Winview Reference Guide

Second Edition

The Viewer Reference Guide was prepared by the technical staff of Innovative Integration, November
1997.

For further assistance contact
Innovative Integration

5785 Lindero Canyon Rd.
Westlake Village, CA 91362

PHONE: (818) 865-6150

FAX: (818) 879-1770

email: techsprt@innovative-dsp.com

FTP: ftp://ftp.innovative-dsp.com /pub/techsprt/public_html/ftp
WWW http://www.innovative-dsp.com

This document is Copyright 1997 by Innovative Integration. All rights are reserved.

Document: VSS\ documents\viewer.doc

Viewer Reference Guide 3

Introduction

Viewer is a software debugging utility supplied with Innovative Integration DSP boards. Viewer supports
interactive execution of each of the DLL functions supplied in the Zuma toolset, interactive display of all
DLL allocated and addressable memory structures in a variety of formats and other forms of low-level DSP
board control.

Viewer is useful during the DSP code development cycle, before a Host application program has been
written and debugged to deal with data flow between the DSP and the Host PC.

Viewer is based on a public domain Windows Forth package, Win32For. Viewer supports the full

extensibility of Forth scripts may be written in the Forth language to assist in the Host/DSP debugging
effort.

Starting the Program

Viewer may be executed by changing into the IIl_BOARD directory and executing the VIEWER.EXE
program file. When invoked, the program will open a single window, shown below.

2wt o e] :

Figure 1: Viewer main window

Viewer Reference Guide 4

Opening the Target

Before attempting to communicate with the target processor, you must first “open” the target device and
driver. This is accomplished using tlopen command.

B S AR e sl =i

Iont mesmcry vievwer For Tancesidive [etsgrabion Supsmoonbmc] Lec ﬂ
= m OFEH 1 pess Uha devios drlver

Figure 2: Opening the target DSP

When the target is opened, strategic entries in the DLL cardinfo structure are read and displayed. While
Viewer provides access to all of the cardinfo elements, only the most common ones are displayed during
open.

Accessing Shared Memory

All of Innovatives bus-based DSP products provide some sort of “shared memory”. On ISA bus boards,

this is a fixed block of dual ported memory, accessible by both the Host PC processor and the DSP
processor.

On newer, PCl-based boards, the shared memory is actually Host PC memory allocated by the board’s
device driver as contiguous, page-locked memory suitable for use as a “bus-mastering” target or source.

Regardless of the type of shared memory, Viewer provides a means of accessing it. This can be very
helpful during the development process, before your custom Host program has been developed. Ultimately
you must generate custom code for both the Host and the target to provide the umbilical communications
layer between the DSP program running on the target board and your Host application program. But in the

interim, Viewer can be used to provide basic access to the shared memory pool and limited diagnostics
capabilities.

Viewer Reference Guide 5

Dumping Shared Memory

One of the most common requirements is for a means of viewing data transferred from the DSP to the Host
via the bus during DSP target code development. This can be particularly handy when dealing with bus-
mastering cards because even when using a JTAG-based debugger (such as Code Composer, included in
our Developers Packages) it may not be possible to see the Host memory targeted by the transfer.

For example, assume that you are attempting to bus master a packet of floating point data from the target
DSP to the host shared memory. You may wish to verify that the data has been converted to IEEE format
by the DSP properly and that the full packet has been transferred. Viewer supports a wide variety of
dumping commands to make this easy.

I TEREE LHNIn FIRn s

7 B P2 LNLIRIEE IR eE

400150 LI L DOEIONET (EECRREA R kS
=4 ILETEREREEREIRT]

Wil Wi
3 & 4
Fiid miid

.
=
=
-
=
¥
.

