-6
cost-based register allocation A-4
delayed branches A-6
repeat blocks A-4
returns A-6

optimizer
invoking 2-59
options 2-59, 2-60
parser output 2-58
special considerations 2-40
using with interlist utility 2-39

options 2-5 to 2-28
assembler 2-22
code generator 2-62
conventions 2-5
file specifiers 2-13
general 2-11
optimizer 2-25
parser 2-15, 2-57
runtime-model 2-19
summary table 2-6
type-checking 2-18

–os compiler option 2-26, 2-49

Index

Index-9

P
–p? compiler option 2-17, 2-33

parser 2-55, 2-56
options 2-15, 2-56, 2-57

parsing in two passes 2-58

–pe compiler option 2-15, 2-50, 2-51

perror function 5-53

–pf parser option 2-15

–pk compiler option 2-15, 3-19, 3-20

–pl compiler option 2-15, 2-33

–pm parser option 2-16

–pn compiler option 2-16, 2-33

–po compiler option 2-16, 2-33

–po option 2-58

pointer combinations 3-19

position file indicator function 5-59

pow function 5-54

power 5-54

pragma 3-3
CODE_SECTION 3-9
DATA_SECTION 3-10
FUNC_CANNOT_INLINE 3-10
FUNC_EXT_CALLED 3-11
FUNC_IS_PURE 3-11
FUNC_IS_SYSTEM 3-12
FUNC_NEVER_RETURNS 3-12
FUNC_NO_GLOBAL_ASG 3-12
FUNC_NO_IND_ASG 3-13
INTERRUPT 3-13

predefined names 2-30 to 2-31
_BIGMODEL 2-30
_REGPARM 2-30
C30, 2-30
C31, 2-30
C32, 2-30
C3x 2-30
C40, 2-30
C44, 2-30
C4x 2-30
DATE 2-30
FILE 2-30
_INLINE 2-30, 2-45
LINE 2-30
STDC 2-30
TIME 2-30
TMS320C30 2-30

predefined names (continued)
TMS320C31 2-30
TMS320C32 2-30
TMS320C3x 2-30
TMS320C40 2-30
TMS320C44 2-30
TMS320C4x 2-30

preinitialized variables 3-15
preprocess only 2-16
preprocessed listing file 2-33
preprocessor 2-29 to 2-33

environment variable 2-32
listing file 2-15
predefining name 2-11
symbols 2-30

preprocessor directives 2-29
C language 3-3
trailing tokens 3-20

printf function 5-54
program termination functions

abort (exit) 5-22
atexit 5-27
exit 5-36

prototype listing file 2-15
pseudorandom 5-57
ptrdiff_t type 3-2, 5-9
putc function 5-54
putchar function 5-55
puts function 5-55
–pw option 2-51

Q
–q compiler option 2-3, 2-12
–q interlist utility option 2-63
– –q library build utility option 6-2
–q linker option 2-24
–qq compiler option 2-12
qsort function 5-56

R
–r interlist utility option 2-63
–r linker option 2-24
RAM model of autoinitialization 4-6
RAM model of initialization 2-68
rand function 5-57

Index

Index-10

RAND_MAX macro 5-10

read
character functions

multiple characters 5-38
next character function 5-43, 5-44
single character 5-38

stream functions
from standard input 5-59
from string to array 5-40
string 5-42, 5-63

read function 5-44

READ I/O function B-9

realloc function 4-4, 5-41, 5-51, 5-57, 5-61

realloc16 function 5-58

realloc8 function 5-58

recoverable errors 2-50

register conventions 4-11 to 4-14
register variables 4-12

register storage class 3-3

register variables 4-12
C language 3-7

_REGPARM 2-30

related documentation
Advanced C: Techniques and Applications viii
ANSI C Specification viii
Programming in C viii
Texas Instruments vi
The C Programming Language viii
Understanding and Using COFF viii

remove function 5-58

rename function 5-58

RENAME I/O function B-9

rewind function 5-59

ROM model of autoinitialization 4-6

ROM model of initialization 2-68

rts.lib 2-67, 2-68, 5-1

rts.src 5-1, 5-2, 5-10, 6-1

rts30.lib 2-34, 2-65

rts30g.lib 2-34

rts30gr.lib 2-34

rts30r.lib 2-34

rts40.lib 2-34, 2-65

rts40g.lib 2-34

rts40gr.lib 2-34

rts40r.lib 2-34

runtime environment 4-1 to 4-40
defining variables in assembly language 4-25
function call conventions 4-15 to 4-21
inline assembly language 4-28
interfacing C with assembly lan-

guage 4-22 to 4-29
interrupt handling 4-30 to 4-31
memory model

dynamic memory allocation 4-4
RAM model 4-6
ROM model 4-6
sections 4-2

precision considerations 4-35
register conventions 4-11 to 4-14
stack 4-4
system initialization 4-36 to 4-40