3 2
-
=
]
=
&

Wi
=

]
=

LTI AN RN DAY R

)

Figure 3: Variants of Viewers dump command

Once data has been moved from the target DSP to the Host shared memory, you may use one of Viewers
dump commands to see the data in various formats. The variants are

bmdump To display a range of bus master memory
dpdump To display a range of dual ported memory
dump To display a range of host memory (Viewer application local space)

Viewer may also be used to view resources located in the I/O space of the PC. The variants are:

idump To display a range of the DSP board’s I/O space
odump To display a range of the DSP board’s operations register space (PCI only)
iodump To display a range of host I/O space (Win95 only)

If the target Talker is running (after a Reset), Viewer allows you to view target memory without moving its
contents to the Host first. The commands are:

pdump To display target DSP program memory (Talker monitor must be running)
ddump To display target DSP data memory (Talker monitor must be running)

Viewer Reference Guide

Each of these commandsnisdaland selects the default memory region to be accessed in all subsequent
dump and plot commands. These spaces may be explicitly made active using the space mode commands:

program-space Selects target program memory region as “default” memory space

data-space Selects target data memory region as “default” memory space
bm-space Selects bus master memory region as “default” memory space
dp-space Selects dual port memory region as “default” memory space
memory-space Selects host PC memory region as “default” memory space
i-space Selects DSP board 1/0 block as “default” memory space

op-space Selects target operation registers region as “default” memory space
io-space Selects Host PC I/O region as “default” memory space

Dumping and plotting commands respect the current display format type, set by one of the format mode
commands below.

signed Sets display format to signed integer

unsigned Sets the display format to unsigned integer

floating Sets the display format to Tl 32-bit floating-point format

ieee Sets the display format to IEEE-754 32-bit floating point format.

These mode commands remain in effect until explicitly changed. The default mode is unsigned.

Modifying Shared Memory

The currently active memory region may be modified using a number of Viewer commands, listed below.
These commands support clearing or filling a region of memory or altering a single cell of memory.

t! Stores a value into specified target memory cell

t@ Retreives a value from specified target memory cell

tfl Stores a floating point number into specified target memory cell.

tf@ Retrieves a floating point number from specified target memory cell.
tfill Fills a region of target memory with a seed value

terase Clears a region of target memory to zeros.

tdump To display a region of memory in the “current” memory space.

Each of the se target memory operators deals with the current aeéamtiry spacanddata type

Viewer Reference Guide 7

Plotting Shared Memory

Data may be plotted rather than dumped in numeric format. Plotting is also modal and is controlled by the
same display formatting commands listed above. To plot a data range, use the plot command, as shown
below.

0 100 plot To plot the data range starting at offset 0 in the current memory region using
the current display format .

T R vy T alpi=
Memory Contents
A e e e g
R
Walue

| . }
1794 MM RMOETI REIENE ROTEID
Ackirese

Figure 4: Viewers plot window

Plots, like dumps are automatically performed out of the currently selected memory region using the
current data type.

Viewer Reference Guide

Generic View DLL functions

The functions tabularized below may be executed interactively within Viewer. The parameters to each
function must be pushed onto the stack in the order shown prior to invoking the function. The parameters
column below lists the required parameters for each function. The dash in the parameter description
denates where the function name should be substituted when executing the command.

Table 1: Generic DLL Function List

Function Parameters Description
target_open target — f Opens driver for specfied target DSP board. Returns boolean.
target_close target — f Closes driver for specfied target DSP board. Returns boolean
target_cardinfo target - a Returns address of cardinfo structure for target.

iicoffld

string target handle - f

Loads a COFF executable file onto target DSP

host_interrupt_enable target - f Enables a previously installed virtual interrupt handler.
host_interrupt_disable target - f Disables a previously enabled virtual interrupt handler
host_interrupt_install target fcn - Installs a virtual interrupt handler
host_interrupt_deinstall target - Removes a virtual interrupt handler.

target_reset target - Physically asserts reset on the target DSP board.
target_run target - Deasserts reset on the target DSP board

target_outport

target port value -

Qutputs a value to specified DSP board I/O port address

target_inport

target port—n

Inputs a value from specified DSP board I/O port

target_opreg_outport

target port value -

Outputs a value to specified DSP board operation port address

target_opreg_inport

target port — value

Inputs a value from specified DSP board operation port

target_control

target bit state -

Madifies a bit in the control register of the target DSP board

read_mailbox

target box - value

Reads the specified mailbox of the target DSP board

write_mailbox

target box value -

Writes to the specified mailbox of the target DSP board.