runtime-model options 2-19

runtime–support libraries 2-34, 2-65, 2-67, 6-1

runtime-support functions 5-1 to 5-21
summary table 5-13 to 5-21

runtime-support libraries 5-2

S
–s compiler option 2-12, 2-49

–s linker option 2-24

scanf function 5-59

searches 5-30

sections 4-2
.bss 4-3
.cinit 4-38
.data 4-3
.stack 4-3
.sysmem 4-3
.text 4-3

SEEK_CUR macro 5-10

SEEK_END macro 5-10

SEEK_SET macro 5-10

set file-position functions
fseek function 5-42
fsetpos function 5-43

setbuf function 5-59

setjmp function 5-60

setvbuf function 5-61

Index

Index-11

shell program 2-3 to 2-4
–i option 2-32
C_OPTION environment variable 2-27
enabling linking 2-12
keeping the assembly language file 2-11
overview 2-2
suppressing the linking option 2-11

shift 3-3
sinh function 5-62

size_t type 3-2, 5-9
small memory model 2-19

Sobelman and Krekelberg, Advanced C: Techniques
and Applications viii

software development tools 1-2 to 1-4

sorts 5-56
source file extensions

assembler files 2-14
C source files 2-14
object files 2-14

SP register 4-4

specifying filenames 2-4, 2-13
sprintf function 5-62

sqrt function 5-62
square root 5-62

srand function 5-57

–ss compiler option 2-12, 2-48, 2-49
sscanf function 5-63

stack 4-3
reserved space 4-3

–stack linker option 2-24
stack management 4-4

stack pointer 4-4

.stack section 4-3
STACK_SIZE constant 4-4

static variables 3-15
reserved space 4-3

stdarg.h header 5-8, 5-15
__STDC__ 2-30

stddef.h header 5-9

stden macro 5-10
stdin macro 5-10

stdio.h header 5-15
described 5-9

stdlib.h header 5-10, 5-17
stdout macro 5-10

store object function 5-38
strcat function 5-63
strchr function 5-64
strcmp function 5-64
strcoll function 5-64
strcpy function 5-65
strcspn function 5-65
strerror function 5-66
strftime function 5-66
string copy 5-70
string functions 5-11, 5-19

memchr 5-49
memcmp 5-49
memcpy 5-49
memmove 5-50
memset 5-50
strcat 5-63
strchr 5-64
strcmp 5-64
strcoll 5-64
strcpy 5-65
strcspn 5-65
strerror 5-66
strlen 5-67
strncat 5-68
strncmp 5-69
strncpy 5-70
strpbrk 5-71
strrchr 5-71
strspn 5-72
strstr 5-72
strtok 5-74

string.h header 5-11, 5-19
strlen function 5-67
strncat function 5-68
strncmp function 5-69
strncpy function 5-70
strpbrk function 5-71
strrchr function 5-71
strspn function 5-72
strstr function 5-72
strtod function 5-73
strtok function 5-74
strtol function 5-73
strtoul function 5-73
structure members 3-3
strxfrm function 5-74

Index

Index-12

STYP_CPY flag 2-69
suppress

all output except error messages 2-12
banner information 2-12
line and file information 2-16
linker option 2-11

suppressing warning messages 2-51
.switch section 2-69 to 2-74
symbolic debugging 2-63
symbolic debugging directives 2-11
.sysmem section 4-3
system constraints

MEMORY_SIZE 4-4
STACK_SIZE 4-4

system initialization 4-36 to 4-40
autoinitialization 4-37

system stack 4-3

T
tan function 5-75
tangent 5-75
tanh function 5-75
target processor 2-12
temporary file creation function 5-76
tentative definition 3-20
test EOF function 5-37
test error function 5-37
Texas Instruments, related documentation vi
.text section 2-69, 4-2
–tf compiler option 2-18
The C Programming Language 3-1 to 3-22
time 5-25
time function 5-76
time functions 5-11, 5-20

asctime 5-25
clock 5-33
ctime 5-34
difftime 5-34
gmtime 5-44
localtime 5-46
mktime 5-52
strftime 5-66
time 5-76

time.h header 5-11, 5-20
__TIME__ 2-30

time_t type 5-11
tm structure 5-11
tm type. See broken-down time
TMP environment variable 2-27

overriding 2-28
TMP_MAX macro 5-9
tmpfile function 5-76
tmpnam function 5-76
_TMS320C30 2-30
_TMS320C31 2-30
_TMS320C32 2-30
_TMS320C3x 2-30
TMS320C3x/C4x C language

compatibility with ANSI C
language 3-19 to 3-20

related documentation
Advanced C: Techniques and Applications viii
ANSI C Specification viii
Programming in C viii
The C Programming Language viii
Understanding and Using COFF viii