check_outbox

target box - f

Interrogates the specified output mailbox status

check_inbox

target box — f

Interrogates the specified input mailbox status

read_mb_terminate

target box key mode — f

Reads the specified input mailbox, if full

write_mb_terminate

target box value mode — f

Writes to the specified output mailbox, if empty

ntents

clear_mailboxes target Clears all mailboxes to empty state

mailbox_interrupt target value - Interrupts the target DSP after writing value to special mailbox
mailbox_interrupt_ack target - Acknowledges target to Host interrupt, returns special mailbox co
target_key target — key Reads terminal mailbox, returns an 8-bit contents

target_emit value target - Writes 8-bit value to terminal mailbox

target_Tx value target - Writes 32-bit value to terminal mailbox

target Rx target target —y Reads 32-bit value from terminal mailbox
target_get_semaphore semaphore target - Gains ownership of specfied target semaphore
target_interrupt target - Interrupts target DSP board

target_request_semaphore

semaphore target -

Requests ownership of specified target semaphore

target_own_semaphore

semaphore target -

Interrogates ownership status of specified semaphore

target_release_semaphore

semaphore target -

Relinquishes control of specified semaphore

target_check target - f Interrogates for Talker running on target

start_app target - Starts a previously downloaded target application program
start_talker target - f Starts the target Talker executing.

target_revision target - f Returns the revision of the target Talker

talker_fetch target addr — n Uses the Talker to fetch contents of specified target memory address
talker_store target addr value - Uses Talker to store value to specified target memory address
talker_download target addr cnt - Downloads a block of data or code to target DSP

talker_launch target addr - Launches downloaded application at boot vector address
talker_resume target - Resumes execution after suspended by Talker (not available all targets)
talker_registers target - Returns Talker register save address on target

target_slow target - Changes bus control to permit safe FLASH ROM access

target_fast target - Changes bus control to support fast target code execution
talker_flash_sector_erase sector target - Erases specified sector in FLASH ROM on target

talker_flash_init target - Initializes FLASH ROM on target.

talker_flash_offset offset target - Specifies memory offset of base of FLASH ROM on target

Viewer Reference Guide

Appendix I: Command Reference

Viewer Reference Guide

10

Summary of Viewer features and commands

Viewer is capable of operating on a variety of memory regions. The commands below may be used to
enable display or modification of specific memory regions using the target memory operator commands.
These commands are modal and remain in effect until explicitly changed.

Table 2: Viewer “target” memory selection commands

Function

Parameters

Description

io-space

Makes host I/O space the “current” target memory space

memory-space

Makes host memory space the “current” target memory space. Al
addresses are relative to the base of Viewers executable image in
memory

bm-space

Makes host bus master memory space the “current” target memor
space. All addresses are relative to the base of the page-locked bu
master memory block.

7]

dpram-space

Makes shared DSP/Host dual-port memory the “current” target me
space. All addresses are relative to the base of the shared memory

mory
pool.

o-space

Makes DSP card operations register space the “current” target me
space. All target memory addresses are specified relative to the
beginning of this region.

mory

i-space

Makes DSP card I/O space the “current” target memory space. All
target memory addresses are specified relative to the beginning of {
region.

=3

S

program-space

Makes DSP card program memory the “current” target memory sg
All target memory addresses are specified relative to the beginning
this region.

ace.
of

data-space

Makes DSP card data memory space the “current” target memory
All target memory addresses are specified relative to the beginning
this region.

space.
of

i-space

Makes DSP card I/O space the “current” target memory space. All
target memory addresses are specified relative to the beginning of {
region.

=3

S

10

Viewer Reference Guide 11

Viewer supports storing and fetching from the “currently-selected” target memory region. The commands
below may be used to modify the currently memory region. These commands are subject to the current
target memory region mode, selected above.

Table 3: Viewer “target” memory operators

Function Parameters Description

t! na-- Pronounced “t store”. Stores integer n into address a in target
memory. For exampléx100 0x1000 t! stores 100h into target
memory address 1000h.

t@ a-n Fetches integer n from address a in target memory. For exampl
0x1000 t@ returns contents of target memory address 1000h ont
stack.

[¢’)

tf! a-— Stores floating pt r into address a in target memory. For examplg
r-- (fp stack) 1.23 0x1000 tf! stores floating point 1.23 into target memory
address 1000h

tf@ a-— Fetches floating pt r from address a in target memory. For examp
--r (fp stack) 0x1000 tf@ returns floating pt contents of target memory address
1000h.

e

tdump an-- Dumps n cells of the current memory region starting at address a|
according to current dump mode gigned). For example

unsigned 0 100 ddump shows 100 cells of target memory
starting at 0000h as unsigned integers.

tfill anc-- Fills n cells of target memory starting at a with integer ¢ . For
example0 100 0x1234 ffill fills 100 target memory cells
starting at 0000h with value 1234h .

terase an-- Zeroes n cells of target memory starting at a . For example
0 1000 derase erases 1000 cells of target memory starting at offset
n in the current memory space.

Viewer supports dumping ranges of target memory in text form and graphically. The commands below are
used to display ranges of target memory.

Table 4: Target memory display operators

Function Parameters Description

tdump an-- Dumps n cells of target memory starting at offset a interpreted
according to current dump mode. For exantpl®0 DPDUMP shows
100 16-bit cells of dual port memory starting at D000:0000h

plot an-- Plots n cells of memory starting at address a according to current
dump mode (isigned) and active memory space. Requires EasyFlot
in working directory. For exampBIGNED 0 100 PLOT graphs
100 cells of memory starting at 0000h as unsigned integers.

Thedump andplot commands operate on the current target memory region. The commands below
modify how data is interpreted during the data display operation.

Table 5: TDUMP mode selector commands

Function Parameters Description
signed -- Subsequent DUMPs/PLOTSs show signed values.
unsigned -- Subsequent DUMPs/PLOTSs show unsigned values.
floating - Subsequent DUMPs/PLOTSs show Tl floating point values.
ieee -- Subsequent DUMPs/PLOTSs show IEEE floating point values.

11

Viewer Reference Guide 12

The commands below are shorthand convienence forms of the dump and target memory access commands.
They automatically select a target memory region and perform a target memory accesses using a single,
short-form commandNote: All addresses are specified@ffsetsinto the selected memory region.

Table 6: Shorthand memory dump commands

Function Parameters Description

iodump an-- Makes host I/O space current and dumps the specified range.

idump an-- Makes DSP card I/O space current and dumps the specified range|

odump an-- Makes DSP card operations space current and dumps the specified
range.

bmdump an-- Makes host bus master memory space current and dumps the specified
range.

dpdump an-- Makes dual port memory space current and dumps the specified range.

pdump an-- Makes target program memory space current and dumps the specjfied
range.

ddump an-- Makes target data memory space current and dumps the specified range.

p@ a-n Makes DSP program memory current and fetches from it.

p! na-- Makes DSP program memory current and stores into it.

d@ a-n Makes DSP data memory current and fetches from it.

d! na-- Makes DSP data memory current and stores into it.

i@ a—-n Makes DSP board 1/O space current and fetches from it.

il na-- Makes DSP board I/O space current and stores into it.

0@ a—-n Makes DSP board operations register space current and fetches from it.

o! na-- Makes DSP board operations register space current and stores intg it.

bm@ a-n Makes bus master memory space current and fetches from it.

bm! na-- Makes bus master memory space current and stores into it.

dp@ a-n Makes dual port memory space current and fetches from it.

dp! na-- Makes dual port memory space current and stores into it.

io@ a—-n Makes Host I/O space current and fetches from it. 32-bit form

io! na-- Makes Host I/O space current and stores into it.

ioh@ a—n Makes Host I/O space current and fetches from it. 16-bit form

ioh! na-- Makes Host I/O space current and stores into it.

ioc@ a—-n Makes Host I/O space current and fetches from it. 8-bit form

ioc! na-- Makes Host I/O space current and stores into it.