_TMS320C40 2-30
_TMS320C44 2-30
_TMS320C4x 2-30
toascii function 5-76
toieee intrinsic 2-53
tokens 5-74
tolower function 5-77
toupper function 5-77
–tp compiler option 2-18
trailing comma, enumerator list 3-20
trailing tokens, preprocessor directives 3-20
translation phases 2-33
trigonometric math function 5-8
trigraph expansion 2-17
trigraph sequences 2-33
type-checking, pointer combinations 2-18
type-checking options 2-18

–tf 2-18
–tp 2-18

U
–u compiler option 2-12
– –u library build utility option 6-3
–u linker option 2-24

Index

Index-13

ungetc function 5-77

uninitialized sections 2-69, 4-3
.bss 4-3

UNLINK I/O function B-10

V
–v compiler option 2-12

– –v library build utility option 6-3

–v0 linker option 2-24

va_arg function 5-78

va_end function 5-78

va_start function 5-78

variable argument functions and macros 5-8, 5-15

variable-argument function 5-78

variable-argument functions and macros
va_arg 5-78
va_end 5-78
va_start 5-78

vfprintf function 5-79

volatile 2-40

vprintf function 5-79

vsprintf function 5-79

W
–w linker option 2-24

warning messages 2-50
suppressing 2-51

warnings messages 3-19

wildcard 2-4

write block of data function 5-43

write functions
fprintf 5-40
fputc 5-40
fputs 5-40
printf 5-54
putc 5-54
putchar 5-55
puts 5-55
sprintf 5-62
ungetc 5-77
vfprintf 5-79
vprintf 5-79
vsprintf 5-79

WRITE I/O function B-10

X
–x compiler option 2-17

–x inlining option 2-17

–x linker option 2-24

Z
–z code generator option 2-62

–z compiler option 2-3, 2-12, 2-27, 2-64, 2-65
overriding 2-27

Index-14

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright 1996, Texas Instruments Incorporated

	Preface
	Phone Numbers

	Contents
	Figures
	Tables
	Examples

	Introduction
	C Compiler Description
	Compiling C Code
	Compiler Options
	Shell Options
	File Specifiers
	Parser Options
	Inlining Options
	Type-checking options
	Runtime Mode Options
	Assembler Options
	Linker Options
	Optimizer Options
	Environment Variables
	Preprocessor Names
	#include search paths
	Runtime Modes
	Optimizer
	Function Inlining
	Interlist
	Compiler Errors
	Intrinsics
	Invoking the Tools Separately
	Optimizer
	Code Generator
	interlist

	Linking C Code
	C3x/C4x C Language
	Data Types
	Register Variables
	Pragma Directives
	ASM Statement
	Initializing Static and Global Variables
	Far Call support
	Delay Slot Filling
	K&R Compatibility
	Compiler Limits

	Runtime Environment
	Memory Model
	Object Representation
	Register Conventions
	Function Structure and Calling Comventions
	Interface C and Assembler
	Interrupt Handling
	Runtime Support Arithmetic Routines
	System Initialization

	Runtime Support Functions
	Runtime Support Libraries
	Header Files
	Summary of Runtime Functions
	Functions Reference
	abort, abs/labs, acos
	add_device
	adctime, asin
	assert
	atan, atan2, atexit
	atof, atoi, atol
	bmalloc
	bsearch
	calloc
	ceil, clearerr
	clock, cos
	cosh, ctime, difftime
	div, ldiv
	exit, exp, fabs
	fclose, feof, ferror, fflush
	fgetc, fgetpos, fgets
	floor, fmod, fopen
	fprintf, fputc, fputs
	free, freopen
	frexp, fscanf, fseek
	fsetpos, ftell, fwrite, getc
	getchar, getenv, gets, gmtime
	isxxx
	ldexp, localtime, log
	log10, ltoa
	malloc
	memchr, memcmp, memcpy
	memmove, memset
	minit
	mktime
	modf, perror
	pow, printf, putc
	putchar, puts
	qsort
	rand, srand, realloc
	remove, rename
	rewind, scanf, setbuf
	setjmp, longjmp
	setvbuf, sin
	sinh, sprintf, sqrt
	sscanf, strcat
	strchr, strcmp/strcoll
	strcpy, strcspn
	strerror, strftime
	strlen
	strncat
	strncmp
	strncpy
	strpbrk, strrchr
	strspn, strstr
	strtod, strtol, strtoul
	strtok, strxfrm
	tan, tanh
	time, tmpfile, tmpnam, toascii
	tolower, toupper, ungetc
	vfprintf, vprintf, vsprintf

	Library Build Utility
	Invoking the Library Build Utility
	Options Summary

	Description of Compiler Optimizations
	C I/O Functions
	CLOSE, LSEEK
	OPEN
	READ, RENAME
	UNLINK, WRITE

	Glossary
	Index