12

Viewer Reference Guide 13

Viewer maintains two independent user-accessible stacks onto which parameters are placed for
consumption by Viewer commands.

Theparameter stacks a 32-bit wide stack used to contain addresses and integer parameters to and results
from functions.

Thefloating point stacks used to hold used to hold floating point parameters to and results from Viewer
functions. Floating point arithmetic takes place directly on the 8087 numeric stack. Viewer interprets
numbers as reals when an 'e' is embedded in a literal number. Parameters on the fp stack are denoted
below the parameter stack notation in the tables below.

Table 7: Viewer math and binary operators

Function Parameters Description
+ nin2-n Adds n2 to nl leaving the result n. For examp0e20 + . adds
10 and 20 and prints the result.
- nin2-n Subtracts n2 from nl leaving the result n . For exampl&020,
subtracts 10 from 20 and prints the result.
* nln2-n Multiplies n1 by n2 leaving the result n.
/ nln2-n Divides n1 by n2 leaving the result n.
f+ - Adds r2 to rl leaving the floating point result r. For exanifled
rir2—r 20.0 f+ f. adds 10 and 20 and prints the result.
f- -- Subtracts n2 from nl leaving the result n. For exampl&020
rir2-n subtracts 10 from 20 and prints the result.
f* - Multiplies r1 by r2 leaving the result r.
rir2—-n
fl -- Divides rl by r2 leaving the result r.
rir2—-n
and nln2-n Bitwise ANDs n1 and n2 leaving result n.
or nin2-n Bitwise ORs nl and n2 leaving result n.
xor nln2-n Bitwise XORs n1 and n2 leaving result n

The commands below support Viewer dictionary display and modification.

Table 8: Viewer dictionary commands

Function Parameters Description
words -- Displays the names of all available Viewer commands.
empty -- Empties the Viewer dictionary of all user-defined commands.
: -- wordname Begins definition of a new Viewer command (calledra).
; -- Terminates definition of a new word.

The commands below affect global Viewer operation.

Table 9: Viewer system commands

Function Parameters Description
bye -- Terminates Viewer, returns to the operating system.
z -- filename Invokes Codewright editor on specified filename
dir -- dirspec Displays the specified directory
chdir -- dirspec Changes to the specified directory

13

Viewer Reference Guide

Table 10: Viewer system commands

14

Function Parameters Description

.S -- Non-destructively prints entire parameter stack contents.

f.s -- Non-destructively prints entire floating point stack contents.

. n-- Prints the integer on top of the parameter stack.

f. -- Prints the real number on top of the floating point stack.

r -

decimal -- Changes default I/O conversion radix to decimal.

hex -- Changes default I/O conversion radix to hexidecimal.
Numeric literals prefixed with Ox are interpreted in hexidecimal,
regardless of current radix.

bye -- Terminates Viewer, returns to the operating system.

z -- filename Invokes Codewright editor on specified filename

The following commands are convienient Viewer command shortcuts to common DLL functions.

Table 11: Target DLL function shortcuts

Function Parameters Description
+reset -- Places the target in the reset state
-reset -- Removes the target from the reset state
reset - Reset-cycles the DSP board
run -- filename Downloads and runs specified CORDUT file
break -- Fires a target interrupt
open n-- Opens the specified target DSP device driver
close -- Closes the currently open DSP device driver
inbox? slot — f Reports status of specified input mailbox
outbox? slot —f Reports status of specified output mailbox
?mailbox@ slot—nf Reads input mailbox, if full. Returns value read and status.
?mailbox! n slot -- Writes output mailbox, if empty. Returns status.
.boxes -

Destructively dumps all input and output mailboxes

14

